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Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in
Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate
anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole).
However, in June 2013 – a non-drought year – Singapore’s 24-hr Pollutants Standards Index reached an
all-time record 246 (rated ‘‘very unhealthy’’). Here, we show using remote sensing, rainfall records and other
data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average
year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of
Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was
confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief,
localized event were considerable: 172 6 59 Tg CO2-eq (or 31 6 12 Tg C), representing 5–10% of
Indonesia’s mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution
episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be
increasingly frequent because of ongoing deforestation of Indonesian peatlands.

F
orest and peatland fires in Indonesia are a cause of major international concern because of the large GHG
emissions associated with these fires1–4, and the negative impact of resulting aerosol emissions for human
health, transport, tourism, economic activity in the Southeast Asian region5. Fires are typically lit for

agricultural purposes during the regular dry season6, but their impacts are heightened during years of anom-
alously low rainfall7,8. Drought years in Indonesia occur when anomalously cold sea surface temperatures
surround Indonesia and warm waters develop in the eastern Pacific Ocean (El Niño Southern Oscillation,
ENSO) and in the western Indian Ocean (Positive Indian Ocean Dipole, IOD)6. ENSO conditions typically occur
every three to seven years and result from weakened easterly trade winds in the western equatorial Pacific,
allowing warm surface water to shift towards the coast of Peru in the eastern Pacific9. The positive phase of
the Indian Ocean Dipole (IOD) is a related phenomenon that occurs when warm waters off the coast of Sumatra
shift towards East Africa10. All major Southeast Asian haze events from 1960 to 2006 have occurred during years
of anomalously low rainfall induced by ENSO and/or IOD conditions7. The fires of 1997-98, the year that saw the
strongest recorded ENSO and IOD in the 20th century, burned 9.7–11.7 million ha on Borneo and Sumatra and
destroyed 4.5–6 million ha of species rich Dipterocarp forest (including 1.5–2.1 million on peat soils)11,12. Annual
mean particulate matter concentrations reached 200 mg/m3 near fire sources (Southeast Sumatra and Southern
Borneo), and exceeded the World Health Organization’s 24-hr air quality target (50 mg/m3) for .50 days across
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Southeas Asia13. Estimated carbon emissions from these 1997-98
fires were 0.81–2.57 Pg, equivalent to 13–40% of annual global fossil
fuel emissions at that time2.

In 2013, a year without regional climate anomalies, fires in
Indonesia generated atmospheric pollution that exceeded the pre-
vious 1997-98 records over Singapore. These apparently anomalous
2013 fires prompted us to examine their cause and origin in greater
detail. Our objectives were to: (i) examine the pollution levels gen-
erated; (ii) assess climatic conditions prior to the fires; (ii) quantify
the area burned, (iii) assess prior vegetation cover and land own-
ership preceding the fires; (iv) estimate associated GHG emissions;
(v) and consider the likelihood of such events recurring in the future.

Results and discussion
The largest monthly release of Fire Radiative Power (FRP) 2 the rate
of electromagnetic energy released by fire14 2 detected by TERRA
and AQUA satellites in Sumatra (since records began in July 2002)
was in June 2013 (FRP5383 Gigawatts) (Fig. 1a). Singapore’s 24-hr
Pollutants Standards Index (PSI) reached an all-time record 246 on
22 June 2013 (seven consecutive days . 101 including three consec-
utive days . 236; rated ‘‘very unhealthy’’), almost doubling its pre-
vious record of 138 from 19 September 1997 (twelve days .101
between 13 Sept. - 25 Oct.) (Fig. 1a). This trans-boundary haze event
is remarkable as neither ENSO nor IOD conditions occurred in 2013.
By contrast, the last major episode of extreme air pollution over
Singapore had occurred in 2006, when both ENSO and IOD condi-
tions preceded major fires in Sumatra (and in Indonesian Borneo)15,
resulting in a peak in Sumatra’s fire activity in October 2006
(FRP5366 Gigawatts), and a peak in Singapore’s 24-hr PSI on 07
October 2006 (128; rated ‘‘unhealthy’’) (Fig. 1a).

Our investigations of the June 2013 fires in Sumatra determined
that a three-million ha area of Riau Province in Central Sumatra
(1.6% of Indonesia’s landmass; one LANDSAT scene; see bottom
inset in Fig. 2a) was the source of 71% (271 Gigawatts) of
Sumatra’s FRP in that period (Fig. 1a, b). It also accounted for 72%
of the area burned across the entire island as detected by the same
satellites in the same month (Supplementary Fig. 1). We investigate
this area in greater detail in the following sections.

Daily fire hotspots (also from TERRA and AQUA satellites)
revealed a peak in fire activity during the week of 18–24 June
(Supplementary Fig. 2). A brief dry period preceded this fire. For
the twelve months leading up to and including June 2013 (July 2012-
June 2013) Riau was wetter than average, receiving 2,530 mm of rain
compared to the annual mean of 2,350 mm for 1961–2013
(Supplementary Fig. 3a). However, May and June 2013 registered
rainfall deficits compared to the monthly means (Supplementary Fig.
3b). Monthly FRP in the study area was correlated with rainfall over
the month of FRP measurements and the month before (Log-Log fit;
r250.55, p,0.01, n5134). A 1% decrease in rainfall induced a 6%
increase in FRP (Fig. 1c, d). Correlations over one, three, and four
months were lower (r250.43, r250.43, r250.31, respectively). A sim-
ilar relationship has been observed previously in Central Sumatra15.

LANDSAT satellite imagery acquired shortly before and shortly
after the fire indicates that 163,336 ha (including 137,044 ha, or 84%
on peat) burned in the three-million ha study area (Fig. 2a, b). We
validated this assessment using a Unmanned Aerial Vehicle (UAV or
‘‘drone’’) one month after fire at seven sites, spanning 1,301 ha
(Fig. 2b), and observed an accuracy of 85% for burned areas
(Supplementary Fig. 4, Supplementary Table 1, 2), with 96% of
MODIS fire hotspots falling within the burned areas extent
(Fig. 2a, b).

Only 7% (12,037 ha) of burned lands were classified as ‘forest’
before the fires (accuracy of 97%; Supplementary Table 3, 4). This
was mainly small degraded remnants of drained peat-swamp forest.
Most burned lands were classified as ‘non-forest’ (81%; 133,216 ha)
(Fig. 3). However, over half of burned areas (58%; 94,308 ha) were

forested five years previously (Fig. 2b, c). Comparison with the cor-
responding UAV-based vegetation map reveals that 57% of burned
‘non-forest’ areas were nonetheless ‘forest cemeteries’, i.e. a mosaic of
scrub and exposed soil, with stumps, downed trunks and branches
(Fig. 3). The burned ‘non-forest’ areas on peat (68%; 111,561 ha)
generated the bulk of the FRP (Supplementary Fig. 5). The imagery
also detected areas where planted Acacia forests (Acacia crassicarpa
A.Cunn ex Benth. widely called ‘‘Acacia’’ though it was recently
renamed Racosperma crassicarpum (A. Cunn. ex Benth.) Pedley.)
and oil palm plantations (Elaeis guineensis Jacq.) had been damaged
by fire (Fig. 3).

We found that 52% of the total burned area (84,717 ha) was within
concessions, i.e. land allocated to companies for plantation develop-
ment (Fig. 2b, d). However, 60% of burned areas in concessions
(50,248 ha, or 31% of total burned area) was also occupied by com-
munities (Methods; Supplementary Fig. 6). This presence makes
attribution of fires problematic. The remaining 48% of the total
burned land (79,012 ha) was owned by Indonesia’s Ministry of
Forestry (under central government). These areas were deforested
prior to fires and their ownership is often contested by the local
government. The detection of two excavators by the UAV preparing
land for planting in the burned areas one month after fire suggests
fires were associated with agriculture (lower inset in Fig. 2b).

We estimate that the June 2013 fires released 172 6 59 Tg CO2-eq
of GHG into the atmosphere during the week of 18–24 June in the
study area (Table 1; Methods and Supplementary methods). Carbon
emissions were 31 6 12 Tg C. Uncertainties were around 39% and
35% of total C and total GHG emissions, respectively. These emis-
sions represent 5–10% of Indonesia’s reported annual GHG emis-
sions for 2000–200516 and 26% of average annual C emissions from
fires in tropical Asia (-10 to 10N, 60–190E) between 2003–2008
modelled using the Global Fire Emission Database (GFED)17.
Ninety percent of the emissions originated from peat and CO2-eq
emissions were mainly in the form of CO2 (55.3%) and CH4 (44.5%).
Total CH4 emissions represented 4–6% of average annual emission
rate for the whole of Southeast Asia in 2000–200918. N2O emissions
were negligible (0.3% of total CO2-eq emissions).

Our results demonstrate that the Indonesian fires of 2013 behind
the record air pollution episode in Singapore were triggered by a
seasonal two month dry spell in an otherwise rainy year. These fires
were short-lived and confined to recently deforested peatlands in a
localized area in Central Sumatra (in Riau Province), reflecting
ongoing conversion to oil palm plantations. The area affected was
much smaller than the 9.7–11.7 million ha that burned in 199711,12.
However, the emissions of GHG and smoke during this brief loca-
lized event (one week and 1.6% of Indonesia’s land) were dispropor-
tionately large because of the peat. These fires generated
unprecedented atmospheric pollution in Singapore because of their
proximity and the prevailing south westerly monsoon winds
(Supplementary Fig. 7a).

During the last major drought years (1997 and 2006) fires peaked
in Southeast Sumatra (Supplementary Fig. 7b) and in southern
Borneo from August through October, but their impacts in Central
Sumatra were less extreme15. Riau experiences a bi-modal annual
rainfall pattern with peaks centred on November and April
(Supplementary Fig. 2b)19. It responds less to sea surface temperature
anomalies than Indonesia’s other fire-prone regions19. The major
Riau fires of 2005, 2013, and the recent 2014 event occurred during
the regular short seasonal dry spells (, 2 months) centred on
February and June. February fires (e.g. in 2005 and early 2014) are
associated with prevailing north easterly monsoon winds, and thus
generally cause little problem of trans-boundary haze (Fig. 1a&b;
Supplementary Fig. 7c). In June, as observed in 2013, prevailing
winds carry any emissions directly from Riau to Singapore
(Supplementary Fig. 7a). The brief droughts, that seldom exceed
two months, pose a challenge to forecasting severe fire events in
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Riau. While the 2013 fire event may initially appear anomalous, we
expect such events to be increasingly frequent with ongoing peatland
development.

Peat forests in Sumatra have declined by 18,400 km2 (4.6% yr21)
over the last two decades20. This reflected timber cutting, plantation
development and fires20. Some of these deforested lands remain

Figure 1 | Singapore’s air quality (1997–2013) and Sumatra’s fire activity (2002-2013) and rainfall (1997–2013). (a), 24-hour PSI in Singapore (top) and

monthly FRP (in Gigawatts) from Sumatra (bottom) measured by the MODIS instruments on-board the TERRA and AQUA satellites. (b), monthly

rainfall in Riau province (top) and monthly FRP from the three-million ha study area (bottom). (c), a scatterplot of monthly FRP from the study area

fitted using a power function with mean rainfall in the preceding two months. Each cross represents one calendar month (n5134; July 2002 to August

2013), with June 2013 represented by a filled circle. (d) The same data as in c presented in Log-Log. The solid line shows the linear relation between the

logarithm transformed variables: Log (FRP) 5 41.1 – 6.13 Log (Rainfall). The hashed lines show the 95% prediction bounds of the fitted curve.
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undeveloped and persist in a degraded and seasonally fire-prone
state21. Deforestation elevates local temperatures, reduces precip-
itation and limits soil moisture; this heightens climatic variability
and likelihood of drought, and influences regional climate22,23. The
convergence of these trends with the frequent use of fire by

humans may, over time, render the emissions of peatland fires
in Central Sumatra during ‘wet’ years increasingly similar to that
of ‘dry’ ENSO/IOD years. Assessing the state and vulnerability of
remaining peatlands, would help identify where vigilance is most
required.

Figure 2 | The three-million ha study area in Riau province, Sumatra (location see inset). (a), Fire hotspots. MODIS daily hotspots distribution for June

2013 (yellow dots) overlaid on a post-fire LANDSAT OLI imagery (12 August 2013) displayed in false colours (RGB: 6-5-4). (b), Burned areas. An

estimated 163,336 ha burned in the study area: red (non-forest), green (forest), orange (Acacia plantation) and cyan (cloud). Peatlands are shown in

darkest shade of grey; superimposed are the seven locations of the UAV transects. The bottom inset is a UAV snapshot over peatlands deforested 3 years

prior to the June 2013 fire, where dead carbonized tree trunks and an excavator preparing land for oil palm are clearly visible. (c), Pre-fire Deforestation.

Loss of species-rich Dipterocarp forest from 1990 until May 2013. Light brown: non forest in 1990. Orange: deforested between 1990-2008. Purple:

deforested between 2008 and May 2013. The study area lost 1.72 million ha (78%) of forest between 1990 and May 2013 (including 1 million ha on peat).

(d), Pre-fire land-ownership map. Industrial oil palm and Acacia plantations developed by companies in concessions are shown in yellow, and in khaki,

respectively. Concessions (for both oil palm and Acacia) occupied by communities are shown in black. Lands outside concessions are in white. Forest

cover (unoccupied land) one month before fire is shown in dark green. Maps created using ArcMap v10.0 geospatial processing program. The data used to

generate the maps presented in this figure are made available online at http://www.cifor.org/map/fire/.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6112 | DOI: 10.1038/srep06112 4

mailto:http://www.cifor.org/map/fire/


The Indonesian government has encouraged investment in oil-
palm and pulpwood industries resulting in rapid large-scale planta-
tion expansion and associated developments24. In 2011, Indonesia
implemented a moratorium on new plantation concessions in an
effort to protect remaining forests and peatlands25. However, such
policies did not prevent the June 2013 fires. Our results show that

these fires occurred mostly in already-cleared peatlands. Burn loca-
tions suggest ignition by both communities and companies. Most
fires are lit in order to prepare land for cultivation24 but some are
likely accidental, while others may be arson26: we still know too little
concerning these specific events and the intentions and safeguards
used.

Figure 3 | Vegetation cover of the burned areas (163,336 ha) before the June 2013 fires. The ‘Non-forest’ category contains a broad mix of vegetation

types, which we identified through a comparison against a more detailed vegetation classification derived from the Unmanned Aerial Vehicle (UAV). This

comparison was only performed in the portions of UAV imagery identified as ‘unburned’ (567 ha). The error bar is calculated as 1-1 Standard Deviation,

(n5 7 UAV transects). Inset, ‘Non-Forest’ is dominated by scrubs and exposed soils, young (,5 years old) and mature (.5 years old) oil palm

plantations. Oil palm plantations either belong to small- and medium-scale agriculturalists or to companies. The ‘Forest’ category includes logged and

drained natural forests. The ‘Acacia’ category indicates closed-canopy industrial plantations on peatlands. The ‘Cloud’ class indicates areas that were

obscured by clouds and cloud shadows on the pre-fire LANDSAT imagery.

Table 1 | Carbon emissions from fires. Average value 6 SE of fuel load (FL), combustion completeness (CC), burned areas (detailed as
burned on mineral soils 1 peat soils for each vegetation cover defined in Fig. 3), emission of carbon dioxide (CO2), carbon monoxide (CO),
methane (CH4), nitrous oxide (N2O), mono-nitrogen oxides (NOx), total carbon (C) emission (CO21CO1CH4) and total emission of
greenhouse gases (GHG) (CO21CH41N2O). Total emission of GHG were calculated using 20 (GHG20YGWP) and 100 year (GHG100YGWP)
global warming potentials (GWP) for CH4 and N2O. The lack of appropriate emission factors for other GHG species prevented their
inclusion

Non-Forest Acacia Forest Peat soil Total

FL (Mg DM ha21) 55.9 6 10.5 56.0 64.4 205.6 6 48.8 353{ 6 187
CC (%) 90 6 13 90 69 38 6 4
Burned area (ha) 21,654m 1 111,561p 119m 1 4,630p 2,083m 1 9,954p 137,044a 163,336b

CO2 (Tg) 10.59 6 2.55 0.38 6 0.05 1.49 6 0.07 82.39 6 44.35 94.84 6 44.42
CO (Tg) 0.70 6 0.19 0.02 6 0.00 0.10 6 0.01 10.16 6 5.47 10.98 6 5.47
CH4 (Tg) 0.05 6 0.01 0.0016 6 0.0004 0.01 6 0.00 1.01 6 0.54 1.06 6 0.54
N2O (Tg) 0.0013 6 0.0003 0.00005 6 0.000008 0.00019 6 0.00002 - 0.0016 6 0.0003
NOx (Tg) 0.0107 6 0.0042 0.0004 6 0.0001 0.0015 6 0.0005 0.013 6 0.004
Total C (Tg) 3.22 6 0.70 0.12 6 0.01 0.45 6 0.02 27.58 6 12.33 31.37 6 12.35
GHG20YGWP (Tg CO2-eq) 14.26 6 2.75 0.51 6 0.06 2.00 6 0.12 154.83 6 59.06 171.60 6 59.13
GHG100YGWP (Tg CO2-eq) 11.96 6 2.56 0.43 6 0.05 1.68 6 0.08 103.52 6 45.78 117.58 6 45.85
mArea burned on mineral soils. p Area burned on peat soils.
aIncludes 10,899 ha on peat soils under cloud before fire, and for which previous vegetation cover could not be assessed but for which peat emissions were included; b Includes 2,436 ha on mineral soil
under cloud before fire for which emissions were excluded.
{roduct of fuel load (FL) and combustion completeness (CC).
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Efforts to avoid major haze events require that all land users con-
trol fire use during any dry periods. Given land use practices in the
region, and the frequent conflicts among land users, this will be
challenging5. We advocate active protection of remaining peatland
areas and cessation of further drainage. Financial incentives for forest
protection are not competitive with commercial land values, and
future payments for reducing emissions from deforestation and for-
est degradation (REDD) are unlikely to change this24. Unless strong
action is taken Indonesia’s peatlands are likely to remain a major
source of GHG and aerosol emissions.

Methods
Singapore’s air pollution. We obtained Singapore’s 24-hour Pollutant Standards
Index (PSI) time series from the National Environment Agency (NEA). The PSI is a
number representing the highest sub-index of five common pollutants computed
based on the concentrations averaged over a 24-hour period: particulate matter
(PM10), sulphur dioxide (SO2), carbon monoxide (CO), ozone (O3), and nitrogen
dioxide (NO2). Systematic 24-hr PSI records began on 01 January 1997. Initially, the
NEA only reported the maximum value from all ambient air monitoring stations in
Singapore, but since 14 February 2005 the NEA has reported the PSI for each of the
five regions of Singapore, separately, as well as the maximum value, which represents
the PSI for overall Singapore. Prior to 24 August 2012, the PSI was reported once a day
at 4 pm, but subsequently reports were increased to several times a day. To allow
comparison for the whole time series (1997–2013) we used the 24-hr maximum PSI
recorded at 4 pm when multiple values were available.

Sumatra-wide fire activity. The MODIS satellites have been recording the rate of
thermal electromagnetic energy released by fire (Fire Radiative Power, FRP) since
year 2002. We combined monthly fire radiative power (FRP) from TERRA and
AQUA satellites (MOD14CMH 1 MYD14CMH datasets27) to capture fire activity
four times a day at 10:30 am and 10:30pm (TERRA) and at 1:30 pm and 1:30 am
(AQUA). Both datasets are gridded statistical summary of MODIS fire pixel
information at 0.5 arc-deg spatial resolution.

We estimated the area that had burned across Sumatra, using 500-m spatial
resolution MODIS data, and specifically the MCD65A1 dataset27. The burned area
detection method used in the MCD65A1 product was preferred over the alternative
MODIS MCD45A1 burned area product (v5.1) because the former is more tolerant of
cloud and aerosol contamination28, and the latter appeared less accurate at detecting
burns in Sumatra in June 2013.

We combined 1-km2 daily maximum FRP (MOD14A1 1MYD14A1 products27) to
capture daily fire activity from both the 10:30 am and 1:30 pm satellite overpasses and
overlaid these 1 km2 FRP observations with the LANDSAT-based burned area map
described in Fig. 2b to understand how fire activity varied among different vegetation
cover types.

We estimated the locations of fire hotspots using the standard MOD14/MYD14
Fire and Thermal Anomalies product available at the NASA FIRMS website29.

Fire and rainfall correlation. We analysed the correlation between monthly fire
radiative power (FRP) and monthly rainfall from November 2000 and August 2013 in
our three million study area in Riau province, Sumatra. Rainfall data came from
NOAA30,31. Because droughts of different lengths can influence fires15, we explored
the correlation between FRP and the average precipitation for up to 4 months before
fire.

Mapping burned areas and prior vegetation in the three million ha study area. We
mapped burned areas and the vegetation cover of the same areas one month before
the fire using three post-fire LANDSAT 8 images acquired on 25 June, 11 July and 12
August 2013 and two pre-fire images acquired on 22 April and 25 May 2013
(Supplementary Fig. 2). We employed multiple pre- and post-fire images to reduce
areas contaminated by clouds and haze. In the post-fire LANDSAT imagery displayed
in false RGB colour (Short-wave infrared: band 6; Near infrared: band 5; Red: band 4)
unburned vegetation appear green (Fig. 2a). Pink areas reveal unburned areas with
exposed soils. Burned areas appear dark red. The most severely burned areas are
generally the darkest. Burned, unburned areas and pre-fire vegetation were mapped
using a tree-based supervised classification algorithm. Burned areas underneath haze
or clouds were digitized using visual interpretation after applying a local contrast
enhancement. In the pre-fire LANDSAT imagery, forest, non-forest, Acacia forest
industrial plantations, and clouds were mapped. We used a tree-based supervised
classification method (See5 module) in the ERDAS Imagine v8.6 remote sensing
program to extract the burned areas and pre-fire vegetation from the LANDSAT
imagery.

We collected high-resolution imagery (10-cm) with an Unmanned Aerial Vehicle
(UAV) or ‘‘drone’’ (Skywalker Aero model with a camera Canon S100) between 28
July and 02 August 2013 to: (i) evaluate the accuracy of our LANDSAT-based maps
(See Supplementary results); and (ii) characterise the vegetation types of the broad
LANDSAT-based ‘non-forest’ class. The UAV images were acquired along transects
at seven different sites, encompassing a variety of vegetation types and proximity to
agriculture, burned and unburned mosaics (Fig. 2b). The UAV imagery (1,301 ha)
was ortho-rectified and registered to our LANDSAT imagery.

We characterised the LANDSAT-based ‘non-forest’ class by first interpreting the
UAV imagery into five vegetation classes: (i) scrubs and exposed soils, (ii) young oil
palm, (iii) mature oil palm, (iv) Acacia, and (v) forest. In Riau, oil palm plantations
either belong to small- and medium-scale agriculturalists or to companies. Young and
mature oil palm refer to open (,5 years old) and closed (.5 years old) canopy
plantations, respectively. Acacia indicate closed-canopy company-owned plantations
on peatlands. The pre-fire LANDSAT-based ‘non-forest’ class was then defined by
comparing it against the five UAV-based vegetation classes. This comparison was
only performed in the portions of UAV imagery identified as ‘unburned’ (567 ha).
The error bar is calculated as 61 Standard Deviation, (n5 7 UAV transects).

To evaluate the accuracy of the LANDSAT-based ‘burned area’ map, we randomly
sampled 2,088 validation points each being at least 100 m from each other. For each
point, a 30 m 3 30 m area, approximating a single LANDSAT pixel was visually
interpreted as either ‘burned’ or ‘unburned’ in the UAV photos at 151,000 scale,
burned areas being easily discernable (Supplementary Fig. 4). A confusion matrix
determined the frequency of class agreement between our reference UAV imagery
and our LANDSAT-based burned area map, as determined by overall accuracy (i.e.,
‘% correct’), user’s and producer’s accuracy. We also identified the level of corres-
pondence between our LANDSAT-based burned area map and the MODIS fire
hotspots data by calculating the percentage of fire hotspots that fell within the burned
areas or that were within 500 meters of the burned areas. We repeated this validation
procedure using the portions of UAV imagery identified as ‘unburned’ (567 ha) to
validate the pre-fire LANDSAT-based vegetation cover (forest, Acacia, non-forest).

Mapping deforestation in the study area. We combined published LANDSAT-
based datasets32,33 to map the loss of species rich dipterocarp forests in the study area
from 1990 until 2012, and extended the analysis to May 2013 (one month before fire)
using two pre-fire LANDSAT images described above. The combination of datasets
involved discarding ‘tree cover loss’ pixels generated by the first dataset33 that fell
outside of remaining forest areas in year 2000 in the second dataset32 to remove areas
where tree loss included clearing of industrial plantations (e.g. oil palm and Acacia)
and mixed traditional gardens (e.g. rubber, orchards, smallholder oil palm and other
agro-forests mixed with forest re-growth).

Land ownership in the study area. We obtained concession maps for 2010 at
15250,000 scale from Indonesia’s Ministry of Forestry. These concessions represent
the areas allocated by the Indonesian government to companies for planting
monoculture plantations of oil palm or Acacia (for pulpwood). Concessions (51% of
our study area, or 1,661,072 ha) were disaggregated into: (i) areas developed by
plantation companies (1,071,116 ha); (ii) areas occupied by small-scale
agriculturalists (538,045 ha); and (iii) idle undeveloped lands (51,911 ha). This
partitioning could be achieved by delineating the grid-like spatial arrangements of
land parcels on the pre-fire LANDSAT imagery (Supplementary Fig. 6). This grid-like
network of roads and canals on the pre-fire LANDSAT imagery is known to
characterize the spatial arrangement of company-owned plantations in the
Indonesian lowlands. We delimited the boundary of those grids (and in some cases
concentric patterns) in a GIS by visual interpretation, and assigned them to either oil
palm or Acacia land holdings using the publicly available concession maps. Areas in
concessions that did not show grid-like patterns, but exhibited clusters of rectangular
land parcels of varying shape, size, and direction were characterized as lands occupied
by small-scale agriculturalists (Supplementary Fig. 6). Areas in concessions without
clusters of rectangular land parcels were characterized as idle undeveloped lands
(these were mainly forest remnants).

GHG and carbon emission estimates. Fire emissions for each burning specific
ecosystem/pool were calculated as the product of burned area, fuel load, combustion
completeness and gas-specific emission factor. Detailed methods and references used
for vegetation fuel load and combustion completeness calculation in each land use
category are presented in Supplementary information. The mass of peat actually
burned, i.e. product of fuel load and combustion completeness was taken from the
2013 IPCC guidelines (353 6 186.7 Mg DM ha21)34. The CO2, CO, CH4, N2O and
NOx emission factors for biomass and peat burning and the references used are also
provided in the online supporting material. Total C emissions were computed by
using the carbon content in CO2, CO and CH4; total GHG emissions were computed
by using the global warming potentials of CH4 (72) and N2O (289) over a 20 year time
horizon35. For comparison with national summaries, total emissions were
recalculated using 100 year time horizon global warming potentials. Fuel load,
combustion completeness, burned area and gaseous emission results are presented in
Table 1.

Analyses of geospatial data. All the maps presented in this article, and geospatial
analyses performed in this study were carried out by the authors of this study using
ArcMap v10.0 geospatial processing program.
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