Research on mango conducted by CIRAD in Réunion Island

Frédéric Normand
normand@cirad.fr

Small trees – High productivity: collaboration possibilities
Univ. of Queensland, Brisbane, 15 August 2014
Presentation outline

Introduction

• What is CIRAD?

• Research on mango in Réunion Island: objectives and approach

What has been done and what is in progress

• Vigour management

• Architecture

• Canopy light relations

• Crop load

• Modelling
What is CIRAD?

- CIRAD = French Agricultural Research Centre for International Development (www.cirad.fr/en/)

- French research centre working with developing countries to tackle international agricultural and development issues

- Main issues: food security, ecological intensification, emerging diseases, the future of agriculture in developing countries

- 3 scientific departments

- 35 research units

- Main locations: Montpellier, French overseas regions,

- Joint operations with more than 90 countries
Research on mango in Réunion Island

Area: 2512 km²
Population: 800,000 inhabitants
Tropical / subtropical climate
Research on mango in Réunion Island

Objective: to adapt the concepts of Integrated Fruit Production (IFP) to tropical trees (mango, pineapple, Citrus)
Research on mango in Réunion Island

The approach

1- to improve the knowledge on key processes for mango production: how does it work?, what are the factors affecting the processes?, processes modelling.

The processes studied:

- photosynthesis
- carbohydrates allocation
- architectural determinants of flowering and fruiting
- reciprocal interactions between vegetative and reproductive growth
- phenology
- fruit growth and quality build-up
- interactions between pests and mango
Research on mango in Réunion Island

The approach:

2- to deduce and experiment new tree management techniques complying with the objectives of IFP.

The experiments in progress:

- irrigation management
- pruning
Research on mango in Réunion Island

My research issues:
 tree flowering, in relation to two agronomic problems
 - irregular bearing
 - phenological asynchronisms

• Nutritional approach (carbohydrates)

• Architectural approach → necessity to open the field of research to vegetative growth and phenology

• Modelling of mango tree phenology and yield

• Experiment new management techniques
What has been done and what is in progress

Vigour management

- rootstock control: ~ low vigour rootstock

- cultivar evaluation: assessment of vigour, canopy shape

- canopy manipulation: pruning experiment in progress
 • maintain reasonable tree size,
 • synchronize tree phenology,
 • lessen irregular bearing.

- rootstock breeding: No

- growth regulators:
 • not allowed by phytosanitary regulations,
 • do not match with IFP concepts
What has been done and what is in progress

Architecture

- Patterns of natural development and fruiting (Normand et al., 2008, 2009, 2012; Dambreville et al., 2013):
 - vegetative growth
 - interactions between vegetative and reproductive growth,
 - structural and temporal components,
 - ≠ levels: growth unit, scaffold branch, tree,
 - ≠ cultivars, including Kensington Pride

- Manipulation by pruning: effects on
 - vegetative development,
 - flowering and fruiting
 - fruit quality

- Manipulation by irrigation:
 - same observations as in the pruning experiment,
 - water balance model
 - water stress indicator (stem diameter microvariation)
What has been done and what is in progress

Canopy light relations

- Effect of light on fruit growth and quality (Léchaudel et al., 2005, 2007)

- Mango photosynthesis and effect of different factors
 - biochemical model of photosynthesis (Urban et al., 2003)
 - plant hydraulics and stomatal conductance (Damour et al., 2009, 2010)

- Mapping of mango dry mass and carbohydrates, changes during the growing cycle (in prep.)
 - main compartments for carbohydrates storage,
 - mobilization of carbohydrates during flowering and fruit growth,
 - contribution of reserves vs photosynthesis for fruit growth
What has been done and what is in progress

Crop load

- Understanding crop load effects on floral initiation, fruit set, irregular bearing and tree growth:
 • architectural approach (Dambreville et al., 2013),
 • interactions between fruit load and tree growth (cf pres. IHC)
 • work in progress (PhD Mathilde Capelli)

- Practical methods for load management
 • not explicitly experimented (i.e. removal of inflorescences to reduce asynchronisms)
What has been done and what is in progress

Modelling

- available models:
 • fruit growth and quality build-up (Léchaudel et al., 2005, 2007),
 • photosynthesis at the leaf level (Urban et al., 2003)
 • stomatal conductance (Damour et al., 2010)
 • thermal time models (growth units, fruits, inflorescences)

- in progress: modeling yield and fruit quality
What has been done and what is in progress

Modeling yield and fruit quality

Objectives:
- to model yield and quality build-up of the mango (Cogshall)
- to integrate the current knowledge
- to integrate some of the existing models
- to couple subsequently the model with a pest model
- to be able to simulate the impact of environment and cultural practices on development and performance of the mango tree

Expected outputs:
- phenology (within- and between-trees)
- yield
- fruit quality
- subsequently: pest damages
Collaborations

INRA, UMR AGAP (Montpellier), UR PSH (Avignon)

CIRAD / INRA / INRIA, Virtual Plants team

CIRAD, UMR PVBMT (Réunion island)

Universities (Réunion Island, Montpellier, Avignon)
Thank you for your attention
Publication list:

Publication list:

