Supplementary Information (SI) Appendix for

2 3	Joint Control of Terrestrial Gross Primary Productivity by Plant Phenology and Physiology
5	Jianyang Xia ^{1†*} , Shuli Niu ^{2†*} , Philippe Ciais ³ , Ivan Janssens ⁴ , Jiquan Chen ⁵ , Christof
6	Ammann ⁶ , Altaf Arain ⁷ , Peter D. Blanken ⁸ , Alessandro Cescatti ⁹ , Damien Bonal ¹⁰ , Nina
7	Buchmann ¹¹ , Peter S. Curtis ¹² , Shiping Chen ¹³ , Jinwei Dong ¹ , Lawrence B. Flanagan ¹⁴ ,
8	Christian Frankenberg ¹⁵ , Teodoro Georgiadis ¹⁶ , Christopher M. Gough ¹⁷ , Dafeng Hui ¹⁸ , Gerard
9	Kiely ²⁰ , Jianwei Li ^{1,18} , Magnus Lund ²⁰ , Vincenzo Magliulo ²¹ , Barbara Marcolla ²² , Lutz
10	Merbold ¹¹ , Leonardo Montagnani ^{23,24} , Eddy Moors ²⁵ , Jørgen E. Olesen ²⁶ , Shilong Piao ²⁷ ,
11	Antonio Raschi ²⁸ , Olivier Roupsard ^{29,30} , Andrew E. Suyker ³¹ , Marek Urbaniak ³² , Francesco P.
12	Vaccari ²⁸ , Andrej Varlagin ³³ , Timo Vesala ^{34,35} , Matthew Wilkinson ³⁶ , Ensheng Weng ³⁷ , Georg
13	Wohlfahrt ^{38,39} , Liming Yan ⁴⁰ , Yiqi Luo ^{1†*} ,
14	¹ Department of Microbiology and Plant Biology, University of Oklahoma, OK, USA;
15 16 17	² Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China;
18 19	³ Laboratoire des Sciences du Climat et de 1'Environnement, CEA CNRS UVSQ, 91191 Gif sur Yvette, France;
20 21	⁴ Department of Biology, University of Antwerpen, Universiteitsplein 1, 2610Wilrijk, Belgium;
22 23	⁵ Center for Global Change and Earth Observations (CGCEO), and Department of Geography, Michigan State University, MI, USA;
24 25	⁶ Federal Research Station Agroscope, Climate and Air Pollution Group, Zuerich, Switzerland;
26 27	⁷ School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1;
28 29	⁸ Department of Geography, University of Colorado at Boulder, 260 UCB, Boulder, CO, USA;
30 31	⁹ European Commission, Joint Research Center, Institute for Environment and Sustainability, Ispra, Italy;
32	¹⁰ INRA, UMR 1137 INRA-Universit éde Lorraine, 54280 Champenoux, France;
33	¹¹ Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland

- ¹²Department of Evolution, Ecology & Organismal Biology, The Ohio State University,
 Columbus, OH, USA;
- ¹³State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,
 Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China;
- ¹⁴Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, TIK
 3M4, Canada;
- 40 ¹⁵Jet Propulsion Laboratory, M/S 183-601, 4800 Oak Grove Drive, Pasadena, CA, USA;
- 41 ¹⁶IBIMET-CNR, Via P. Gobetti 101, 40129 Bologna, Italy;
- 42 ¹⁷Department of Biology, Virginia Commonwealth University, Richmond, VA, USA;
- 43 ¹⁸Department of Biological Sciences, Tennessee State University, TN, USA;
- ¹⁹Civil and Environmental Engineering Department, and Environmental Research Institute,
 University College Cork, Cork, Ireland;
- ²⁰Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde,
 Denmark;
- ²¹CNR–ISAFOM, Institute for Mediterranean Agricultural and Forest Systems, National
 Research Council, via Patacca 85, 80040 Ercolano (Napoli), Italy;
- ²²Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach,
 Via E. Mach, 1 38010 S. Michele all'Adige (TN), Italy;
- 52 ²³Servizi Forestali, Provincia Autonoma di Bolzano, 39100 Bolzano, Italy;
- ²⁴Faculty of Science and Technology, Free University of Bolzano, Piazza Universita 5, 39100
 Bolzano, Italy;
- ²⁵ESS-CC, Alterra, Wageningen UR, PO Box 47, 6700 AA Wageningen, The Netherlands;
- ²⁶Department of Agroecology, Aarhus University, Blichers All é20, DK-8830 Tjele,
 Denmark;
- ²⁷Department of Ecology, College of Urban and Environmental Sciences, Peking University,
 Beijing 100871, China;
- 60 ²⁸IBIMET-CNR, Via G. Caproni 8 50145 Firenze, Italy;
- ²⁹CIRAD, UMR Eco&Sols (Ecologie Fonctionnelle & Biog éochimie des Sols et des Agro écosyst émes), 34060 Montpellier, France;
- ³⁰CATIE (Tropical Agricultural Centre for Research and High Education), 7170 Turrialba,
 Costa Rica;
- ³¹Hardin Hall, 3310 Holdrege Street, University of Nebraska-Lincoln, Lincon, Nebraska,
 USA;
- ³²Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94, 60649
 Poznan, Poland;
- ³³A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences,
 Leninsky pr.33, Moscow, 119071, Russia;
- ³⁴Department of Physics, P.O. Box 48, FIN-00014 University of Helsinki, Finland;

72 73 74 75 76 77 78	 ³⁵Department of Forest Sciences, P.O.Box 27, FIN-00014, University of Helsinki, Finland; ³⁶Centre for Sustainable Forestry & Climate Change, Forest Research, Farnham, UK; ³⁷Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA; ³⁸Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria; ³⁹European Academy of Bolzano, Drususallee 1, 39100 Bolzano, Italy; ⁴⁰School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
79	[†] These authors contributed equally to this work.
80	*To whom correspondence should be addressed. jxia@ou.edu, sniu@igsnrr.ac.cn or
81	yluo@ou.edu
82 83	56 pages (including cover page)
84	
85	S1 Materials and Methods
86	S1.1 Data
87	S1.1.1 The FLUXNET La Thuile Database
88	The ecosystem-level GPP were estimated by the eddy covariance technique, a key method to
89	measure the net ecosystem-atmosphere exchange of $CO_2(1)$. The eddy covariance technique
90	provides a useful tool to study the seasonal dynamics of plant-community level
91	photosynthesis(2). We used data of gross primary productivity (GPP; positive GPP means
92	CO ₂ uptake) from 213 FLUXNET sites from the La Thuile Database (www.fluxdata.org,
93	Table S1) in our analyses. The database was a combination of measurements from the
94	networks Ameriflux, CarboEurope and Fluxnet-Canada, and covers the time period of 1993-
95	2006. Data of each site-year in the database was filtered according to the methods and criteria
96	in Reichstein et al.(3) and Papale et al.(4). Since the GPP data are not directly measured, they
97	include some inevitable uncertainties. The sources of those uncertainties have been widely

98	discussed by Beer <i>et al.</i> (5), Moncrieff et al.(6), Papale <i>et al.</i> (4), Moffat <i>et al.</i> (7) and Desai <i>et</i>
99	al.(8). Since there is no phenological information in diurnal variations of CO_2 fixation, we
100	used daily GPP in this study. There are some negative values for daily GPP in some site
101	years. Only site years with more than 300 daily estimates were chosen from the database.

103 S1.1.2 MODIS GPP

104 We used the data of gross primary productivity (GPP) from the Moderate Resolution Imaging

105 Spectroradiometer (MODIS) aboard NASA's Terra satellites (MOD17A2 GPP(9)) for North

- 106 America (7.05–79.95°N, 58.55–98.85°W) during 2000-2010 in our analyses. The data set
- 107 was generated by the Numerical Terradynamic Simulation Group (NTSG)/University of

108 Montana's (UMT) as Version-55 and available from the LP DAAC(10, 11). The algorithm of

- 109 MODIS GPP is described in Running *et al.*(12) and Zhao *et al.*(10). This product has
- 110 considered the cloud-contamination issue while the NASA's MOD17 products (i.e., Version-
- 111 5 GPP) did not. Thus, this product can avoid the underestimation in the MOD17A2-V5
- 112 products (13). The accuracy of this product has been assessed by using independent
- 113 measurements made in a systematic and statistically robust way and feasible for the
- application of scientific community. We downloaded the data and mosaicked and re-
- 115 projected the data by using the MODIS Reprojection Tool. The mosaicked images were
- 116 resampled into $0.1 \circ \times 0.1 \circ$ by using the nearest neighbor algorithm.
- 117

118 S1.2 Characteristics of annual GPP curve: definitions

In most terrestrial ecosystems, the daily GPP throughout the whole year follows a bellshaped curve, which can be represented by the idealized solid black line in the following figure:

122

123 Supplementary Fig. S1.2.1. Ideal curve of seasonal GPP in terrestrial ecosystem.

124 The shape of the above unimodal curve (Fig. S1.2.1) is determined by five consecutive

125 phases, which are described by Gu *et al.*(14):

126 *Phase 1.* Transition stage from non-growing to growing season, with a slowly increasing

- 127 GPP.
- 128 *Phase 2.* Recover stage with rapidly increasing GPP.
- 129 *Phase 3.* Stable stage in the middle of the growing season, during which the plant community
- 130 keeps its maximal GPP relatively stable.
- 131 *Phase 4.* Senescence stage with rapidly declining GPP.

Phase 5. Transition stage from growing no non-growing season, with a slowly decliningGPP.

134 The above phases of seasonal cycle of GPP include a combination of characteristics in135 sequence as follows:

136 1. *CUPstart*. The start day of CO₂ uptake period during a year.

137 2. *Peak recovery rate of GPP*. In non-evergreen ecosystems, when plant community starts

138 CO₂ fixation from the atmosphere in spring (or in newly started crops), the daily GPP rate

recovers from 0 and gradually approaches its peak. The peak recovery rate of GPP can be

obtained from the slope of the recovery line in Fig. S1.2.1.

141 3. *GPP_{max}*. The maximal daily GPP during the growing season.

142 4. *Stable phase of GPP_{max}*. The stable phase in which plant community keeps maximal GPP.

143 5. *Peak senescence rate of GPP*. It represents the peak rate of GPP reduction during late

144 growing season in non-evergreen ecosystems, and can be obtained from the slope of the

- senescence line in Fig. S1.2.1.
- 146 6. *CUP*_{end}. The end day of CO₂ uptake period during a year.

147 We define the CUP (carbon uptake period) as the number of days per year with GPP > 0.

148 As a consequence, the CUP of an ecosystem can be calculated from CUP_{start} and CUP_{end} .

149 CUP represents the duration of vegetation photosynthetic phenology, which is one of the

150 functional aspects of plant phenology(14).

151

152 S1.3 Representation of the seasonal cycle of GPP

153 The seasonal cycle of daily GPP varies over time and across ecosystems and regions. In 154 general, GPP seasonality in terrestrial ecosystems can be categorized into four types, 155 including (1) one-peak during the summer-autumn growing seasons, (2) one-peak during the 156 winter-spring seasons, (3) multiple peaks during the whole year, and (4) low seasonality such 157 as the tropical ecosystems. Since no single function can describe the diverse GPP dynamics 158 across the globe, we use different strategies to obtain the characteristics of annual GPP 159 dynamics (S1.2) for each of four types of GPP seasonality above. First, we judged whether 160 the site-year or grid cell is every even or not, by counting the number of days with larger daily 161 GPP than a given value. In a second step, the number of seasons in the rest site-years or land 162 grid cells was determined by a model function (equation 6). For those site-years and grid 163 cells with one season, we fitted a 5-parameter Weibull function to the data from that year. For 164 those site-years or land grid cells with more than one season, we fitted the Weibull function 165 to each season. More details for the analyses and determinations of CUP and GPP_{max} are 166 provided as follows:

167 S1.3.1. Low seasonality such as the tropical ecosystems

In some ecosystems, especially in tropical regions, the seasonality is low, and their CUP
usually approaches 365 days (or 366 days in leap years). For example, as shown in Fig.
S1.3.1, the dynamic of daily GPP in the sites of BR-Sa1, US-SP3 and BR-Cax does not
include obvious recovery or senescence stages in a single year.

Supplementary Fig. S1.3.1. Examples of evergreen site-year with low seasonality of
daily GPP. The details of the sites BR-Sa1, US-SP3 and BR-Cax can be found in Table S1.

176 In this study, we first judge if the site-year or grid cell is evergreen or not, by counting the 177 number of days with larger daily GPP than a given value. Here, if there are more than 360 178 days with daily GPP > 1 g C m⁻² day⁻¹ in a site-year, the site-year is defined as evergreen with 179 CUP = 365 (366 for leap years). For the MODIS GPP with the 8-day interval, we obtained 180 daily GPP for the whole year through the linear trend between each two adjacent 181 observations:

182
$$GPP(i) = GPP(i) + (i-1)\frac{GPP(i+1) - GPP(i)}{8}$$
(1)

Page 8 of 56

183 where *i* is the *i*th day of a given year.

184 To get the GPP_{max} in the whole year, we first smoothed the GPP time series using a 185 simple moving average method, which replaces the GPP in *i*th day of a given year (*GPP_i*, *i* = 186 1, 2, ..., *N*) by a linear combination of nearby values in a window(15):

187
$$\sum_{j=-n}^{n} c_j GPP_{i+j}$$
(2)

188 where c_j represents the weighted factor and equals 1/(2n+1). The data of *GPP_i* is replaced 189 by the values in the window calculated by the equation (2). In this study, we choose n = 3 to 190 smooth the observed daily GPP. Then the maximal daily GPP was chosen as the GPP_{max} in 191 that year.

195 Supplementary Fig. S1.3.2. Observed daily GPP from 2003 to 2006 in the flux site of

US-Arm (please see its details in Table S1). This figure shows there are mainly two peaks
in this ecosystem, with one around April and the other in October. Note that the negative
values from the database have been replaced by 0, and the observations after 324*th* day in
2004 were missing in the original database.

200

In some ecosystems, e.g., the Mediterranean-climate regions(16), some regions in the Great Plains in the US(17) and multiple yield cropping systems(18), there are more than one vegetation peak during one year. As shown in Fig. S1.3.2, there are two peaks of daily GPP in each year in the flux site of US-Arm, with one peak occurring around April and the other in October. The multiple GPP cycles were analyzed separately with the Weibull function (see S1.3.3 and the equation 7) and their results were weighted to describe the CUP and GPP_{max} in the whole year.

Page **10** of **56**

- Supplementary Fig. S1.3.3. Idealized curve of GPP dynamic and its characteristics in
 sites with two peaks in a single year. The blue and red curve respectively represent the first
 and second cycle of GPP in this year.
- 212

214 integration of CUP from the two GPP cycles within one year was conducted as:

215
$$CUP = \begin{cases} CUP_1 + CUP_2 & \text{if no overlap between the two GPP cycles} \\ CUP_{end2} - CUP_{start1} & \text{if there is overlap between the two GPP cycles} \end{cases} (3)$$

where CUP_1 and CUP_2 are the CO_2 uptake period in the first and second GPP cycle,

217 respectively. CUP_{srart1} is the initiation day of CUP for the first GPP cycle, and CUP_{end2} is the

218 termination day of CUP for the second GPP cycle. The weighted integration of GPP_{max} is

219 more complex because it depends on not only whether but also when the two GPP cycles

220 overlap. In this study, if there is no overlap between the two GPP cycles, the yearly GPP_{max} is

221 weighted as:

222
$$GPP_{max} = (GPP_{max1}CUP_1 + GPP_{max2}CUP_2)/(CUP_1 + CUP_2)$$
(4)

If there is overlap between the two GPP cycles, then the yearly GPP_{max} cannot be directly
weighted as in equation 7. For these sites, we first find out the linking day (D_{link}) between the
two GPP cycles (see the black circle in Fig. S1.3.3). Then, the weighted GPP_{max} was
calculated as:

227
$$GPP_{max} = \frac{GPP_{max1}(D_{link} - CUP_{start1}) + GPP_{max2}(CUP_{end2} - D_{link})}{CUP_1 + CUP_2}$$
(5)

The same strategy as the above equations has been used if there are more than two growing seasons. Thus, one of the key steps in analyzing the GPP data in sites with multiple peaks in a single year is to determine the number of seasons. However, the GPP observations often have high-level noise (as shown by Fig. S1.3.2, S1.3.4 and S1.3.5), making it difficult to determine the number of seasons with only one year of data(19). In this study, we reduced the risk for erroneous determination of season number by triplicating the yearly GPP dynamic (see the gray circles in Fig. S1.3.5). Then, we followed the method that is used in the TIMESAT software(19), by fitting the daily GPP data (t_i , GPP_i), i = 1, 2, ..., n for all 3 years (as shown in Fig. S1.3.5) to the following function:

237
$$f(t) = c_1 + c_2 \sin(\omega t) + c_3 \cos(\omega t) + c_4 \sin(2\omega t) + c_4 \cos(2\omega t)$$
(6)

238 where $\omega = 6\pi/n$. C₁ determines the base level, while $c_2 \sin(\omega t) + c_3 \cos(\omega t)$ and

239 $c_4 \sin(2\omega t) + c_4 \cos(2\omega t)$ determine the number of seasons as one and two, respectively.

240 During the fitting, a primary maximum is always found and a secondary maximum may be

found. As suggested by TIMESAT(19), the amplitude ratio between the secondary maximum

and the primary maximum can be used as an index to determine the number of vegetation

seasons. That is, if the ratio is below a given threshold, the ecosystem has one season during

the year. In this study, we set the ratio between the secondary maximum and the primary

245 maximum as 0.25. For example, as shown in Fig. S1.3.5, the fitted secondary and primary

246 maximum in 2000 in the grid of N37.75°, W101.05° are 1.69 and 2.68 g C m⁻² d⁻¹,

respectively, and the ratio between them is 0.63. It means there are two vegetation seasons in

248 this grid cell in 2000 (Fig. S1.3.5).

N37.75°, W101.05°. The data in the original database were in 8-day interval.

254 Supplementary Fig. S1.3.5. Triplicate of MODIS GPP in 2000 in the grid cell of N37.75°,

255 W101.05°. The gray circles are the 8-day interval GPP values from the original database.

256 The red line is the fitted GPP dynamic with the equation (6).

257

258 S1.3.3. One-peak during the summer-autumn growing seasons

259 In many terrestrial ecosystems, vegetation season peaks around the middle of growing

season, and the seasonal cycles of daily GPP can be represented by the idealized curve in Fig.

- 261 S1.2.1. In order to obtain all the characteristics (see S1.2) from both FLUXNET and MODIS-
- based GPP, we fitted a 5-parameter Weibull function to the data from each year. The Weibull
- 263 function is given as:

$$264 P(t) = \begin{cases} y_0 + a\left(\frac{c-1}{c}\right)^{\frac{1-c}{c}} \left(\left|\frac{t-x_0}{b} + \left(\frac{c-1}{c}\right)^{\frac{1}{c}}\right|^{c-1} e^{\left(-\left|\frac{t-x_0}{b} + \left(\frac{c-1}{c}\right)^{\frac{1}{c}}\right|^{\frac{c}{c}} + \frac{c-1}{c}\right)} & \text{if } t \le x_0 - b\frac{c-1}{c} \end{cases} (7)$$

265 where t represents the number of days in each year, and P(t) is the corresponding daily mean GPP (g C m⁻² day⁻¹); x0, y0, a, b, and c are empirical parameters to be estimated. As shown 266 267 below, this function is flexible and fits one-peak seasonal GPP well in contrasting biomes and 268 years. Similar Weibull functions have been successfully applied to fit seasonal dynamics of 269 plant community photosynthesis. For example, Gu et al.(2) used a Weibull function to fit the 270 seasonal cycle of plant community photosynthesis separately by dividing the growing season 271 in its middle peak. Recently, Gu et al.(14) developed a new 9-parameter Weibull function 272 capable of capturing both recovery and senescence parts of the growing season. The Weibull 273 function used in this study captures both recovery and senescence parts of GPP dynamics, 274 and consists of fewer empirical parameters (equation 7; 5 parameters). It has been used as a 275 default function to fit one-peak time-series data in the Sigmaplot (Systat Software, Inc, San 276 Jose, CA, USA).

The fitting of data to the equation 7 was conducted in the R software (version 2.13.0; http://www.R-project.org). The details of the model fitting with nonlinear regression can be found in the section S1.4. After the curve fitting, we can obtain the fitted daily GPP in a given year. The maximal daily GPP (GPP_{max}) is obtained as:

$$GPP_{max} = \max \{P(t)\}$$
(8)

where P(t) (t = 1, 2, ..., n) is the daily GPP in the *t*th day, and n is 365 for regular years and 366 for leap years. The CO₂ uptake period (CUP) is determined by the initiation (CUP_{start}) and termination (CUP_{end}) days of CUP as:

$$285 \qquad \qquad CUP = CUP_{end} - CUP_{start} \tag{9}$$

The recovery and senescence lines represent the maximum and minimum in the growth rate of daily GPP, respectively. Here, we use a moving linear regression approach to seek the day in which the growth rate of daily GPP reaches maximum and minimum. The linear model used in estimating the growth rate of daily GPP is:

$$P(t) = \beta t + \beta_0 \tag{10}$$

where β is the theoretical slope representing the growth rate of daily GPP, and β_0 is the theoretical y-intercept. We conducted the linear regression analysis for day *t* by using the data from day *t* - 3 to *t* + 3 (3 < *t* < *m*-3; *m* is 365 in regular years and 366 in leap years). The slope β in each day can be estimated by:

309
$$\hat{\beta}(t) = \frac{7\sum_{i=t-3}^{t+3} iP(i) - \sum_{i=t-3}^{t+3} i\sum_{i=t-3}^{t+3} P(i)}{7\sum_{i=t-3}^{t+3} i^2 - (\sum_{i=t-3}^{t+3} i)^2}$$
(11)

310 The maximal (R_{max}) and minimal (R_{min}) change rate of daily GPP are obtained by:

311
$$R_{max} = \max \{\hat{\beta}(t)\}$$
(12)

312
$$R_{min} = \min \left\{ \hat{\beta}(t) \right\}$$
(13)

The associated *t* with R_{max} and R_{min} are the days (t_{max} and t_{min}) in which maximal and minimal change rate of daily GPP occurred, respectively. Note that the value of R_{max} is positive and R_{min} is negative. Thus, the CUP_{start} and CUP_{end} can be calculated as:

316
$$CUP_{start} = t_{max} - \frac{P(t_{max})}{R_{max}}$$
(14)

317
$$CUP_{end} = t_{min} - \frac{P(t_{min})}{R_{min}}$$
(15)

318 Similarly, the stable phase of GPP_{max} (SP_{gppmax}) can be calculated as:

$$SP_{gppmax} = SP_{gppmax_end} - SP_{gppmax_start}$$
(16)

Page 17 of 56

320 where SP_{gppmax_start} and SP_{gppmax_end} are the start and end days of SP_{gppmax} , and can be solved 321 by:

322
$$SP_{gppmax_start} = t_{max} + \frac{GPP_{max} - P(t_{max})}{R_{max}}$$
(17)

323
$$SP_{gppmax_end} = t_{min} + \frac{GPP_{max} - P(t_{min})}{R_{min}}$$
(18)

324

325 The main aim of this study is to examine the dependence of annual GPP on CUP and GPP_{max} . 326 Such dependence can be represented by the ratio (α) between annual GPP and the product of 327 CUP and GPP_{max} as:

328
$$\alpha = \frac{Annual \, GPP}{CUP \times GPP_{max}} \tag{19}$$

329 where the annual GPP is the sum of daily GPP from the original observed data.

330

331 S1.3.4. One-peak during the winter-spring seasons

In some ecosystems, the peak of daily GPP does not occur during summer-autumn

333 seasons, but in winter or spring. For example, in some (semi-) arid regions with the

334 Mediterranean climate, plant photosynthesis is high in mild/wet winter and spring and is low

in hot/dry summer(20). As shown by Fig. S1.3.7, the daily GPP recovers in autumn, peaks in

- 336 spring, and senesces in summer in the Yatir forest (IL-Yat; 31 20'N, 35 03'E), which is
- 337 located between three distinct landscapes, including Hebron mountains, Beersheba
- 338 plateau/Negev desert, and the Judean Desert and the Dead Sea Valley(21). For these sites and
- 339 grids, a direct application of the equation 7 cannot capture the CUP. In the IL-Yat case, the

340 CUP will be underestimated because the CO₂ uptake period during September-December is341 ignored (Fig. \$1.3.7).

For those sites and grids whose daily GPP peaks during spring or winter seasons, we obtained the entire growing season by duplicating the GPP dynamics (as shown by Fig. S1.3.8). As shown in Fig. S1.3.8, with the duplicate of daily GPP in 2001, an adjusted GPP dynamic can be obtained from August to July (as shown in red circles in Fig. S1.3.8). A key issue in this method is to determine the start and end day of the adjusted GPP dynamic. Since the FLUXNET GPP data are usually fluctuating with time, we determined the start and end day of the adjusted GPP dynamic by two steps:

349 (1) We first smooth the observed data by using a moving average method as equation 2 with350 n=3.

351 (2) Based on the smoothed curve in the step (1), we determined the start point of the adjusted 352 GPP dynamic as the day (D_{start}) with the minimum GPP throughout the year, and the end day 353 (D_{end}) according to the number of days in that year.

In the MODIS GPP product, the GPP dynamic with 8-day intervals is comparably smoother, so we only applied step (2) to get the adjusted GPP dynamic. The above adjusted GPP dynamic was then used for the analysis of CUP and GPP_{max} as the regular one-peak GPP curve in the Fig. S1.3.6. Although this method with adjusted GPP dynamic may generate some errors, it can provide a good estimation of CUP and GPP_{max} for those regions in where the single peak of daily GPP occurs in winter or spring seasons.

364

374 S1.4 Non-linear regression with R

As shown in both the equations 6 and 7, there are 5 unknown parameters determining theGPP dynamic against time in a given year. In this study, we used the general normal

nonlinear regression model to fit the equations 6 and 7 to the observations. In general, thenonlinear regression model can be written as:

379
$$y_i = f(X_i, \beta) + \varepsilon_i$$
(21)

where y_i is the observed GPP in each year, f is the expectation function, and X_i is a vector of time (days in a single year). β is a vector including the 5 parameters in the equations 6 and 7, and ε_i is the error term for observation i. The error ε_i varies from year to year, and the errors are assumed to be normally distributed with mean 0 and constant variance: $\varepsilon_i \sim N(0, \sigma^2)$.

384 The best estimates of the parameters (β) represent the best fit of the *f* function to the 385 observations y_i . They can be obtained by minimization of the sum of squared residuals (*S*) 386 with respect to β :

387
$$S(\beta) = \sum_{i=1}^{n} (y_i - f(X_i, \beta))^2$$
(22)

In each step, the Gauss-Newton method is used to determine the new parameters values based on the data, with the purpose to make the $S(\beta)$ as small as possible. More information about the nonlinear regression can be found in Bates and Watts (22) and Fox(23).

In this study, the non-linear regressions were performed with the model fitting function *nls*, which is located in the standard *nls* library in **R**. The parameter estimates are obtained from the non-linear model fitting, and then used for the analyses of GPP properties in S1.3.

394

395 S1.5 The performance of the Weibull function in capturing GPP dynamics 396 in terrestrial ecosystem

397 Since GPP dynamics in many terrestrial ecosystems follow the single-peak curve like Fig. 398 S1.3.6, it is important to make sure that equation 7 can capture GPP properties in contrasting 399 biomes. Before we applied the equation 7 to all flux sites and grid cells, we first examined its 400 performance in the years with contrasting climate conditions at long-term flux sites. The 401 results show that the equation can well capture all years of GPP dynamics from those long-402 term sites. As shown by Fig. S1.5.1, the simulated GPP curve fits observations from years 403 with highest, normal, and lowest values in each site well. It indicates the Weibull function 404 used in this study has the ability to capture GPP dynamics and the associated properties in 405 contrasting biomes and climate conditions.

Page 23 of 56

407 Supplementary Fig. S1.5.1. Performance of the Weibull function in fitting the GPP

- 408 dynamics with lowest (black circles and lines), median (blue circles and lines) and
- 409 highest (red circles and lines) annual GPP in those long-term flux sites. The dashed
- 410 vertical lines represent the start and end days of CUP.
- 411

412 S1.6 Parameter sensitivity analysis of the Weibull function

- 413 In order to test if the convergence of α is a mathematical certainty of the Weibull function,
- 414 we performed a sensitivity analysis to evaluate impact of each parameter (x0, y0, a, b, and c)
- 415 on the estimates of CUP, GPP_{max}, CUP × GPP_{max}, and α . The mathematical derivation of the
- 416 sensitivity analysis can be found as follows:

417 We first assume
$$v = \left|\frac{t-x_0}{b} + \left(\frac{c-1}{c}\right)^{\frac{1}{c}}\right|$$
, so then the above equation can be rewritten as:

418
$$P(t) = \begin{cases} y0 + a(\frac{c-1}{c})^{\frac{1-c}{c}} v^{c-1} e^{(-v^c + \frac{c-1}{c})} & \text{if } t \le x0 - b\frac{c-1}{c} \\ y0 & \text{if } t > x0 - b\frac{c-1}{c} \end{cases}$$
(23)

419

420 P(t) is a differentiable function whose derivative is:

$$421 \qquad P(t)' = \begin{cases} a(\frac{c-1}{c})^{\frac{1-c}{c}}e^{\frac{c-1}{c}}(v(t^{c-1}e^{-v^{c}})'v') & \text{if } x \le x0 - b\frac{c-1}{c} \\ 0 & \text{if } x > x0 - b\frac{c-1}{c} \end{cases}$$

422 =>
$$P(t)' = \begin{cases} a(\frac{c-1}{c})^{\frac{1-c}{c}}e^{\frac{c-1}{c}}(v^{c-1}e^{-v^{c}})'v' & \text{if } x \le x0 - b\frac{c-1}{c} \\ 0 & \text{if } x > x0 - b\frac{c-1}{c} \end{cases}$$

$$423 \qquad \Longrightarrow \ P(t)' = \begin{cases} a(\frac{c-1}{c})^{\frac{1-c}{c}} e^{\frac{c-1}{c}} [(c-1)v^{c-2}e^{-v^{c}} - cv^{2(c-1)}e^{-v^{c}}] v' & \text{if } x \le x0 - b\frac{c-1}{c} \\ 0 & \text{if } x > x0 - b\frac{c-1}{c} \end{cases}$$
(24)

424 where
$$v' = \begin{cases} \frac{1}{b} & if \frac{x-x0}{b} + \left(\frac{c-1}{c}\right)^{\frac{1}{c}} \ge 0\\ -\frac{1}{b} & if \frac{x-x0}{b} + \left(\frac{c-1}{c}\right)^{\frac{1}{c}} < 0 \end{cases}$$
 (25)

425 Similar to the equations (12) – (13), the maximal (R_{max}) and minimal (R_{min}) change rate of 426 daily GPP are obtained by:

427
$$R_{max} = \max\{P(t)'\}$$
 (26)

$$R_{min} = \min \{P(t)'\}$$
 (27)

429 The CUP_{start} and CUP_{end} can be calculated by the equations (14) and (15), respectively. The 430 CUP can be calculated as CUP_{end} minus CUP_{start}, and GPP_{max} as max{P(t)}.

431 In the analysis, we first calculated the bootstrapping medians of all parameters from their 432 estimations from the eddy-flux sites. Then, we increased each parameter from -100% to 433 100%, with an interval of 1%, of its calculated medians with other parameters kept at the 434 estimated values from observations. Finally, we calculated CUP, GPP_{max} , $CUP \times GPP_{max}$ and 435 α with each combination of parameters and plotted their dependences on each parameter in 436 Fig. S1.6.1. The sensitivity analysis showed that GPP_{max} is very sensitive to the parameter *a* 437 (Fig. S1.6.1a) of the Weibull function, while CUP is mainly affected by the parameters b and 438 c (Fig. S1.6.1b). The parameters a, b and c together control the variations of the product of 439 GPP_{max} and CUP (Fig. S1.6.1c). The ratio between annual GPP and the product of GPP_{max} 440 and CUP (α) can be affected by each of the parameters (a, b, c, x0, and y0; Fig. S1.6.1d). It 441 suggests the convergence of α is not the mathematical certainty the of the Weibull function 442 used in this study.

444 **Supplementary Fig. S1.6.1. Sensitivity analyses of parameters.** The results are obtained 445 through the following steps: (1) calculate the bootstrapping median of the parameters from 446 the global analyses on flux data; (2) change those parameters from -100% to +100% and 447 calculate the values of GPP_{max}, CUP, GPP_{max}×CUP, and α (annual GPP/(GPP_{max}×CUP)) 448 with equations (23) – (25).

443

450 S1.7 Random re-sampling test of the Weibull function

451	We further did a random re-sampling test for the performance of the Weibull funtion itself in
452	affecting the ratio between annual GPP and the product of CUP and GPP _{max} (α). The test
453	consisted of three steps: First, we set up the ranges of each parameter $(a, b, c, x0, and y0)$ in
454	equation 7, with $0 < a \le 30$, $0 < b \le 500$, $1 < c \le 5$, $0 < x0 \le 300$, $0 < y0 \le 2$. For each
455	parameter, the given range covered > 90% of the estimated values from all FLUXNET sites.
456	Second, we equally separated the range of each parameter into 10000 samples from the
457	lowest to largest value. For example, there were 1000 samples of parameter a including
458	$0.003, 0.006, \dots, 30$. In the third step, we randomly chose each parameter from its 10000
459	samples to obtain the CUP, GPP _{max} , and annual GPP and thus the α . The random resampling
460	of parameters was repeated by 2000 times, and the output was used for the further analyses.
461	As shown by Fig. S1.7.1, annual GPP is positively related to the product of CUP and
462	GPP _{max} . However, the ratio (α) between them diverges. By plotting the frequency distribution
463	of α that ranges from 0 to 1, we found it follows the normal distribution ($R^2 = 0.85$, $P < 0.85$)
464	0.001; Fig. S1.7.2). Since the ranges of parameters are chosen based on the estimates in the
465	natural ecosystems, the highest frequency of α in random resampling test is close to that
466	found in the original analysis (as shown in Fig. 1 of the main text). However the divergence
467	of α suggests that the global convergence of α should be caused by ecological processes in
468	the natural ecosystems, but not the Weibull function itself.

471 were defined according to their distributions in the FLUXNET sites. The red dashed line is

472

473

474 Supplementary Fig. S1.7.2. Frequency of α in the output of the random re-sampling

476 S1.8 Freeze/Thaw Data

477 Global daily records of landscape freeze/thaw data from 1st January 2000 to 31st December

- 478 2010 were analyzed for an additional indicator of CUP. The data were obtained from the
- 479 NSIDC (<u>http://nsidc.org/data/nsidc-0477</u>). More detailed information about the data were
- 480 provided at: <u>http://nsidc.org/data/docs/measures/nsidc-0477/index.html</u>. We used the
- 481 combined freeze/thaw data (specifically, AM and PM thawed ground-state) to estimate dates
- 482 of spring thaw and autumn freeze with the approach introduced by some earlier studies (24-
- 483 26). The spring thaw data was defined as the date corresponding to the 8th day of the first 15
- 484 day period in a year when 80% days (i.e., 12 days) is classified as non-frozen days. The
- similar 80% rule was applied for determine the date of autumn freeze (i.e., end of CUP) for
- 486 each grid. The global distribution of obtained CUP from the Freeze/Thaw (F/T) data was

487 shown in Fig. S10.

488

489 **S1.9 Distribution of FLUXNET Sites**

wetland.

495

- 496 As shown in Fig. S1.9.1, the eddy covariance sites are not homogeneously distributed over
- the global. More sites are distributed in North America, West Europe, and East Asia.
- 498 Although the FLUXNET sites cannot fully represent the global heterogeneity in
- 499 environmental conditions, they occupy almost all vegetation types and climate zones in
- 500 terrestrial ecosystem (Please see more details in the Supporting Online Material of Beer et
- al.(5)). Our goal in this study is to test the control of phenological and physiological aspects
- 502 on terrestrial annual GPP, so the broadly distributed FLUXNET sites are plenty to represent
- 503 most vegetation and climate types in terrestrial ecosystems.
- 504

505 S2. Supplementary Tables and Figures

506

Table S1. Information of FLUXNET sites used in this study.

	mormation		cu m uns s	ruuy.

 Site Name	PFT	Lat	Lon	Year	Ref.
AT-Neu	Grassland	47.1	11.3	2002-2006	(27)
				1997-1998,2000-	(28)
 BE-Bra	MF	51.3	4.5	2002,2004-2006	
BE-Lon	Cropland	50.6	4.7	2004-2006	(29)
BE-Vie	MF	50.3	6.0	1997-2006	(30)
BR-Sa1	EBF	-2.85	-54.97	2001-2003	(31)
BR-Sa3	EBF	-3.02	-54.97	2001-2003	(32)
BR-Sp1	Savanna	-21.6	-47.7	2001	(33)
CA-Ca1	ENF	49.9	-125.3	1998-2005	(34)
CA-Ca2	ENF	49.9	-125.3	2001-2005	(34)
CA-Ca3	ENF	49.5	-124.9	2002-2005	(34)
CA-Gro	MF	48.2	-82.2	2004	(35)
CA-Let	Grassland	49.7	-112.9	1999-2005	(36)
CA-Man	ENF	55.9	-98.5	1995,1998-2000	(37)
CA-Mer	ENF	45.4	-75.5	1999-2005	(38)
CA-NS1	ENF	55.9	-98.5	2003-2005	(39)
CA-NS2	ENF	55.9	-98.5	2002-2005	(39)
CA-NS3	ENF	55.9	-98.4	2002-2005	(39)
CA-NS4	ENF	55.9	-98.4	2003-2004	(39)
CA-NS5	ENF	55.9	-98.5	2002-2005	(39)
CA-NS6	ENF	55.9	-99.0	2002-2005	(39)
CA-NS7	Shrubland	56.6	-99.9	2003-2005	(39)

CA-Oas	DBF	53.6	-106.2	1997-2005	(40)
CA-Ojp	DBF	53.9	-104.7	2000-2003,2005	(41)
CA-Qcu	DBF	49.3	-74.0	2002-2006	(42)
CA-Qfo	DBF	49.7	-74.3	2004-2006	(43)
CA-SF1	ENF	54.5	-105.8	2004	(44)
CA-SF2	ENF	54.3	-105.9	2003-2004	(44)
CA-SF3	Shrubland	54.1	-106.0	2003-2005	(44)
CA-SJ1	ENF	53.9	-104.7	2001-2005	(45)
CA-SJ2	ENF	53.9	-104.6	2003-2005	(45)
CA-SJ3	ENF	53.9	-104.6	2004-2005	(45)
CA-TP1	ENF	42.7	-80.6	2004-2005	(46)
CA-TP2	ENF	42.8	-80.5	2004-2005	(46)
CA-TP3	ENF	42.7	-80.3	2005	(46)
CA-TP4	ENF	42.7	-80.4	2004-2005	(47)
CA-WP1	Wetland	55.0	-112.5	2004-2005	(48)
CA-WP2	Wetland	55.5	-112.3	2004	(49)
CA-WP3	Wetland	54.5	-113.3	2004	(49)
CH-Oe1	Grassland	47.3	7.7	2002-2006	(50)
CH-Oe2	Cropland	47.3	7.7	2005	(51)
CN-Anh	DBF	33.0	117.0	2005-2006	(52)
CN-Bed	EBF	39.5	116.3	2005	(52)
CN-Cha	MF	42.4	128.1	2003	(53)
CN-Do1	Wetland	31.5	122.0	2005	(54)
CN-Do2	Wetland	31.6	121.9	2005	(54)
CN-Do3	Wetland	31.5	122.0	2005	(54)
CN-Du1.	Cropland	42.0	116.7	2005-2006	(55)
CN-Du2	Grassland	42.0	116.3	2006	(55)
CN-HaM	Grassland	37.4	101.2	2002-2003	(56)
CN-Hny	DBF	29.3	112.5	2005-2006	-
CN-Ku1	EBF	40.5	108.7	2006	(57)
CN-Xfs	Grassland	44.1	116.3	2004-205	-
CZ-BK1	ENF	49.5	18.5	2001,2004-2006	-
CZ-BK2	Grassland	49.5	18.5	2005-2006	-
CZ-wet	Grassland	49.0	14.8	2006	(58)
DE-Bay	ENF	50.1	11.9	1997-1999	(59)
DE-Geb	Cropland	51.1	10.9	2004-2006	(60)
DE-Gri	Cropland	50.9	13.5	2005-2006	(16)
DE-Hai	DBF	51.1	10.5	2000-2006	(61)
DE-Har	DBF	51.1	10.5	2005-2006	(62)
DE-Kli	Cropland	50.9	13.5	2005-2006	_
DE-Meh	Grassland	51.3	10.7	2004-2006	(63)
DE-Tha	ENF	51.0	13.6	1997-2006	(64)
DE-Wet	ENF	50.5	11.5	2002-2006	(65)
DK-Fou	Cropland	56.5	9.6	2005	_
DK-Lva	Grassland	55.7	12.1	2005-2006	(16)

Page **31** of **56**

DK-Ris	Cropland	55.5	12.1	2004-2005	(66)
DK-Sor	DBF	55.5	11.6	1996-2006	(66)
ES-ES1	ENF	39.3	-0.3	1999-2002,2004-2006	(3)
ES-ES2	Cropland	39.3	-0.3	2004-2006	_
ES-LMa	Savanna	39.9	-5.8	2004-2006	(67)
ES-VDA	Grassland	42.2	1.4	2004-2005	(61)
FI-Hyy	ENF	61.8	24.3	1997-2006	(68)
FI-Kaa	Wetland	69.1	27.3	2000-2006	(69)
FI-Sii	ENF	61.8	24.2	2004-2005	(70)
FI-Sod	ENF	67.4	26.6	2000-2006	(71)
FR-Aur	Cropland	43.5	1.1	2005	_
FR-Fon	DBF	48.5	2.8	2005-2006	_
FR-Gri	Cropland	48.8	2.0	2005-2006	(72)
FR-Hes	DBF	48.7	7.1	1997-2006	(73)
FR-Lam	Cropland	43.5	1.2	2005	_
				1997-1998,2000,2004-	(74)
FR-LBr	ENF	44.7	-0.8	2006	(4.6)
FR-Lq1	Grassland	45.6	2.7	2004-2006	(16)
FR-Lq2	Grassland	45.6	2.7	2004-2006	(16)
FR-Pue	EBF	43.7	3.6	2001-2006	(75)
GF-Guy	EBF	5.3	-52.9	2005-2006	(76)
HU-Bug	Grassland	46.7	19.6	2003-2006	(77)
HU-Mat	Grassland	47.8	19.7	2004-2006	(78)
ID-Pag	EBF	2.3	114.0	2002-2003	(79)
IE-Ca1	Grassland	52.9	-6.9	2004-2006	-
IE-Dri	Grassland	52.0	-8.8	2003-2004	(80)
IL-Yat	ENF	31.3	35.1	2001-2006	(21)
IS-Gun	DBF	63.8	-20.2	1997-1998	(81)
IT-Amp	Grassland	41.9	13.6	2003-2006	(16)
IT-BCi	Cropland	40.5	15.0	2004-2006	(82)
IT-Bon	ENF	39.5	16.5	2006	_
IT-Col	DBF	41.8	13.6	1997-2005	(83)
IT-Cpz	EBF	41.7	12.4	1997,2001,2003-2006	(84)
IT-Lav	ENF	39.5	16.5	2001-2002,2004,2006	(85)
IT-Lec	EBF	43.3	11.3	2006	-
IT-LMa	Grassland	45.6	7.2	2003-2005	-
IT-Mal	Grassland	46.1	11.7	2003	-
IT-MBo	Grassland	46.0	11.0	2003-2006	(86)
IT-Non	DBF	44.7	11.1	2001-2003,2006	_ />
IT-Pia	Shrubland	42.6	10.1	2002-2005	(87)
IT-PT1	DBF	45.2	9.1	2002-2004	(88)
IT-Ren	EBF	46.6	11.4	1999,2001-2006	(89)
IT-Ro1	DBF	42.4	11.9	2001-2006	(90)
IT-Ro2	DBF	42.4	11.9	2002-2006	(91)
IT-SRo	ENF	39.5	16.5	1999-2006	(92)

IT-Vig	DBF	45.3	8.9	2005	-
JP-Mas	Cropland	36.1	140.0	2002-2003	(93)
JP-Tak	DBF	36.1	137.4	1999-2004	(94)
JP-Tef	ENF	45.1	142.1	2002,2004-2005	(95)
JP-Tom	MF	42.7	141.5	2001-2003	(96)
KR-Hnm	DBF	34.6	126.6	2004-2006	(97)
KR-Kw1	ENF	37.7	127.2	2005-2006	(98)
NL-Ca1	Grassland	52.0	4.9	2003-2006	(99)
NL-Hor	Grassland	52.0	5.1	2005-2006	(99)
NL-Lan	Cropland	52.0	4.9	2005	(99)
NL-Loo	ENF	52.2	5.7	1997-2006	(100)
NL-Lut	Cropland	53.4	6.4	2006	(101)
NL-Mol	Cropland	51.7	4.6	2005	(101)
PL-wet	Wetland	52.8	16.3	2004-2005	(102)
PT-Esp	EBF	38.6	-8.6	2002-2004,2006	(103)
PT-Mi1	EBF	38.5	-8.0	2003-2005	(104)
PT-Mi2	Grassland	38.5	-8.0	2006	(104)
RU-Che	MF	68.6	161.3	2003-2004	(105)
RU-Cok	Shrubland	70.6	147.9	2003	(106)
RU-Fyo	ENF	56.5	32.9	1998-2006	(107)
RU-Ha1	Grassland	54.7	90.0	2003-2004	(108)
RU-Ha3	Grassland	54.7	89.1	2004	(108)
RU-Zot	ENF	56.5	32.9	2002-2004	_
SE-Abi	ENF	68.4	18.8	2005	_
SE-Deg	Wetland	64.2	19.6	2001-2005	(109)
SE-Faj	ENF	56.3	13.6	2006	(110)
SE-Fla	ENF	64.1	19.5	1997-1998	(111)
SE-Fla	ENF	64.1	19.5	2001-2002	(111)
SE-Nor	EBF	60.1	17.5	1996-1999,2003	(112)
SE-Sk1	ENF	60.1	17.9	2005	-
SE-Sk2	ENF	60.1	17.8	2004-2005	_
UK-AMo	Wetland	55.8	-3.2	2005	(113)
UK-EBu	Grassland	55.9	-3.2	2004-2006	(114)
UK-ESa	Cropland	55.9	-2.9	2004-2005	_
				1997-1998,2000-	(115)
UK-Gri	ENF	56.6	-3.8	2001,2005-2006	(116)
UK-Ham	DBF	34.6	126.6	2004-2005	(110)
UK-PL3	DBF	51.5	-1.3	2005	(117)
UK-Tad	Grassland	51.2	-2.8	2001	(11/)
US-ARb	Grassland	35.5	-98.0	2005-2006	
US-ARc	Grassland	35.5	-98.0	2005-2006	(17)
US-ARM	Cropland	36.6	-97.5	2003-2006	(110)
US-Atq	vvetland	/0.5	-157.4	2001,2003,2005-2006	(110)
US-Aud	Grassland	31.6	-110.5	2002,2005-2006	-
US-Bar	DBF	44.1	-71.3	2004-2005	(113)

US-Bkg	Grassland	44.3	-96.8	2005-2006	(120)
US-Blo	ENF	38.9	-120.6	2000-2006	(121)
US-Bn1	ENF	63.9	-145.4	2003	(122)
US-Bn2	ENF	63.9	-145.4	2003	(122)
US-Bn3	ENF	63.9	-145.7	2003	(122)
US-Bo1	Cropland	40.0	-88.3	1997-2006	(123)
US-Bo2	Cropland	40.0	-88.3	2004-2006	(123)
US-Brw	Wetland	71.3	-156.6	19,982,001	(124)
US-CaV	Grassland	39.1	-79.4	2004	_
US-Dk1	Grassland	36.0	-79.1	2002-2005	(125)
US-Dk2	DBF	36.0	-79.1	2003-2005	(125)
US-Dk3	ENF	36.0	-79.1	2001-2005	(125)
US-FPe	Grassland	48.3	-105.1	2000-2006	_
US-FR2	Savanna	29.9	-98.0	2004-2006	(126)
US-Goo	Grassland	34.3	-89.9	2002-2006	_
US-Ha1	DBF	42.5	-72.2	1992-2006	(127)
US-Ho1	ENF	45.2	-68.7	1996-2004	(128)
US-Ho2	ENF	45.2	-68.7	1999-2004	(128)
US-IB1	Cropland	41.9	-88.2	2006-2007	(129)
US-IB2	Grassland	41.8	-88.2	2006-2007	(129)
US-Ivo	Wetland	68.5	-155.8	2004-2006	-
US-KS2	Shrubland	28.6	-80.7	2001-2002,2004-2006	(130)
US-Los	Shrubland	46.1	-90.0	2001-2003,2005	-
US-LPH	DBF	42.5	-72.2	2003-2004	(131)
US-Me2	ENF	44.5	-121.6	2003-2005	(132)
US-Me3	ENF	44.3	-121.6	2004-2005	(132)
US-Me4	ENF	44.5	-121.6	1996-1997,2000	(132)
US-MMS	DBF	39.3	-86.4	1999-2005	(133)
US-NC1	Shrubland	35.8	-76.7	2005-2006	(134)
US-NC2	ENF	35.8	-76.7	2005-2006	(135)
US-Ne1	Cropland	41.2	-96.5	2001-2004	(136)
US-Ne2	Cropland	41.2	-96.5	2003-2004	(136)
US-Ne3	Cropland	41.2	-96.4	2001-2004	(136)
US-NR1	ENF	40.0	-105.5	1999-2000,2002-2003	(137)
US-Oho	DBF	41.6	-83.8	2004-2005	(138)
US-PFa	MF	45.9	-90.3	1997-2000,2003	(139)
US-SO2	Shrubland	33.4	-116.6	2004-2006	(140)
US-SO3	Shrubland	33.4	-116.6	20,012,005	(140)
US-SO4	Shrubland	33.4	-116.6	2005-2006	_
US-SP1	ENF	29.7	-82.2	2005	(141)
US-SP2	ENF	29.8	-82.2	1999-2004	(142)
US-SP3	ENF	29.8	-82.2	1999,2001-2004	(142)
US-SRM	Savanna	31.8	-110.9	2004-2006	(143)
US-Syv	MF	46.2	-89.3	2002-2006	(144)
US-Ton	Savanna	38.4	-121.0	2002-2006	(145)

US-UMB	DBF	45.6	-84.7	1999-2003	(146)
US-WBW	DBF	36.0	-84.3	1995-1999	(147)
US-WCr	DBF	45.8	-90.1	1999-2006	(148)
US-Wi0	ENF	46.6	-91.1	2002	(149)
US-Wi1	DBF	46.7	-91.2	2003	(150)
US-Wi2	ENF	46.7	-91.2	2003	(150)
US-Wi4	ENF	46.7	-91.2	2002-2005	(150)
US-Wi5	ENF	46.7	-91.1	2004	(150)
US-Wi6	Shrubland	46.6	-91.3	2002	(150)
US-Wi7	Shrubland	46.6	-91.1	2005	(150)
US-Wi8	DBF	46.7	-91.3	2002	(150)
US-Wkg	Grassland	31.7	-109.9	2005-2006	(151)
US-Wrc	ENF	45.8	-122.0	1999-2002,2004,2006	(152)
VU-Coc	EBF	-15.4	167.2	2002	(153)

510	Table S2. Results of partial correlation analyses for FLUXNET GPP. The dependent variable
511	is annual GPP and independent variables are GPPmax and CUP.

	Variable	Parameter	Patial	
	entered	estimate	r^2	Probability
All	GPP _{max}	0.98	0.72	< 0.001
	CUP	0.96	0.26	< 0.001
ENF	GPP _{max}	1.00	0.83	< 0.001
	CUP	0.99	0.16	< 0.001
DBF	GPP _{max}	1.00	0.87	< 0.001
	CUP	0.99	0.11	< 0.001
EBF	GPP _{max}	0.95	0.80	< 0.001
	CUP	1.13	0.18	< 0.001
MF	GPP _{max}	0.96	0.79	0.0014
	CUP	1.01	0.21	< 0.001
GRA	GPP _{max}	1.00	0.70	0.005
	CUP	0.90	0.28	< 0.001
SHRUB	GPP _{max}	0.90	0.52	0.0053
	CUP	1.06	0.43	< 0.001
SAV	GPP _{max}	1.23	0.89	0.0014
	CUP	0.80	0.08	0.020
WET	GPP _{max}	1.02	0.91	< 0.001
	CUP	0.82	0.08	0.002
CROP	CUP	0.88	0.58	0.0012
	GPPmax	0.86	0.37	< 0.001

Figure S1. Relationship between GPP_{max} and CUP across all FLUXNET site-years in this

515 study.

Figure S2. Dynamics of annual GPP, GPP_{max} and CUP from 2000 to 2010 in the Black Hills National Forest, South Dakota, USA. The results were obtained from the MODIS GPP observations in a $0.1 \times 0.1^{\circ}$ grid pixel (43.85°N, 103.95°W) which is located in the burned area in the Black Hills National Forest. More information about the fire disturbance and the following recovery of vegetation greenness can be found in Xiao *et al.*(154). The linear regressions of annual GPP, GPP_{max} and CUP against year are all significant (all *P* < 0.05).

- 527 Figure S3. The relative frequency distribution of estimated *α* from all (a) non-tropical and (b)
 528 tropical and subtropical (including Mediterranean climate) FLUXNET site-years.

- 534 Figure S4. Spatial distributions of mean (a) annual GPP, (b) GPP_{max}, and (c) CUP in
- 535 **North America.** Data in each 0.1 °×0.1 ° grid was averaged over 11 years from 2000 to 2010.

536

Figure S5. Examples of flux site-year with multiple peaks of daily GPP. Numbers and the
associated arrows show the different GPP peaks. The detailed information for each flux site
can be found in Table S1.

542

Figure S6. Dependence of annual FLUXNET GPP variability on (a) CUP and (b) GPP_{max} (the linear correlation was tested at the significance level of P = 0.05).

- 549 **Figure S7.** Relationship between MODIS- and FLUXNET-derived GPP_{max} in North
- 550 America. The MODIS GPP_{max} ($0.1 \circ$ by $0.1 \circ$ degree) from the latitude-longitude grid cell
- 551 where the flux-tower site located was used for the analysis.
- 552

Figure S8. (a) Global distribution of averaged CUP over 2000-2010 derived from the daily
records of landscape freeze/thaw (F/T) data with the spatial resolution of 25km by 25km. (b)
Comparison between the MODIS- and F/T-derived CUP in North America. More details of
the data and method are provided in S1.9. The F/T data were firstly re-gridded into 0.1 °by
0.1 °, and then both the MODIS- and F/T-derived were averaged along latitude with a 0.5 °
interval.

560

Page 44 of 56

Figure S9. GPP dynamics in 2002 and 2003 at 10 FLUXNET sites in Europe. The year 2003 was extremely hot and dry, with July temperature up to 6 °C above and annual precipitation about 50% below the long-term averages(155). The selection of sites is based on the ref (149), which analyzed the impacts of the 2003 heatwave on European primary productivity. According to that study, GPP in 2002 (black triangle) was chosen as a reference and the impact of 2003 heatwave was calculated as the relative changes in 2003 (red circle) from those in 2002. The site information can be found in Table S1.

Figure S10. Relationship between annual GPP and the product of CUP and GPP_{max} in the Black Hills National Forest, South Dakota, USA. Each circle represents a year from 2000 to 2010. The results were obtained from the MODIS GPP observations in a $0.1 \times 0.1^{\circ}$ grid pixel (43.85°N, 103.95°W) which located in the burned area in the Black Hills National Forest. More information about the fire disturbance and the following recovery of vegetation greenness can be found in Xiao *et al.*(154).

577 578

579 Supporting References

- Baldocchi D, et al. (2001) FLUXNET: a new tool to study the temporal and spatial
 variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.
 Bulletin of the American Meteorological Society 82(11):2415-2434.
- 583 2. Gu L, et al. (2003) Phenology of vegetation photosynthesis. Phenology: An integrative environmental science, (Springer), pp 467-485.
- 3. Reichstein M, et al. (2005) On the separation of net ecosystem exchange into
 assimilation and ecosystem respiration: review and improved algorithm. Global Change
 Biol 11(9):1424-1439.
- 588 4. Papale D, et al. (2006) Towards a standardized processing of Net Ecosystem Exchange
 589 measured with eddy covariance technique: algorithms and uncertainty estimation.
 590 Biogeosciences 3(4):571-583.
- 5. Beer C, et al. (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834-838.
- 593 6. Moncrieff JB, Malhi Y, & Leuning R (1996) The propagation of errors in long-term
 594 measurements of land-atmosphere fluxes of carbon and water. Global Change Biol
 595 2(3):231-240.
- 596 7. Moffat AM, et al. (2007) Comprehensive comparison of gap-filling techniques for eddy
 597 covariance net carbon fluxes. Agr Forest Meteorol 147(3-4):209-232.
- Desai AR, et al. (2008) Cross-site evaluation of eddy covariance GPP and RE
 decomposition techniques. Agr Forest Meteorol 148(6-7):821-838.
- 600 9. Heinsch FA, et al. (2003) GPP and NPP (MOD17A2/A3) Products NASA MODIS Land
 601 Algorithm. MOD17 User's Guide:1-57.
- 602 10. Zhao MS, Heinsch FA, Nemani RR, & Running SW (2005) Improvements of the
 603 MODIS terrestrial gross and net primary production global data set. Remote Sens
 604 Environ 95(2):164-176.
- Theorem MS & Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 Through 2009. Science 329(5994):940-943.
- Running SW, et al. (2004) A continuous satellite-derived measure of global terrestrial
 primary production. Bioscience 54(6):547-560.
- Sjostrom M, et al. (2011) Exploring the potential of MODIS EVI for modeling gross
 primary production across African ecosystems. Remote Sens Environ 115(4):1081-1089.
- 611 14. Gu L, et al. (2009) Characterizing the seasonal dynamics of plant community
 612 photosynthesis across a range of vegetation types. Phenology of Ecosystem Processes,
 613 (Springer), pp 35-58.
- 614 15. Jönsson P & Eklundh L (2004) TIMESAT—a program for analyzing time-series of
 615 satellite sensor data. Computers & Geosciences 30(8):833-845.
- 616 16. Gilmanov TG, et al. (2007) Partitioning European grassland net ecosystem CO₂
 617 exchange into gross primary productivity and ecosystem respiration using light response
 618 function analysis. Agr Ecosyst Environ 121(1-2):93-120.

- Fischer ML, Billesbach DP, Berry JA, Riley WJ, & Torn MS (2007) Spatiotemporal
 variations in growing season exchanges of CO₂, H₂O, and sensible heat in agricultural
 fields of the Southern Great Plains. Earth Interact 11, 10.1175/EI231.1
- Liu XJ, Ju XT, Zhang FS, Pan JR, & Christie P (2003) Nitrogen dynamics and budgets
 in a winter wheat-maize cropping system in the North China Plain. Field Crop Res
 83(2):111-124.
- 625 19. Eklundha L & Jönssonb P (2012) Timesat 3.1 Software Manual.
- 626 20. Giorgi F & Lionello P (2008) Climate change projections for the Mediterranean region.
 627 Global Planet Change 63(2-3):90-104.
- 628 21. Grunzweig JM, Lin T, Rotenberg E, Schwartz A, & Yakir D (2003) Carbon
 629 sequestration in arid-land forest. Global Change Biol 9(5):791-799.
- 630 22. Bates DM & Watts DG (1988) Nonlinear regression: iterative estimation and linear approximations (Wiley Online Library).
- 632 23. Fox J (2002) Nonlinear regression and nonlinear least squares. appendix to an R and S 633 PLUS companion to applied regression. (Sage Publications, Ca).
- 4. Xu L, et al. (2013) Temperature and vegetation seasonality diminishment over northern
 lands. Nature Climate Change 3(6):581-586.
- 636 25. Kim Y, Kimball JS, Zhang K, & McDonald KC (2012) Satellite detection of increasing
 637 Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional
 638 vegetation growth. Remote Sens Environ 121:472-487.
- 639 26. Zhang K, Kimball JS, Kim Y, & McDonald KC (2011) Changing freeze-thaw seasons in
 640 northern high latitudes and associated influences on evapotranspiration. Hydrol Process
 641 25(26):4142-4151.
- 642 27. Wohlfahrt G, et al. (2008) Seasonal and inter-annual variability of the net ecosystem CO₂
 643 exchange of a temperate mountain grassland: Effects of weather and management. J
 644 Geophys Res-Atmos 113, D08110, doi:10.1029/2007JD009286.
- 645 28. Carrara A, Janssens IA, Yuste JC, & Ceulemans R (2004) Seasonal changes in
 646 photosynthesis, respiration and NEE of a mixed temperate forest. Agr Forest Meteorol
 647 126(1-2):15-31.
- 648 29. Moureaux C, Debacq A, Bodson B, Heinesch B, & Aubinet M (2006) Annual net
 649 ecosystem carbon exchange by a sugar beet crop. Agr Forest Meteorol 139(1-2):25-39.
- 30. Aubinet M, et al. (2001) Long term carbon dioxide exchange above a mixed forest in the
 Belgian Ardennes. Agr Forest Meteorol 108(4):293-315.
- 31. Tota J, et al. (2008) Amazon rain forest subcanopy flow and the carbon budget:
 Santarem LBA-ECO site. J Geophys Res-Biogeo 113, G00B02, doi:10.1029/2007JG000597.
- 455 32. Huete AR, et al. (2006) Amazon rainforests green-up with sunlight in dry season.
 Geophys Res Lett 33, L06405, doi:10.1029/2005GL025583.
- da Rocha HR, et al. (2009) Patterns of water and heat flux across a biome gradient from
 tropical forest to savanna in Brazil. J Geophys Res-Biogeo 114, G00B12,
 doi:10.1029/2007JG000640.

- 34. Humphreys ER, et al. (2006) Carbon dioxide fluxes in coastal Douglas-fir stands at
 different stages of development after clearcut harvesting. Agr Forest Meteorol 140(14):6-22.
- 35. McCaughey JH, Pejam MR, Arain MA, & Cameron DA (2006) Carbon dioxide and
 energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agr Forest
 Meteorol 140(1-4):79-96.
- 666 36. Flanagan LB & Adkinson AC (2011) Interacting controls on productivity in a northern
 667 Great Plains grassland and implications for response to ENSO events. Global Change
 668 Biol 17(11):3293-3311.
- 37. Dunn AL, Barford CC, Wofsy SC, Goulden ML, & Daube BC (2007) A long-term
 record of carbon exchange in a boreal black spruce forest: means, responses to
 interannual variability, and decadal trends. Global Change Biol 13(3):577-590.
- 672 38. Lafleur PM, Roulet NT, Bubier JL, Frolking S, & Moore TR (2003) Interannual
 673 variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog.
 674 Global Biogeochemical Cycles 1036, doi:10.1029/2002GB001983, 2.
- 675 39. Goulden ML, et al. (2004) Diel and seasonal patterns of tropical forest CO₂ exchange.
 676 Ecol Appl 14(4):S42-S54.
- 677 40. Black TA, et al. (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys Res Lett 27(9):1271-1274.
- 41. Howard EA, Gower ST, Foley JA, & Kucharik CJ (2004) Effects of logging on carbon
 dynamics of a jack pine forest in Saskatchewan, Canada. Global Change Biol
 10(8):1267-1284.
- 682 42. Giasson MA, Coursolle C, & Margolis HA (2006) Ecosystem-level CO₂ fluxes from a
 683 boreal cutover in eastern Canada before and after scarification. Agr Forest Meteorol
 684 140(1-4):23-40.
- 43. Bergeron O, et al. (2007) Comparison of carbon dioxide fluxes over three boreal black
 spruce forests in Canada. Global Change Biol 13(1):89-107.
- 44. Mkhabela MS, et al. (2009) Comparison of carbon dynamics and water use efficiency
 following fire and harvesting in Canadian boreal forests. Agr Forest Meteorol
 149(5):783-794.
- 45. Zha T, et al. (2009) Carbon sequestration in boreal jack pine stands following harvesting.
 Global Change Biol 15(6):1475-1487.
- 46. Peichl M & Arain MA (2007) Allometry and partitioning of above- and belowground
 tree biomass in an age-sequence of white pine forests. Forest Ecol Manag 253(1-3):6880.
- 47. Yuan FM, et al. (2008) Modeling analysis of primary controls on net ecosystem
 productivity of seven boreal and temperate coniferous forests across a continental
 transect. Global Change Biol 14(8):1765-1784.
- 698 48. Flanagan LB & Syed KH (2011) Stimulation of both photosynthesis and respiration in
 699 response to warmer and drier conditions in a boreal peatland ecosystem. Global Change
 700 Biol 17(7):2271-2287.
- 49. Adkinson AC, Syed KH, & Flanagan LB (2011) Contrasting responses of growing
 season ecosystem CO₂ exchange to variation in temperature and water table depth in two

- peatlands in northern Alberta, Canada. J Geophys Res-Biogeo 116, G01004,
 doi:10.1029/2010JG001512.
- 50. Ammann C, Flechard CR, Leifeld J, Neftel A, & Fuhrer J (2007) The carbon budget of
 newly established temperate grassland depends on management intensity. Agr Ecosyst
 Environ 121(1-2):5-20.
- 51. Dietiker D, Buchmann N, & Eugster W (2010) Testing the ability of the DNDC model to
 predict CO₂ and water vapour fluxes of a Swiss cropland site. Agr Ecosyst Environ
 139(3):396-401.
- 52. Li X, et al. (2012) Estimation of evapotranspiration over the terrestrial ecosystems in
 China. Ecohydrology. 7: 139–149.
- 53. Guan DX, et al. (2006) CO₂ fluxes over an old, temperate mixed forest in northeastern
 China. Agr Forest Meteorol 137(3-4):138-149.
- 54. Yan Y, et al. (2008) Closing the carbon budget of estuarine wetlands with tower-based
 measurements and MODIS time series (vol 14, pg 1690, 2008). Global Change Biol
 14(10):2469-2471.
- 55. Chen SP, et al. (2009) Energy balance and partition in Inner Mongolia steppe ecosystems
 with different land use types. Agr Forest Meteorol 149(11):1800-1809.
- 56. Kato T, et al. (2006) Temperature and biomass influences on interannual changes in CO₂
 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biol
 12(7):1285-1298.
- 57. Sun G, et al. (2011) A general predictive model for estimating monthly ecosystem
 evapotranspiration. Ecohydrology 4(2):245-255.
- 58. Sulkava M, Luyssaert S, Zaehle S, & Papale D (2011) Assessing and improving the
 representativeness of monitoring networks: The European flux tower network example. J
 Geophys Res-Biogeo 116, G00J04, doi:10.1029/2010JG001562.
- 59. Staudt K & Foken T (2007) Documentation of reference data for the experimental areas
 of the bayreuth centre for ecology and environmental research (bayceer) at the waldstein
 site, Tech. Rep (University of Bayreuth).
- 60. Anthoni PM, et al. (2004) Forest and agricultural land-use-dependent CO₂ exchange in
 Thuringia, Germany. Global Change Biol 10(12):2005-2019.
- Knohl A, Schulze ED, Kolle O, & Buchmann N (2003) Large carbon uptake by an
 unmanaged 250-year-old deciduous forest in Central Germany. Agr Forest Meteorol
 118(3-4):151-167.
- 62. Schindler D, Turk M, & Mayer H (2006) CO₂ fluxes of a Scots pine forest growing in
 the warm and dry southern upper Rhine plain, SW Germany. Eur J Forest Res
 125(3):201-212.
- 63. Don A, Rebmann C, Kolle O, Scherer-Lorenzen M, & Schulze ED (2009) Impact of
 afforestation-associated management changes on the carbon balance of grassland. Global
 Change Biol 15(8):1990-2002.
- 64. Grunwald T & Bernhofer C (2007) A decade of carbon, water and energy flux
 measurements of an old spruce forest at the Anchor Station Tharandt. Tellus B
 59(3):387-396.

- 745 65. Rebmann C, et al. (2010) Treatment and assessment of the CO₂-exchange at a complex
 746 forest site in Thuringia, Germany. Agr Forest Meteorol 150(5):684-691.
- 747 66. Pilegaard K, et al. (2003) Field measurements of atmosphere-biosphere interactions in a
 748 Danish beech forest. Boreal Environ Res 8(4):315-333.
- 67. Gockede M, et al. (2008) Quality control of CarboEurope flux data Part 1: Coupling
 footprint analyses with flux data quality assessment to evaluate sites in forest
 ecosystems. Biogeosciences 5(2):433-450.
- 52 68. Suni T, et al. (2003) Long-term measurements of surface fluxes above a Scots pine forest
 in Hyytiala, southern Finland, 1996-2001. Boreal Environ Res 8(4):287-301.
- Kaurila T, et al. (2001) Seasonal variations of net CO₂ exchange in European Arctic
 ecosystems. Theor Appl Climatol 70(1-4):183-201.
- 756 70. Aurela M, et al. (2007) CO₂ exchange of a sedge fen in southern Finland The impact of
 757 a drought period. Tellus B 59(5):826-837.
- 758 71. Tanja S, et al. (2003) Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol 9(10):1410-1426.
- 760 72. Hibbard KA, Law BE, Reichstein M, & Sulzman J (2005) An analysis of soil respiration
 761 across northern hemisphere temperate ecosystems. Biogeochemistry 73(1):29-70.
- 762 73. Granier A, et al. (2000) The carbon balance of a young Beech forest. Funct Ecol 14(3):312-325.
- 764 74. Berbigier P, Bonnefond JM, & Mellmann P (2001) CO₂ and water vapour fluxes for 2 years above Euroflux forest site. Agr Forest Meteorol 108(3):183-197.
- 766 75. Rambal S, Joffre R, Ourcival JM, Cavender-Bares J, & Rocheteau A (2004) The growth
 767 respiration component in eddy CO₂ flux from a Quercus ilex mediterranean forest.
 768 Global Change Biol 10(9):1460-1469.
- 769 76. Bonal D, et al. (2008) Impact of severe dry season on net ecosystem exchange in the
 770 Neotropical rainforest of French Guiana. Global Change Biol 14(8):1917-1933.
- 771 77. Nagy Z, et al. (2007) The carbon budget of semi-arid grassland in a wet and a dry year in
 772 Hungary. Agr Ecosyst Environ 121(1-2):21-29.
- 773 78. Pinter K, et al. (2008) Interannual variability of grasslands' carbon balance depends on
 774 soil type. Community Ecol 9:43-48.
- 775 79. Hirano T, et al. (2007) Carbon dioxide balance of a tropical peat swamp forest in
 776 Kalimantan, Indonesia. Global Change Biol 13(2):412-425.
- 80. Peichl M, Leahy P, & Kiely G (2011) Six-year stable annual uptake of carbon dioxide in
 intensively managed humid temperate grassland. Ecosystems 14(1):112-126.
- 81. Morales P, et al. (2005) Comparing and evaluating process-based ecosystem model
 predictions of carbon and water fluxes in major European forest biomes. Global Change
 Biol 11(12):2211-2233.
- 782 82. Kutsch WL, et al. (2010) The net biome production of full crop rotations in Europe. Agr
 783 Ecosyst Environ 139(3):336-345.
- 83. Scartazza A, et al. (2004) Comparisons of d 13C of photosynthetic products and
 ecosystem respiratory CO₂ and their responses to seasonal climate variability. Oecologia
 140(2):340-351.

- 787 84. Garbulsky MF, Penuelas J, Papale D, & Filella I (2008) Remote estimation of carbon dioxide uptake by a Mediterranean forest. Global Change Biol 14(12):2860-2867.
- 85. Marcolla B, Pitacco A, & Cescatti A (2003) Canopy architecture and turbulence
 structure in a coniferous forest. Bound-Lay Meteorol 108(1):39-59.
- 86. Marcolla B & Cescatti A (2005) Experimental analysis of flux footprint for varying
 stability conditions in an alpine meadow. Agr Forest Meteorol 135(1-4):291-301.
- 793 87. Vaccari FP, et al. (2012) Land use change and soil organic carbon dynamics in
 794 Mediterranean agro-ecosystems: The case study of Pianosa Island. Geoderma 175:29-36.
- 88. Migliavacca M, et al. (2009) Modeling gross primary production of agro-forestry
 ecosystems by assimilation of satellite-derived information in a process-based model.
 Sensors-Basel 9(2):922-942.
- 89. Montagnani L, et al. (2009) A new mass conservation approach to the study of CO₂
 advection in an alpine forest. J Geophys Res-Atmos 114, D07306,
 doi:10.1029/2008JD010650.
- 801 90. Rey A, et al. (2002) Annual variation in soil respiration and its components in a coppice
 802 oak forest in Central Italy. Global Change Biol 8(9):851-866.
- 803 91. Tedeschi V, et al. (2006) Soil respiration in a Mediterranean oak forest at different
 804 developmental stages after coppicing. Global Change Biol 12(1):110-121.
- 805
 92. Chiesi M, et al. (2005) Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agr Forest Meteorol 135(1-4):22-34.
- 807 93. Saito M, Miyata A, Nagai H, & Yamada T (2005) Seasonal variation of carbon dioxide
 808 exchange in rice paddy field in Japan. Agr Forest Meteorol 135(1-4):93-109.
- 809 94. Ito A, et al. (2006) Seasonal variation in leaf properties and ecosystem carbon budget in
 a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site,
 B11 Japan. Ecol Res 21(1):137-149.
- 812 95. Takagi K, et al. (2009) Change in CO₂ balance under a series of forestry activities in a
 813 cool-temperate mixed forest with dense undergrowth. Global Change Biol 15(5):1275814 1288.
- 815 96. Hirano T, et al. (2003) CO₂ and water vapor exchange of a larch forest in northern Japan.
 816 Tellus B 55(2):244-257.
- 817 97. Choi M, Lee SO, & Kwon H (2010) Understanding of the Common Land Model
 818 performance for water and energy fluxes in a farmland during the growing season in
 819 Korea. Hydrol Process 24(8):1063-1071.
- 820 98. Kang M, Kwon H, Cheon JH, & Kim J (2012) On estimating wet canopy evaporation
 821 from deciduous and coniferous forests in the Asian monsoon climate. J Hydrometeorol
 822 13(3):950-965.
- 99. Jacobs CMJ, et al. (2007) Variability of annual CO₂ exchange from Dutch grasslands.
 Biogeosciences 4(5):803-816.
- 100.Dolman AJ, Moors EJ, & Elbers JA (2002) The carbon uptake of a mid latitude pine
 forest growing on sandy soil. Agr Forest Meteorol 111(3):157-170.
- 827 101.Moors EJ, et al. (2010) Variability in carbon exchange of European croplands. Agr
 828 Ecosyst Environ 139(3):325-335.

- 829 102.Chojnicki B, Urbaniak M, J ózefczyk D, Augustin J, & Olejnik J (2007) Measurements of
 830 gas and heat fluxes at Rzecin wetland. Wetlands: Monitoring, Modeling and
 831 Management, edited by Okruszko, T., Maltby, E., Szatylowicz, J., Miroslaw-Swiatek, D.,
 832 and Kotowski, W:125-131.
- 833 103.Pital G, Rodrigues A, Mateus J, & Pereira J (2011) Reversing of seasonal patterns of
 834 carbon uptake in an eucalyptus stand in Portugal after drought and felling. Forest Syst
 835 20(3):475-484.
- 836 104.Pereira J, et al. (2007) Net ecosystem carbon exchange in three contrasting
 837 Mediterranean ecosystems-the effect of drought. Biogeosciences 4:791-802.
- 105.Merbold L, et al. (2009) Artificial drainage and associated carbon fluxes (CO₂/CH₄) in a
 tundra ecosystem. Global Change Biol 15(11):2599-2614.
- 106.van der Molen MK, et al. (2007) The growing season greenhouse gas balance of a
 continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4(6):9851003.
- 843 107.Kurbatova J, Li C, Varlagin A, Xiao X, & Vygodskaya N (2008) Modeling carbon
 844 dynamics in two adjacent spruce forests with different soil conditions in Russia.
 845 Biogeosciences 5(4):969-980.
- 846 108.Marchesini LB, et al. (2007) Carbon balance assessment of a natural steppe of southern
 847 Siberia by multiple constraint approach. Biogeosciences 4(4):581-595.
- 848 109.Sagerfors J, et al. (2008) Annual CO₂ exchange between a nutrient-poor, minerotrophic,
 849 boreal mire and the atmosphere. J Geophys Res-Biogeo 113, G01001,
 850 doi:10.1029/2006JG000306.
- 110.Eklundh L, Jin HX, Schubert P, Guzinski R, & Heliasz M (2011) An optical sensor
 network for vegetation phenology monitoring and satellite data calibration. SensorsBasel 11(8):7678-7709.
- 111.Lindroth A, Klemedtsson L, Grelle A, Weslien P, & Langvall O (2008) Measurement of
 net ecosystem exchange, productivity and respiration in three spruce forests in Sweden
 shows unexpectedly large soil carbon losses. Biogeochemistry 89(1):43-60.
- 857 112.Lagergren F, et al. (2008) Biophysical controls on CO₂ fluxes of three Northern forests
 858 based on long-term eddy covariance data. Tellus B 60(2):143-152.
- 859 113.Hargreaves K, Milne R, & Cannell M (2003) Carbon balance of afforested peatland in
 860 Scotland. Forestry 76(3):299-317.
- 861 114.Soussana JF, et al. (2007) Full accounting of the greenhouse gas (CO₂, N₂O, CH₄)
 862 budget of nine European grassland sites. Agr Ecosyst Environ 121(1-2):121-134.
- 115.Rebmann C, et al. (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climatol 80(2-4):121-141.
- 865 116.Wilkinson M, Eaton EL, Broadmeadow MSJ, & Morison JIL (2012) Inter-annual
 866 variation of carbon uptake by a plantation oak woodland in south-eastern England.
 867 Biogeosciences 9(12):5373-5389.
- 117. Acreman MC, Harding RJ, Lloyd CR, & McNeil DD (2003) Evaporation characteristics
 of wetlands: experience from a wet grassland and a reedbed using eddy correlation
 measurements. Hydrol Earth Syst Sc 7(1):11-21.

- 871 118.Kwon HJ, Oechel WC, Zulueta RC, & Hastings SJ (2006) Effects of climate variability
 872 on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra
 873 ecosystems. J Geophys Res-Biogeo 111, G03014, doi:10.1029/2005JG000036.
- 874 119.Jenkins JP, et al. (2007) Refining light-use efficiency calculations for a deciduous forest
 875 canopy using simultaneous tower-based carbon flux and radiometric measurements. Agr
 876 Forest Meteorol 143(1-2):64-79.
- 120.Gilmanov TG, et al. (2005) Integration of CO₂ flux and remotely-sensed data for primary
 production and ecosystem respiration analyses in the Northern Great Plains: potential for
 quantitative spatial extrapolation. Global Ecol Biogeogr 14(3):271-292.
- 121.Goldstein AH, et al. (2000) Effects of climate variability on the carbon dioxide, water,
 and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA).
 Agr Forest Meteorol 101(2-3):113-129.
- 122.Liu HP, Randerson JT, Lindfors J, & Chapin FS (2005) Changes in the surface energy
 budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J
 Geophys Res-Atmos 110, D13101, doi:10.1029/2004JD005158.
- 123.Meyers TP & Hollinger SE (2004) An assessment of storage terms in the surface energy
 balance of maize and soybean. Agr Forest Meteorol 125(1-2):105-115.
- 124.Oechel WC, et al. (2000) Acclimation of ecosystem CO₂ exchange in the Alaskan Arctic
 in response to decadal climate warming. Nature 406(6799):978-981.
- 890 125.Pataki DE & Oren R (2003) Species differences in stomatal control of water loss at the
 891 canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26(12):1267892 1278.
- 126.Heinsch FA, et al. (2004) Carbon dioxide exchange in a high marsh on the Texas Gulf
 Coast: effects of freshwater availability. Agr Forest Meteorol 125(1-2):159-172.
- 895 127.Urbanski S, et al. (2007) Factors controlling CO₂ exchange on timescales from hourly to
 896 decadal at Harvard Forest. J Geophys Res-Biogeo 112, G02020,
 897 doi:10.1029/2006JG000293.
- 898 128.Hollinger DY, Aber J, & Dail B (2004) Spatial and temporal variability in forest899 atmosphere CO₂ exchange (vol 10, pg 1689, 2004). Global Change Biol 10(11):1961900 1961.
- 901 129.Allison VJ, Miller RM, Jastrow JD, Matamala R, & Zak DR (2005) Changes in soil
 902 microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J
 903 69(5):1412-1421.
- 130.Powell TL, et al. (2006) Environmental controls over net ecosystem carbon exchange of
 scrub oak in central Florida. Agr Forest Meteorol 141(1):19-34.
- 131.Borken W, Savage K, Davidson EA, & Trumbore SE (2006) Effects of experimental
 drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global
 Change Biol 12(2):177-193.
- 909 132.Law BE, Thornton PE, Irvine J, Anthoni PM, & Van Tuyl S (2001) Carbon storage and
 910 fluxes in ponderosa pine forests at different developmental stages. Global Change Biol
 911 7(7):755-777.
- 912 133.Schmid HP, Grimmond CSB, Cropley F, Offerle B, & Su HB (2000) Measurements of
 913 CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States.
- 914 Agr Forest Meteorol 103(4):357-374.

- 915 134.Sun G, et al. (2010) Energy and water balance of two contrasting loblolly pine
 916 plantations on the lower coastal plain of North Carolina, USA. Forest Ecol Manag
 917 259(7):1299-1310.
- 918 135.Noormets A, et al. (2010) Energy and water balance of two contrasting loblolly pine
 919 plantations on the lower coastal plain of North Carolina, USA (vol 259, pg 1299, 2010).
 920 Forest Ecol Manag 260(1):169-169.
- 921 136. Verma SB, et al. (2005) Annual carbon dioxide exchange in irrigated and rainfed maize922 based agroecosystems. Agr Forest Meteorol 131(1-2):77-96.
- 923 137.Monson RK, et al. (2002) Carbon sequestration in a high-elevation, subalpine forest.
 924 Global Change Biol 8(5):459-478.
- 138.DeForest JL, et al. (2006) Phenophases alter the soil respiration-temperature relationship
 in an oak-dominated forest. Int J Biometeorol 51(2):135-144.
- 139.Davis KJ, et al. (2003) The annual cycles of CO₂ and H₂O exchange over a northern
 mixed forest as observed from a very tall tower. Global Change Biol 9(9):1278-1293.
- 140.Lipson DA, Wilson RF, & Oechel WC (2005) Effects of elevated atmospheric CO₂ on
 soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl Environ
 Microb 71(12):8573-8580.
- 141.Powell TL, et al. (2008) Carbon exchange of a mature, naturally regenerated pine forest
 in north Florida. Global Change Biol 14(11):2523-2538.
- 142.Clark KL, Gholz HL, & Castro MS (2004) Carbon dynamics along a chronosequence of
 slash pine plantations in north Florida. Ecol Appl 14(4):1154-1171.
- 143.Potts DL, Scott RL, Cable JM, Huxman TE, & Williams DG (2008) Sensitivity of
 Mesquite Shrubland CO₂ Exchange to Precipitation in Contrasting Landscape Settings.
 Ecology 89(10):2900-2910.
- 144.Desai AR, Bolstad PV, Cook BD, Davis KJ, & Carey EV (2005) Comparing net
 ecosystem exchange of carbon dioxide between an old-growth and mature forest in the
 upper Midwest, USA. Agr Forest Meteorol 128(1-2):33-55.
- 942 145.Ma SY, Baldocchi DD, Xu LK, & Hehn T (2007) Inter-annual variability in carbon
 943 dioxide exchange of an oak/grass savanna and open grassland in California. Agr Forest
 944 Meteorol 147(3-4):157-171.
- 945 146.Gough CM, Vogel CS, Schmid HP, Su HB, & Curtis PS (2008) Multi-year convergence
 946 of biometric and meteorological estimates of forest carbon storage. Agr Forest Meteorol
 947 148(2):158-170.
- 948 147.Wilson KB & Baldocchi DD (2001) Comparing independent estimates of carbon dioxide
 949 exchange over 5 years at a deciduous forest in the southeastern United States. J Geophys
 950 Res-Atmos 106(D24):34167-34178.
- 148.Cook BD, et al. (2004) Carbon exchange and venting anomalies in an upland deciduous
 forest in northern Wisconsin, USA. Agr Forest Meteorol 126(3-4):271-295.
- 149.Noormets A, Chen J, & Crow TR (2007) Age-dependent changes in ecosystem carbon
 fluxes in managed forests in northern wisconsin, USA. Ecosystems 10(2):187-203.
- 150.Sun G, Noormets A, Chen J, & McNulty SG (2008) Evapotranspiration estimates from
 eddy covariance towers and hydrologic modeling in managed forests in Northern
 Wisconsin, USA. Agr Forest Meteorol 148(2):257-267.

- 151.Scott RL, Hamerlynck EP, Jenerette GD, Moran MS, & Barron-Gafford GA (2010)
 Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. J Geophys Res-Biogeo 115, G03026, doi:10.1029/2010JG001348.
- 152.Falk M, Wharton S, Schroeder M, Ustin S, & U KTP (2008) Flux partitioning in an oldgrowth forest: seasonal and interannual dynamics. Tree Physiol 28(4):509-520.
- 153.Navarro M, et al. (2008) Fruit development, not GPP, drives seasonal variation in NPP in
 a tropical palm plantation. Tree Physiol 28(11):1661-1674.
- 965 154.Xiao X, Biradar C, Wang A, Sheldon S, & Chen Y (2011) Recovery of Vegetation
 966 Canopy After Severe Fire in 2000 at the Black Hills National Forest, South Dakota,
 967 USA. Journal of Resources and Ecology 2(2):106-116.
- 155.Ciais P, et al. (2005) Europe-wide reduction in primary productivity caused by the heat
 and drought in 2003. Nature 437(7058):529-533.