

# **Coupling a 3D Light Interception With a Growth and Yield Model** to Adjust Shade Level in Coffee Agroforestry Systems Simulated under Climate Change

Rémi Vezy<sup>\*</sup>, D. Picart, M. Christina, M. Soma, S. Georgiou, F. Charbonnier, D. Loustau, P. B. Imbach, E. De Melo V. Filho, H. G. Hidalgo, E. J. Alfaro, O. Roupsard and G. le Maire

23-06-2016



32nd Conference on Agricultural and Forest Meteorology

#### **IMPACT OF FUTURE CLIMATE ON CROP YIELD**



## **A TRADE-OFF BETWEEN SHADE AND YIELD ?**

Agroforestry may regulate microclimate and crop temperature.

- What is the expected reduction on temperature?
- Effect of shade tree species, density and management?
- How to cope with local climate, elevation, bearing...
- Does LUE compensate somehow for light reduction under shade ?



Crop yield ?

## **METHODS**

Field experiments extremely useful but hard to maintain or extend:

- Trees take decades to mature
- Huge amount of management/climate options to test



#### **METAMODELS:**

Integrate Spatial Effects Computed From MAESPA Into Plot Scale Model Through Summary Equations



#### **MAESPA VALIDATION** 15 years-old agroforestry trial in CATIE research center (Haggar et al., 2011)



50 km 30 mi

#### **MAESPA LIGHT INTERCEPTION VALIDATION (1)** Simulated Total Transmittance (Day of Year 76, by hour)

Semi – Hour N ° 15 Transmittance ([0-1]) DOY 76 High FBEAM



#### **MAESPA LIGHT INTERCEPTION VALIDATION (2)**

MAESPA light interception validation through diffuse transmittance from hemispheric photograph



32nd Conference on Agricultural and Forest Meteorology

#### **MAESPA CANOPY TEMPERATURE VALIDATION**

MAESPA coffee canopy temperature validation through thermocouples measurements



#### **SIMULATION OF COFFEE MANAGEMENT SCENARIOS**



## **FUTURE CLIMATE, SIMULATED TO THE POINT**



Statistical downscaling from 14 GCMs to 5 km definition following Hidalgo et al. (2016, in prep)

## **COFFEE LIGHT USE EFFICIENCY (1979-2050 RCP 8.5, AQUIARES)**



#### **COFFEE DAILY MAXIMUM CANOPY TEMPERATURE (RCP 8.5, AQUIARES)**



# **CROP MODEL SIMULATIONS EXAMPLE:**

## TWO CYCLES (1979 TO 2049) AQUIARES (LOWLAND) RCP 8.5 Cordia alliodora, 50 tree ha<sup>-1</sup>, thinned)



**CROP MODEL :** Aquiares (Lowland), RCP 8.5, Shade = *Cordia alliodora* (50 tree ha<sup>-1</sup>, thinned)



#### **CROP MODEL :** Aquiares (Lowland), RCP 8.5, Shade = *Cordia alliodora* (50 tree ha<sup>-1</sup>, thinned)



**CROP MODEL :** Aquiares (Lowland), RCP 8.5, Shade = *Cordia alliodora* (50 tree ha<sup>-1</sup>, thinned)



#### **CROP MODEL :** Aquiares (Lowland), RCP 8.5, Shade = *Cordia alliodora* (50 tree ha<sup>-1</sup>, thinned)

Key variables evolution compared to reference (no climate change and no CO2 increase) for last ten years (2040-2050)

|                                                 | Temperature | CO2     | GPP                 | Maintenance<br>respiration | Growth<br>respiration | NPP   | Budbreak | Flowers per<br>node | LAI | Annual Fruit production |
|-------------------------------------------------|-------------|---------|---------------------|----------------------------|-----------------------|-------|----------|---------------------|-----|-------------------------|
| Predicted<br>climate<br>change                  | + 1.95°C*** | +48%*** | +25%***             | +43%***                    | +15%                  | +17%  | -19%***  | -15%***             | =   | -19%***                 |
| +CC - CO2                                       | + 1.95°C*** | =       | -1.3% <sup>ns</sup> | +9.4%***                   | -7.8%                 | -7.0% | -19%***  | -15%***             | =   | -19%***                 |
| -CC + CO2                                       | =           | +48%*** | +27 6***            | +29.5%***                  | +25%                  | +26%  | =        | =                   | =   | =                       |
| Mean difference is not significant but trend do |             |         |                     |                            |                       |       |          |                     |     |                         |

# CONCLUSION

- Coupling a 3D with a crop allocation model allows to simulate photosynthesis, light use efficiency and yield over full rotations while taking spatial heterogeneity into account
- Coffee yield could be impacted by 12% reduction under future climate due to T°C without full compensation by CO2 : adjusting shade will be crucial then !
- Models should allow to optimize shade and yield under various geographic location, management and climate scenarios
  - Simulations will be extended to 2100 (no strong differences between RCPs until 2049)
- Further analyses will be conducted over all the scenarios

# ACKNOWLEDGMENTS

- ANR MACACC Project
- INRA
- CIRAD
- UMR ECO&SOLS / UMR ISPA
- CATIE
- UCR (University of Costa Rica)
- SAFSE Project: http://safse.cirad.fr/le-projet







# **ANNEXES**

# **DOWNSCALING TECHNIQUE**

- Statistical downscaling:
  - Depends on current empirical relationships
  - Low computational demand
  - Long and high quality data series
  - Hard to apply in complex environments

