Partnership for RTB post-harvest project

- CIAT
- IITA, ILRI
- CIRAD
- NRI
- Univalle (Colombia)
- Kasetsart University, KMUTT (Thailand)
- Clayuca

Started 2013:
Complementary funding RTB Post-harvest project
RTBs are processed at large and small scales.

- Nigeria 0.3t gari/day
- Nigeria 2t HQCF/day
- Colombia 2-3t starch/day
- Paraguay 25-100t starch/day
- Tanzania 2t HQCF /day
- Vietnam 3-11t starch/day
- Thailand 200t starch/day
Thailand produces 2-3 million tons cassava starch/year

25-30 million tons cassava roots / year (3rd producer)

10-12 millions tons roots processed into starch

Factories use:
Electricity: 900 - 1000 MJ/t starch
Thermal energy: 1600 - 2500 MJ/t starch

Since 2004, 90% of factories switched from fuel oil to biogas for starch drying
Typical factory 200t starch/24 hours, 9-12 months/year
Cassava starch production

Washing and peeling

Rasping

Cassava roots 600-800 t/day

Photos: G. Da, T. Tran
Cassava starch production

Extraction - centrifugation

Drying

Dry starch 150-200 t/day

Photos: G. Da, T. Tran
By-products

Peels → Sun-drying → Compost Fuel

Fibres (50% fibre / 50% starch db) → Drying → Animal feed

Photos: T. Tran
Wastewater

Open lagoon

Covered lagoon for Biogas

Biogas

Open lagoon

Photos: T. Tran
4 steps of Life Cycle Assessment (LCA)

- System definition (boundaries, function…)
- Inputs / outputs inventory
- Assessment of impacts
- Interpretation
System boundaries: Cradle to factory gate

Objective: Assess the reduction of Carbon footprint of cassava starch by biogas technology

- Boundaries: Farming to factory gate
- Functional unit: 1 ton of starch with 13% water
Life cycle inventory

<table>
<thead>
<tr>
<th>Life cycle stages</th>
<th>Source of Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Data</td>
<td>Secondary Data</td>
<td></td>
</tr>
<tr>
<td>Cassava farming</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transportation of cassava root and other materials</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassava starch processing</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

3 factories

LCIA: Carbon footprint method of TGO; IPCC
Equivalences for the Fuel oil scenario

FUEL OIL
- Biogas for starch drying: 49, 130, 61 m³/FU (F1, F2, F3 resp.)
- Heating values of biogas: 21, 19, 23 MJ/m³ (F1, F2, F3 resp.)
- Heating value of fuel oil: 40 MJ/L
 ➔ Fuel oil replaces biogas (MJ for MJ)

ELECTRICITY
- Factories 1 and 3 generate electricity from biogas
 ➔ Grid electricity replaces biogas electricity (kWh for kWh)

WASTEWATER
- Wastewater contains organic matter (COD), which ferments and releases methane (CH₄).
 ➔ Methane emitted to atmosphere replaces methane captured for biogas production.
Biogas reduces GHG emissions

Factory 1

- Less fuel oil
- Less grid electricity
- Much less CH₄ emissions

Factory 2

Savings:
430 - 660 kg CO₂eq/t starch
26000 - 40000 t CO₂eq/year/factory
Carbon footprint of cassava starch: 599kg CO$_2$eq/t starch

60% come from farming: 359kg CO$_2$eq/t starch

→ High sensitivity of farming practices

Farming practices vary by a factor 7!
95 farms surveyed (50 km radius):

10 farms with lowest inputs:
134kg CO$_2$eq/t starch

10 farms with highest inputs:
939kg CO$_2$eq/t starch

→ Check the representativeness of the farms surveyed

Nguyen 2007:
204kg CO$_2$eq/t starch

Soni et al. 2013:
177kg CO$_2$eq/t starch
1000 kg starch @ 13%mc
→ 100% of total weight
→ CF = 599 kg CO₂eq/t starch
Allocation between products

Cassava roots

Starch

Pulp

1000 kg starch @ 13% mc
→ 36% of total weight
→ CF = 215 kg CO₂ eq/t starch

1785 kg pulp @ 75% mc
→ 64% of total weight
→ CF = 384 kg CO₂ eq/t starch

870 kg dry matter
→ 66% of total weight
→ CF = 396 kg CO₂ eq/t starch

446 kg dry matter
→ 34% of total weight
→ CF = 203 kg CO₂ eq/t starch

Total CF

599 kg CO₂ eq/t starch
Conclusions

Biogas reduced carbon footprint of cassava starch by 31-42%.

Savings:

26000 - 40000 t CO$_2$eq/year per factory
2.5 - 3.0 million tons CO$_2$eq/year at country level

CF:
600 - 960 kg CO$_2$eq/t starch

Thailand – Europe flight:
1600 kg CO$_2$eq

Variability of carbon footprint:
- Variability of fertilizer use
- Choice of allocation method
Contributors and donors

Nanthiya Hansupalak
Klanarong Sriroth
Arnaud Chapuis
Palotai Piromkraipak
Pakhamas Tamthirat
Sudarat Lee
Apisit Manitsorasak
Martin Moreno
Dominique Dufour
Andrès Escobar
Timothée Gally
Arthur de la Giraudière

Adebayo Abass
Marcelo Precoppe
Keith Fahrney
Cu Thi Le Thuy
Andy Graffham
Diego Naziri
Uli Kleih
Warinthorn Songkasiri
Kanchana Saengchan
Patrick Sébastian

Equipment manufacturers and cassava starch factories in Thailand
Thank you
Thank you

BILL & MELINDA GATES foundation