

Discrimination of Tropical Agroforestry Systems in Very High Resolution Satellite Imagery using Object-Based Hierarchical Classification:

A Case-Study on Cocoa in Cameroon

Stéphane Dupuy

Camille C. D. Lelong, Cyprien Alexandre

CIRAD, UMR TETIS, Earth Observation for Environment and Land Management, Montpellier, F-34398, France

The agroforestry context

Sustainable agriculture = a major issue for the future of mankind, coming in 2 problems:

- Food security
- Environment preservation

Agroforestry is considered to be a solution / evaluated by agronomists + socio-economists = Random, complex, and multi-functional association of cash trees (e.g. cocoa /coffee /palm) with fruit trees and forest trees, inside a single plot, often organized in several superimposed

The remote-sensing context

Satellite very high spatial resolution images ⇒ spatialized information on:

- Landscape structure
- Intraplot structure

Satellite images with a high number of spectral bands ⇒ characterization of the high variability of optical properties of:

- crop systems
- trees

Cropping systems mapping

1) Delimitation and discrimination of land covers (savannah,

crops, tree-covered areas,)

2) Discrimination

of specific land-use types among the tree covers:

- traditional cocoa agroforests
- modern agroforestry cocoa plantations
- cocoa monocrops (sunlit)
- other types of groves (citrus, palm...)
 - Object-oriented approach combining several steps of segmentation + classification

Young palm grove

Traditional cocoa agroforest

Modern cocoa + palm grove

Modern cocoa plantation

Area of study

- Bokito district, Mbam & Inoubou region of Central Cameroon (wet tropical Central Africa)
- Savannah-forest transition zone
- Cocoa planting & food-crops area
- $\sim 100 \text{km}^2$

Collected data:

- WORLDVIEW2 acquisition at 0.5/2m in 8 bands (Feb.2011, very cloudy...)
- NASA-SRTM Digital Terrain Model (90m)
- Field survey (>450 geospatialized enquires on land-cover + land-use in tree crops)

Preprocessing and new attributes derivation

- 1. Orthorectification on the basis of NASA-SRTM DTM (90m)
- 2. Radiometric correction to convert digital numbers in top of atmosphere reflectance data
- 3. Derivation of the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Brightness Index (BI)
- 4. Cooccurrence texture indices derivation: variance, entropy and correlation at varying kernel sizes (from 3 to 51 pixels) and orientations (0; 45; 90)
 ⇒73 texture indices
- 5. Principal component analysis to select the more discriminant attributes:
 - 21 texture indices
 - 8 spectral bands
 - Soil Adjusted Vegetation Index (SAVI)
 - Brightness Index (BI)

ective Data & study a

Method

Results

Conclusion perspectives

eCognition segmentation/classification

6 levels of multiresolution

segmentation

+ hierarchical

classification

based on membership functions

Level 1

Scale: 160

Layers: Pan, Y, R, RE, BI

Cloud / shadow

Vegetation

Road / building

Pan= panchromatic

CB= costal

B= blue

Y= yelow

R= red

RE= red edge

NIR = near infra red

BI= Brightness Index

SAVI= Soil Adjusted Veg° Index

Entr19= entropy / 19 pix kernel

Entr23= entropy / 23 pix kernel

Method

eCognition segmentation/classification

6 levels of multiresolution

Layers: Pan, R, RE, NIR2, SAVI

segmentation

+ hierarchical classification

based on membership functions

Pan= panchromatic

CB= costal

B= blue

Y= yelow

R= red

RE= red edge

NIR = near infra red

BI= Brightness Index

SAVI= Soil Adjusted Veg^o Index

Entr19= entropy / 19 pix kernel

Entr23= entropy / 23 pix kernel

Layers: Y, R, RE, NIR1, Entr19

eCognition segmentation/classification

6 levels of multiresolution segmentation + hierarchical classification based on membership functions

eCognition segmentation/classification

6 levels of multiresolution segmentation + hierarchical classification based on membership functions

crop

eCognition segmentation/classification

+ hierarchical classification 6 levels of multiresolution segmentation based on membership functions Level 1 Vegetation Road / building Pan= panchromatic Cloud / shadow **Scale:** 160 CB= costal Layers: Pan, Y, R, RE, BI B= blue Y= velow R= red Merging same class adjacent objects RE= red edge NIR = near infra red BI= Brightness Index Level 2 SAVI= Soil Adjusted Veg^o Index Agroforestry systems Food crop / Entr19= entropy / 19 pix kernel savannah **Scale:** 400 Entr23= entropy / 23 pix kernel Layers: Pan, R, RE, NIR2, SAVI Merging same class adjacent objects Merging same class adjacent objects Level 5 Agoforestry Other low-Level 3 Kapok Burnt area Taro density systems Scale: 400 **Scale:** 400 vegetation Layers: R, RE, NIR1, SAVI, BI Layers: Y, R, RE, NIR1, Entr19 Merging same class adjacent objects Level 4 Other tree Savannah Annual Scale: 200 Layers: Pan, CB, B

grove

eCognition segmentation/classification

+ hierarchical classification 6 levels of multiresolution segmentation based on membership functions Level 1 Vegetation Road / building Pan= panchromatic Cloud / shadow **Scale**: 160 CB= costal Layers: Pan, Y, R, RE, BI B= blue Y= velow R= red Merging same class adjacent objects RE= red edge NIR = near infra red BI= Brightness Index Level 2 SAVI= Soil Adjusted Veg^o Index Agroforestry systems Food crop / Entr19= entropy / 19 pix kernel savannah **Scale:** 400 Entr23= entropy / 23 pix kernel Layers: Pan, R, RE, NIR2, SAVI Merging same class adjacent objects Merging same class adjacent objects Level 5 Agoforestry Other low-Level 3 Kapok Burnt area Taro density systems **Scale**: 400 **Scale:** 400 vegetation Layers: R, RE, NIR1, SAVI, BI Layers: Y, R, RE, NIR1, Entr19 Merging same class adjacent objects Merging same class adjacent objects Level 6 Level 4 **Scale: 200** Other tree Cocoa modern Sunlit Traditional Savannah Annual Scale: 200 Layers: P, R, RE, SAVI, Entr23, BI Layers: Pan, CB, B grove crop estate cocoa agroforest

Classification validation

- Random extraction of 660 validation points, characterized out of field enquiry or photointerpretation
- Confusion matrix derivation
- ♦ Global accuracy = 85% Kappa = 0.84
- Very high accuracy for most of the classes:
- roads and buildings: 95%, burnt areas: 86%
- food crops: 96%, annual crops: 90%
- Agroforests: 92%, modern cacao agroforestry plantation: 92%
- Other tree groves (palm): 98%
- \$\text{\subset}\$ Lower accuracy for savannah: 79\text{\screen}, \text{kapok: 74\text{\screen}, sunlit cocoa: 73\text{\screen}, taro: 71\text{\screen}\$

Tree cover mapping

- Good mapping of the cropland with good discrimination of agroforests and savannahs,
- Good mapping of the small patches inside the savannah like small agroforests or food crops.
- Nice detection of sunlit cocoa patch inside the agroforest.
- Many kapok trees are missing
- Some small trees are misclassified as taro

Tree cover mapping

- Good recognition and mapping of an oil palm grove
- Good mapping of agroforest patches inside the savannah

Tree cover mapping

- Interesting recognition of the cocoa modern estates but sometimes with very bad delimitation (segmentation error)
- Misclassification of an annual crop including some isolated trees as sunlit cocoa

Tree land-use recognition

- Good discrimination between the different cocoa agroforestry systems
- Agroforests are very well delimitated ⇒ potential to map different tree species?
- Still some kapok missing... maybe not the easiest type of tree to discriminate?

ive Data & study are

Method

Results

perspectives

Tree land-use recognition

Misclassification of young a cocoa grove as savannah, due to small size of trees ⇒need
of a complementary level of segmentation or smaller kernel texture indices

jective Data & study a

Method

Results

perspectives

Tree land-use recognition

 Zoom on the modern cocoa plantation with the strong defficiency of the segmentation leading to very bad classification of the area

Conclusion and perspectives

Thematic classification is well reached but suffers from local errors in segmentation.

Classification nomenclature should be improved, increasing also its reliability. Eg. additional classes should be integrated:

- Natural forest vs. agroforest discrimination (in an enlarged image frame).
- Big trees (other than kapok) delimitation and various species recognition
- Distinction of various types of traditionnal agroforests (composition, density, mean and maximum tree size...)
- ⇒ Application on a new WV2 mono-acquisition (dec. 2013, no cloud)

 Some solutions should arise from the use of stereo imagery (height info)!

Encouraging results, providing with a map of high global accuracy and value:

- spatialized information about the cropland structure & the implantation and distribution of the various agroforestry systems.
 - \$\Bigsig GIS\$ to analyze the relationships between agroforestry settings and altitude (needs for precise DTM), hydrography, road infrastructure...
- intraplot structure and complexity, through the localization and density of entities like sunlit cocoa patches, kapok trees, and eventually at some future: other tree species (to be further analyzed), and the estimation of tree crown.
 - \$\text{dispositive of production and/or environmental services evaluation of the cropping systems.}

