Tephritid Workers of Europe, Africa and the Middle East

3rd International Symposium
11-14 April 2016
Stellenbosch, South Africa

ABSTRACTS
DNA BARCODING FURTHER INDICATES CRYPTIC GENETIC VARIATION IN THE MANGO FRUIT FLY, *CERATITIS COSYRA* (DIPTERA, TEPHRTIDAE)

M. VIRGILIO¹, A. MANRAKHAN², H. DELATTE³, J-H. DANEEL², M. MWATAWALA⁴, K. MEGANCK¹, N. BARR⁵ and M. DE MEYER¹

¹Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
²Citrus Research International, PO Box 28, Nelspruit 1200, South Africa
³CIRAD-UMR PVBM T C53 Université de la Réunion, CIRAD-3P, Ligne paradis, 7 Chemin de l’IRAT, 97410 Saint Pierre, France
⁴Sokoine University of Agriculture, PO Box 3005, Chuo Kikuu, Morogoro, Tanzania
⁵Center for Plant Health Science and Technology, Mission Laboratory, USDA-APHIS, Edinburg, TX, U.S.A
massimiliano.virgilio@africamuseum.be

The mango fruit fly, *Ceratitis cosyra*, is a major agricultural pest affecting mango production in sub-Saharan Africa. Morphological differences between *C. cosyra* and four closely related *Ceratitis* (*Ceratalaspis*) species (*C. discussa*, *C. quinaria*, *C. silvestrii*, *C. striatella*) are subtle, so that reliable separation often requires specialized expertise. Additionally, a previous study showed cryptic genetic variation in *C. cosyra* with microsatellite genotypic clusters also occurring in sympatry. DNA barcoding further supported cryptic genetic variation in *C. cosyra* due to outlier DNA sequences. This study aimed to verify whether DNA barcoding can profitably be used to (a) resolve the two main microsatellite genotypic clusters of *C. cosyra*, and (b) separate *C. cosyra* from *C. discussa*, *C. quinaria*, *C. silvestrii*, and *C. striatella*. A subset of 48 *C. cosyra* specimens previously assigned to the two microsatellite genotypic clusters was subjected to DNA barcoding. This dataset was integrated with 83 public DNA barcodes of *C. cosyra*, *C. discussa*, *C. quinaria*, *C. silvestrii*, and *C. striatella* from the Barcode of Life Data Systems (BOLD). Neighbour joining tree (K2P distance) separated the two *C. cosyra* genotypic clusters and also resolved properly supported groups corresponding to (a) *C. quinaria* and *C. silvestrii*, (b) *C. discussa* (only 2 specimens considered) and possibly (c) *C. striatella* (all specimens but one included in the same clade). These results further support the hypothesis of cryptic speciation in the mango fruit fly and suggest that DNA barcoding represents a suitable tool for the identification of *C. cosyra* and of the closely related *Ceratitis* (*Ceratalaspis*) species.

Keywords: Ceratitis cosyra, Ceratalaspis, fruit flies, cryptic species, DNA barcoding