Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity

Bredeson Jessen V., Lyons Jessica B., Prochnik Simon, Wu Guohong Albert, Ha Cindy M., Edsinger-Gonzales Eric, Grimwood Jane, Schmutz Jeremy, Rabbi Ismail Y., Egesi Chiedozie, Nauluvula Poasa, Lebot Vincent, Ndunguru Joseph, Mkamilo Geoffrey, Bart Rebecca, Setter Tim, Gleadow Roslyn M., Kulakow Peter, Ferguson Morag E., Rounsley Steve, Rokhsar Daniel S.. 2016. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 34 (5) : pp. 562-570.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
Version Online first - Anglais
Use under authorization by the author or CIRAD.
Sequencing wild and cultivated cassava Nature Biotechnology 2016.pdf

Télécharger (1MB) | Preview
Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (1MB) | Preview


Abstract : Cassava (Manihot esculenta) provides calories and nutrition for more than half a billion people. It was domesticated by native Amazonian peoples through cultivation of the wild progenitor M. esculenta ssp. flabellifolia and is now grown in tropical regions worldwide. Here we provide a high-quality genome assembly for cassava with improved contiguity, linkage, and completeness; almost 97% of genes are anchored to chromosomes. We find that paleotetraploidy in cassava is shared with the related rubber tree Hevea, providing a resource for comparative studies. We also sequence a global collection of 58 Manihot accessions, including cultivated and wild cassava accessions and related species such as Ceará or India rubber (M. glaziovii), and genotype 268 African cassava varieties. We find widespread interspecific admixture, and detect the genetic signature of past cassava breeding programs. As a clonally propagated crop, cassava is especially vulnerable to pathogens and abiotic stresses. This genomic resource will inform future genome-enabled breeding efforts to improve this staple crop. (Résumé d'auteur)

Mots-clés Agrovoc : Manihot esculenta, Manihot glaziovii, Variation génétique, Hybridation interspécifique, Séquence d'ADN, Génome, Plante de culture, Plante sauvage, Variété indigène, Variété, Tétraploïdie, Amélioration des plantes

Mots-clés géographiques Agrovoc : Brésil, Colombie, Ouganda, Kenya, Nigéria, République-Unie de Tanzanie, Afrique occidentale, Vanuatu, Fidji, Thaïlande, Chine, Australie, Monde

Mots-clés complémentaires : Séquencage

Mots-clés libres : Manioc, Manihot esculenta, Manihot glaziovii, Diversité, Amélioration, Séquençage

Classification Agris : F30 - Plant genetics and breeding
F70 - Plant taxonomy and geography

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Bredeson Jessen V., UC (USA)
  • Lyons Jessica B., UC (USA)
  • Prochnik Simon, DOE-JGI (USA)
  • Wu Guohong Albert, DOE-JGI (USA)
  • Ha Cindy M., UC (USA)
  • Edsinger-Gonzales Eric, UC (USA)
  • Grimwood Jane, DOE-JGI (USA)
  • Schmutz Jeremy, DOE-JGI (USA)
  • Rabbi Ismail Y., IITA (NGA)
  • Egesi Chiedozie, NRCRI (NGA)
  • Nauluvula Poasa, Ministry of Primary Industries (Fidji) (FJI)
  • Lebot Vincent, CIRAD-BIOS-UMR AGAP (VUT)
  • Ndunguru Joseph, Mikocheni Agricultural Research Institute (TZA)
  • Mkamilo Geoffrey, NARI (TZA)
  • Bart Rebecca, UCR (USA)
  • Setter Tim, Cornell University (USA)
  • Gleadow Roslyn M., Monash University (AUS)
  • Kulakow Peter, IITA (NGA)
  • Ferguson Morag E., IITA (KEN)
  • Rounsley Steve, Dow Agrosciences (USA)
  • Rokhsar Daniel S., DOE-JGI (USA)

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-04-18 ]