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Tree cover in Central Africa: 
determinants and sensitivity under 
contrasted scenarios of global 
change
Julie C. Aleman1,2,3, Olivier Blarquez4, Sylvie Gourlet-Fleury3, Laurent Bremond2 & 
Charly Favier2

Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. 
But its determinants and their relative importance are still a matter of debate, especially because 
most regional and global analyses have not considered the influence of agricultural practices. More 
information is urgently needed regarding how human practices influence vegetation structure. Here 
we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear 
vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest 
model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We 
showed that annual rainfall and accumulated water deficit were the main drivers of the distribution 
of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural 
practices, especially pastoralism, were also important in determining tree cover. We simulated 
future tree cover with our model using different scenarios of climate and land-use (agriculture and 
population) changes. Our simulations suggest that tree cover may respond differently regarding the 
type of scenarios, but land-use change was an important driver of vegetation change even able to 
counterbalance the effect of climate change in Central Africa.

Forest and savanna constitute the two main ecosystems in Central Africa. Forests are characterized by a 
closed canopy with mostly non-pioneer light demanding species in the overstory and shade-tolerant spe-
cies in the understory, while savannas are defined by a continuous layer of C4 grasses with a varying density 
of disturbance-tolerant woody species1. Thus, tree cover constitutes a key variable that differentiates forest and 
savanna, and which reflects variation in vegetation structure within the savanna biome2. Tree cover also charac-
terizes landscape structure and functionality, especially with effects on carbon storage, albedo, and biodiversity. 
Hence, tree cover is often used to characterize tropical biomes at broad scales2–6.

Climate is considered as the primary driver of tree cover in Africa5, where rainfall constrains maximum tree 
cover and where disturbances, especially fire and herbivores7–10, reduce tree cover from its maximum in a less 
predictable way2. Soil variables are also important in determining tree cover because they impact fertility and 
water availability11. Therefore, tree cover in savanna is the result of complex interactions between climate, soil 
characteristics and disturbance regimes11,12. The relative importance of each of these variables in determining tree 
cover is still a matter of some debate11, and vary regarding the location, spatial scale and extent of analyses2,3,5,13. 
Moreover, anthropogenic activities are rarely taken into account in analyses of tree cover, but human land-use 
has been shown to be a strong predictor of tree cover at the continental scale14. The effects of land-use change are 
not necessarily straightforward; while increasing cropland area obviously reduces tree cover15, pastoralism may 
have an opposite effect on vegetation structure, as overgrazing and changes in fire regime have been shown to be 
responsible for woody encroachment16,17.
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In the current context of climate change and modifications of land-use practices, more local and regional 
studies are needed in order to understand the interactions between climatic variables, disturbance regimes and 
agricultural practices. Indeed, future climate in Africa is expected to change severely, especially rainfall patterns 
and distribution18. These changes are likely to influence vegetation characteristics, ecosystem biodiversity and, 
at larger scale, global biome distribution19,20. Climate change, however, is not the only threat to African for-
est and savanna. Because local populations directly rely on them for their livelihoods21, they sustain increasing 
human impacts. Agricultural lands are expanding as populations grow rapidly in Africa22, while savanna areas 
are increasingly targeted for biofuel and intensive crops production23,24. Land-use changes and intensification 
result in forest and savanna degradation, fragmentation and biodiversity loss25,26 and can be critical for the future 
of ecosystems, directly threatening the sustainability of ecosystem services provisioning. Some modelling effort 
has been recently done for taking into account scenarios of land-use change in Africa14,25,27, highlighting the 
importance of agricultural practices and mitigation policies in the future of African ecosystems14. While Heubes 
et al.27 focused on West Africa where human impact is high and has already strongly modified the vegetation28, 
Aleman et al.29 performed their analyses in all sub-Saharan Africa, potentially masking regional peculiarities 
in agricultural practices and directions in management policies. We thus emphasize that local to regional-scale 
studies can also be crucial for understanding drivers of vegetation structure and improving the projections under 
scenarios of future changes.

Here we focused on an area centred in Central African Republic, which shows a clear vegetation gradient from 
tropical forest to open grasslands. This region has been subjected to violent political conflicts for decades and is 
facing a lack of transport infrastructure. The combination of political instability, isolation and particularly low 
population densities30 has prevented up to now intensive agricultural conversion31 and favoured the maintenance 
of rather traditional agricultural and land-use practices32. Focusing on this region is thus markedly important. 
From a theoretical point of view, it offers the opportunity to study how climate and traditional practices have 
determined savanna extent and tree cover. From an environmental policy point of view, when the region even-
tually stabilizes, there will be a surge of land conversion: this region is, for instance, part of the areas targeted for 
future biofuel production and agriculture intensification23,24. Then, scientific guides for land-use management 
and conservation design will be desperately needed.

The objective of this paper is thus to examine the roles of climate, edaphic variables, fire and agricultural 
practices (here cropland and pasture densities) in determining tree cover, and to use projections from the 
Coupled Model Intercomparison Project 5 (CMIP5)33 to generate correlative predictions about future tree 
cover. The frequency distribution of tree cover data derived from Vegetation Continuous Field product of the 
MODerate-resolution Imaging Spectroradiometer (MODIS) sensor34 is multimodal in our study area4, and is 
used to define four vegetation classes: three classes of savanna with increasing tree cover, and one forest class. The 
four modes recorded in this study area are not apparent in continental analyses3,14, probably because large-scale 
agricultural conversion mask the specificity of local-scale practices from which different vegetation structures 
emerge13. We therefore calibrated a Random Forest model of tree cover using remote sensing data and large 
databases of climate, anthropogenic and edaphic data. Random Forest models have been shown to accurately 
reproduce tree cover patterns at the continental scale in Africa14, and to be appropriate for use in prediction35. 
This model calibrated locally was able to pick up more information about current agricultural practices on tree 
cover in Central Africa than previous continental-scale study14. We used this model to quantify tree cover changes 
and vegetation classes’ shifts in response to highly contrasted scenarios of climate and agricultural practices 
changes as defined by the underlying emission and socio-economic scenarios of the different Representative 
Concentration Pathways36.

Results
Current determinants of tree cover and savanna structural classes. The Random Forest model 
predicted tree cover with very high accuracy (Fig. S1, R2 =  0.97, P-value <  0.01). Moreover, the residuals of the 
model were not spatially correlated (Moran’s I =  0.003, P-value =  0.10), such that the spatial pattern of tree cover 
in our study area was well captured (Fig. 1d) and the differences between predicted tree cover and MODIS data 
were very low (Fig. 1c,d). In our study area, MODIS tree cover is multimodal and clearly highlights four modes 
(Fig. 2a); the model captured this multimodality with high precision too (Fig. 2b). We thus defined four vegeta-
tion classes based on these four modes; these vegetation classes were also very accurately modelled with only 4.0% 
of misclassified pixels.

The first class, characterized in our study by a TC ≤  5%, i.e. almost no tree detected, corresponds to grassland 
savannas and bushlands (hereafter grassland/bushland) of the Sahelian biogeographic area37, where the accu-
mulated water deficit (AWD) is the highest (Fig. 3b). Within this class we cannot distinguish between grassland 
and shrubland, as the MODIS tree-cover dataset underestimates woody cover smaller than 5-m in height34. The 
second class is characterized by 5% <  TC ≤  28%. Here called sparsely wooded savannas, this class corresponds to 
a vegetation characteristic of the Sahelo-Sudanian zone in the Central African Republic phytogeographic clas-
sification38 and to a class of wooded savanna in the description of the vegetation type in Chad39, where AWD is 
intermediate (Fig. 3). The grassland/bushland class and the sparsely wooded savannas class feature the greatest 
extent of pasture (Fig. 3). For the third class, tree cover is 28% <  TC ≤  65%, and the vegetation corresponds to 
wooded and woodland savannas (mosaics of savanna and forest of the Sudanian biogeographic area37). These two 
vegetation classes (sparsely wooded savannas and wooded and woodland savannas) exhibit the highest fire activity 
(Fig. 3e). Finally, the fourth class corresponds to forest (TC >  65%) and is chiefly located in areas with the lowest 
AWD and the highest annual precipitation (Fig. 3a). The soil organic carbon concentration is the highest for the 
woodland savanna and forest classes (Fig. 3d).

The influence of each of the predictors was quantified by computing their relative importance in the model 
(Fig. 4) and their partial dependence on tree cover (Fig. S2). Mean annual precipitation (MAP) and accumulated 
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water deficit (AWD) were the two most important variables in our model; tree cover increased with increasing 
MAP and decreasing AWD (Figs 4 and S2). Anthropogenic variables were also important, especially the density 
of pasture per pixel, followed by fire frequency, cropland and population densities (Fig. 4). Not surprisingly, all 
anthropogenic variables tended to decrease tree cover (Fig. S2). As pasture density increased up to 0.8, tree cover 
decreased. Moreover, for null fire frequency, tree cover was the highest and monotonically decreased for increas-
ing fire (Fig. S2). Cropland and population density had a smaller, but still negative, impact on tree cover. Lastly, 
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Figure 1. Location of the study area (a) and spatial distribution of MODIS tree cover data (b), with 1: Chad, 
2: South Sudan, 3: Cameroon, 4: Central African Republic, 5: the Republic of Congo, and 6: the Democratic 
Republic of Congo. Histogram (c) and spatial distribution (d) of the difference between predicted tree cover 
using our Random Forest model and MODIS tree cover. This also represents the map of the opposite of the 
model’s residuals. The maps were generated using R version 3.1.385.
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Figure 2. Histograms of tree cover for MODIS data (a) and predicted using our model (b). The black curves 
represent the estimated probability density of plots.
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edaphic variables were less important, except for the soil organic carbon concentration, which constitutes the 
fourth most important variable (Fig. 4) and may reflect vegetation impacts on soil, and not vice-versa. Tree cover 
showed a strong positive dependence on organic carbon up to 10 g/kg, then a negative one until 15 g/kg. Beyond 
this threshold, no dependence was recorded (Fig. S2).

Future projections. We used four scenarios (RCPs 2.6, 4.5, 6.0 and 8.5) of climate (MAP and AWD) and 
land-use (pasture, cropland and population densities) changes to simulate future tree cover in Central Africa, and 
two main trends seemed to emerge. First, for RCPs 2.6 and 8.5, respectively the most optimistic and pessimistic 
scenarios of emissions, tree cover changes and shifts in vegetation classes were surprisingly similar (Figs 5 and S4).  
For these two scenarios, the major driver of change was land-use modifications corresponding to increasing 
cropland areas for RCP 2.6 (Fig. S3b) and to increasing both cropland and pasture land for RCP 8.5 (Fig. S3a,b). 
Tree cover changes were greatest in the forest class, whose area decreased by more than 25 ×  106 ha for both sce-
narios (Figs 5b and S4b). For all scenarios, land-use changes were responsible for decreasing tree cover within all 
vegetation classes (Figs 5b and S4b). Shifts between classes were spatially structured and mainly clustered in areas 
where classes transitioned. The simulations for climate alone also predicted some tree cover changes, but these 
were somewhat milder compared to land-use change only (Fig. 5b,c), even for RCP 8.5 (Fig. S4b,c) where rainfall 
and water deficit changes are predicted to be the highest (Fig. S3c,d). Still, for RCP 2.6, tree cover decreased in the 
forest class as a result of increasing water deficit (Fig. S3d) and more than 10 ×  106 ha shifted to the wooded and 
woodland savanna class (Fig. 5c). Conversely, for this scenario, tree cover increased in the three savanna classes 
(Fig. 5c). This triggered an increase in the two intermediate savanna classes’ areas, wooded and woodland savan-
nas and sparsely wooded savannas, but the grassland/shrubland class decreased because of the tree cover increase, 
due to increasing annual precipitation (Fig. 5c, Fig. S4c). Tree cover changes for RCP 8.5 followed a similar trend, 
but were more substantial and triggered more shifts between vegetation classes (Fig. S4c). Increasing MAP for 
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this scenario led to an increase in tree cover in vegetation classes situated in North of Cameroon, Central African 
Republic (CAR) and south of Chad and South Sudan (Fig. S4c). Meanwhile, the increase in temperature, and thus 
AWD in southern parts of Cameroon, CAR and northern parts of Democratic Republic of Congo (DRC) resulted 
in tree cover decrease in forest areas (Fig. S4c).

For the two other scenarios, RCPs 4.5 and 6.0, the main driver of classes’ shifts was climate (Figs 6 and S5). 
For RCP 4.5, however, tree cover changes due to land-use change were greater in magnitude but highly localized 
(Fig. 6b), while climate change effects were more spatially extensive (Fig. 6c). For this scenario, the net effect of 
climate and land-use changes was antagonistic. Increasing water deficit as a result of increasing temperature was 
responsible for decreasing tree cover in forest, with 7.5 ×  106 ha of this class shifting into to the wooded and wood-
land savanna class (Fig. 6c). However, for the land-use change-only scenario, tree cover increased in this savanna 
class, as a result of both reducing pasture and cropland in order to increase forest plantation40. The forest class 
increased in area, while the wooded and woodland savanna class decreased (Fig. 6c). Increasing MAP in Sahelian 
areas of Cameroon, Chad and South Sudan (Fig. 6c), increased tree cover and triggered shifts from grassland/
shrubland to sparsely wooded savanna. Both climate and land-use change resulted in an increase in forest and 
sparsely wooded savanna area, while wooded and woodland savanna and grassland/shrubland decreased (Fig. 6a). 
Results for RCP 6.0 gave similar results (Fig. S5a).

Discussion
In this study, we used a Random Forest algorithm to correlatively model tree cover using climatic, edaphic and 
anthropogenic data in Central Africa. This type of model has previously been used to model tree cover in all 
sub-Saharan Africa14 and to model biome shifts in the Indian subcontinent with high accuracy41. The model 
obtained here also predicted tree cover very accurately, without spatial auto-correlation, highlighting a strong 
hierarchy of the predictors in our study area. Climatic variables – mean annual precipitation and accumulated 
water deficit – emerged as the most important variables determining tree cover14. This result is not a surprise since 
it has been heavily demonstrated that climate, especially rainfall, constitutes the primary determinant for tree 
cover in Africa5,11,42. Indeed, water availability constrains the distribution of forest and savanna globally2,6,43,44, and 
within the savanna biome it drives differences in growth rates between trees and grasses and hence determines 
vegetation structure45.

Figure 5. Changes in tree cover and classes’ spatial distribution for RCP 2.6. The first panel represents 
differences in tree cover between simulated future and current tree cover values (i), the second panel represents 
the spatial distribution of the four vegetation classes and their shifts for 2070 (ii), and the third panel represents 
the changes in area occupied by the four vegetation classes in 2070 (iii) for global change (a), land-use change 
only (b) and climate change only (c) scenarios. The maps were generated using R version 3.1.385.
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Anthropogenic variables, specifically agriculture, also mattered in determining tree cover. Pastoralism in 
savannas is a major driver of vegetation structure14, but rarely, if ever, taken into account in global analyses4,6. 
Modifications of agricultural practices can lead to drastic changes in vegetation structure. For example, pastoral-
ism in Central African savannas has long been only located in Sahelian areas, which is noticeable in our results 
where grassland/bushland and sparsely wooded savanna classes support the highest density of livestock (Fig. 3c). 
However, Sahelian herders from both West and Central African areas recently (~1960 s) migrated southward in 
mesic savannas where historically farmers dominated the agricultural landscape16,32. This situation has led to 
important conflicts between herders and farmers32,46, and to changes in vegetation structure. For example, the 
modifications in fire regime due to change in agricultural practices (from large fires for hunting to small and early 
fires for cattle ranching) associated with overgrazing resulted in bush encroachment16. Pasture areas became less 
productive, and herders migrated more southward32. Pastoralism is not the only agricultural practice that directly 
or indirectly impact tree cover. Traditional farmers use slash-and-burn to clear lands and manage fields and com-
munal pastures16, and conversion to cropland obviously reduces tree cover47.

Fire also has negative impacts on intermediate tree cover11. Fire is highly related to agricultural activities 
and hunting, meanwhile recent changes in practices have reduced both the extent and intensity of fires16. These 
smaller fires, as well as fires in high-woody cover areas (such as for the wooded and woodland savannas), are dif-
ficult to detect using remote sensing products48,49. This may explain why fire is not playing a more important role 
in our model. Ultimately, edaphic variables were significant2, but less predictive of tree cover; soil organic carbon 
concentration was the most predictive soil variable (Fig. S2), which may reflect vegetation impacts on soil carbon, 
and not vice versa50.

When considering vegetation structural classes, the climatic variables appear also to be the main drivers of 
their geographical distribution (Fig. 3a,b), but the non-climatic drivers of vegetation classes shifts were very 
different from one class to another. First, the wooded and woodland savannas and the forest class clearly differ 
regarding their fire activity: the former features very high fire frequency, while the latter exhibits no fire (Fig. 3e). 
It has been previously proposed that these two vegetation types represent alternative stable states, maintained by 
a fire feedback3,4,6. As tree cover increases, beyond some point, the grass layer availability for fuelling fire and its 
flammability decrease, promoting the increase of tree densities. Conversely, if tree cover falls below a critical den-
sity, the light release to the ground increases promoting fuel flammability and availability, and thus the occurrence 

Figure 6. Changes in tree cover and classes’ spatial distribution for RCP 4.5. The first panel represents 
differences in tree cover between simulated future and current tree cover values (i), the second panel represents 
the spatial distribution of the four vegetation classes and their shifts for 2070 (ii), and the third panel represents 
the changes in area occupied by the four vegetation classes in 2070 (iii) for global change (a), land-use change 
only (b) and climate change only (c) scenarios. The maps were generated using R version 3.1.385.
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of fires that could kill tree seedlings51 and induce a change toward a more open landscape (wooded and woodland 
savannas).

Particular mechanisms that imply a transition from grassland to savanna in semi-arid ecosystems can be 
considered to understand transitions between the two most open vegetation classes. On one hand, a strong Allee 
effect in grasslands and bushlands, i.e. low shrub density limiting recruitment, can be strong enough to keep 
the system trapped in this state52,53. On the other hand, biotic stochasticity and spatial variability of disturbance 
regimes – such as selective herbivory, very local fires or rainfall events – can produce favourable conditions for 
tree recruitment54–56. Additionally, while some fires are detected in the sparsely wooded savannas class, very few 
fires are detected in the grassland/bushland ones (Fig. 3e) suggesting a change in disturbance regime from one 
class to the other due to differences in fuel availability.

The sparsely wooded savannas and the wooded and woodland savannas represent ecosystems that differ struc-
turally from each other, potentially sustained by different processes and mechanisms13. Accordingly, soil char-
acteristics are different between these two classes, especially cation exchange capacity, organic carbon and silt 
content (Fig. 3d–f–h). There might be a combination of soil properties and water availability limiting tree cover57. 
However, more information is needed to understand if this relationship is deterministic or results from feedbacks. 
Interestingly, the recorded fire frequency appears to be the same between the two savanna classes (Fig. 3e), while 
fire is almost unrecorded in the other classes. That might mean there is no relationship between fire frequency and 
tree cover at intermediate values because tree species in both savanna classes are adapted to similar level of distur-
bance intensities58. In this case, differences in traditional agricultural practices are the main driver of vegetation 
structure (Fig. 3c, pasture density). Alternatively it may be due to a limitation in the L3JRC product in recording 
burned area in zones of high tree cover49.

Our simulations of future tree cover highlighted differences between RCP scenarios. First, RCPs 2.6 and 8.5 
resulted in similar outputs with increasing cropland areas as the main driver of vegetation change14. Interestingly, 
these are the two extreme scenarios in terms of CO2 emission and radiative forcing18, with RCP 2.6 achieving a 
drastic reduction in both because of a major increase in croplands for biofuel production59. Under RCP 8.5 the 
demand for agricultural land dedicated to cash crops would increase59. The consequences of tree cover decrease in 
forest areas are straightforward, with expected decrease in carbon storage and sequestration60 and important bio-
diversity loss due to agricultural conversion26,61. But, on the other hand, increasing areas for biofuel production in 
savannas also may have major issues. First, the consequences in term of carbon storage and biodiversity would be 
the same62. But also, allocating lands for biofuel and cash crop productions can create tensions for the availability 
of lands for local farmers and can raise food security issues63,64. Mesic savannas in Central Africa are considered 
as having a high cultivation potential62,64, but the tensions between herders and farmers have never been so high32. 
One can easily imagine how increasing areas for cash crops and biofuel production in the region may exacerbate 
the tensions that already exist for land availability46.

Conversely for RCPs 4.5 and 6.0, climate change was the major driver of tree cover change and vegetation 
shifts, with tree cover increase with increasing annual rainfall in Sahelian areas and tree cover decrease with 
increasing accumulated water deficit close to the Congo basin. This result agrees with other studies highlighting 
the role of seasonality in the future of forest and savanna in the tropics20,65. However, our simulations showed that 
land-use modifications through decreasing agricultural areas were able to counterbalance the consequence of 
increasing water deficit in forest areas40. This is a result of increasing the effort of reforestation policies, especially 
under RCP 4.5, as a way to mitigate climate change59.

Increasing annual rainfall resulted in an increase in tree cover in Sahelian area in our simulations. Other 
authors also noted the ‘greening’ and ongoing woody encroachment66,67 in this area as a result of precipitation 
change68. Woody encroachment may need to be strongly monitored because of its potential negative impacts on 
faunal and floral diversity69,70, and on the quality of grazing lawns for herds and cattle16. It is also important to 
note that the decrease in agricultural areas in savanna directly bordering forest resulted in increasing tree cover, 
with some areas of the wooded and woodland savanna class shifting to forest. These savannas are particularly sen-
sitive to land-use change14. First they are located in a climate range where forest is possible3, such that changing 
the balance in disturbance can trigger a transition to forest. But also, because these savanna areas, which persisted 
for thousands of years, are increasingly targeted for afforestation policies71,72.

Finally, we must consider that future global change may result in responses beyond what we can predict on 
the basis of modern-day correlations. To produce these simulations of future tree cover, we used a Random Forest 
algorithm, such that our model as all other machine-learning algorithms generates only correlative relationships 
between ecological patterns and predictor variables65. As a consequence, our model uses the amplitude of tree 
cover response to the predictors constrained by the training data, i.e. the currently observed data, to simulate 
future responses.

We did not consider CO2 in our model, because up to now, little is known on how trees and grasses will 
respond to it, and more experimental work is needed to account for CO2 effects in predictive models. Similarly, 
we could not consider the direct effects of increasing temperature on vegetation since the present extant range 
of variability does not include projected future temperatures in the tropics59. We, however, took into account the 
effects of temperature changes on evapotranspiration and thus on water availability, since it is likely that tem-
perature will mainly influence vegetation through water stress44,73,74. But, the high uncertainty in future climate 
projections that are related to GCM biases75 and that are known to be high in Africa27 constitute another source 
of uncertainty.

No projections on fire regime are available yet such that we decided not take into account fire in our projec-
tions of tree cover. Even if at a global scale fire is known to play a role in the distribution of savanna and forest 
by maintaining a feedback on vegetation structure3, we showed that there was no difference in fire frequency 
between the two savanna classes with the highest tree cover. Consequently, future changes in fire regimes may 
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trigger the transition from savanna to forest, especially because fire suppression policies are widespread18, but 
may be less crucial for the future of savanna tree cover in comparison to other land-use changes.

Conclusion
Here, we studied the determinants of tree cover in Central Africa, in an area where population density and con-
version to intensive agriculture is low, and where traditional agricultural practices dominate. We showed that 
climate, and more particularly annual rainfall and accumulated water deficit, was the main driver of both tree 
cover and vegetation classes distribution. Agricultural practices, especially pastoralism, were also important in 
determining tree cover. We simulated future tree cover using a correlative model and by accounting for predicted 
changes in both climate and agricultural practices. We showed that, for some scenarios, land-use could result in 
tree cover changes of higher amplitude for 2070 than climate only, and for other it can counterbalance the effect of 
climate change alone. We thus emphasize that to provide more realistic projections of future vegetation and tree 
cover, it is essential to consider both climate change and direct human impact14.

Additionally, our simulations showed that for RCP 2.6, aggressive emissions reduction resulted in forest frag-
mentation and drastic tree cover decrease in the most wooded savanna. In this context, choosing to mitigate 
climate change can result in vegetation and biodiversity erosion. It thus raises the question of the way global 
communities are going to balance their climate change mitigation policies and priorities.

Finally, as statistical approaches should be supplemented with mechanistic approaches, more investigations 
are needed on climate-human-vegetation interactions. Developing such theoretical framework that includes 
human land-use may increase our understanding about future impacts on vegetation and could help make deci-
sions about conservation priorities and management planning.

Methods
Study location and variables. Tree cover. We analysed tree cover distribution on a study area defined 
between latitude 0°N and 14°N, and longitude 13°E and 31°E (Fig. 1a,b). This area shows a clear vegetation gra-
dient from tropical forest to open grasslands in Central Africa. The region is characterized by low population 
density30 and is still subject to very localized intensive land conversion31, with traditional agricultural practices32. 
Tree cover percentage was computed from the MOD44B Collection 3 product34 for the year 2000 and aggregated 
at 5 ×  5 km resolution. It comprises the canopy cover percentage derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite measurement of canopy reflectance.

To relate tree cover, the response variable of our study, with ecological vegetation classes, we used the 
frequency distribution of tree cover in the study area. We calculated the probability density function of tree 
cover in the study area to identify the major vegetation classes. We used finite normal mixture modelling to 
estimate the number of modes of the tree cover frequency distribution. This technique fits several frequency 
distributions to the data. We used the R package mclust (R version 3.1.3, mclust version 5.0.0) that uses an 
expectation-maximization (EM) procedure to find the best fit for several normal distributions. The Bayesian 
Information Criterion (BIC) was used to define the most optimized number of classes.

Potential explanatory variables. The vegetation structure in Africa is likely a result of interactions between cli-
mate, soil biochemistry, fire, herbivory, and human activities2. Here we used two climatic variables: the mean 
annual precipitation (MAP) derived from the 30-arcsec WorldClim Version 1.4 datasets76, and the yearly accu-
mulated water deficit (AWD). Monthly average potential evapotranspiration (PET) were computed following 
the Hargreaves 1985 method77 and using mean monthly temperature and monthly range temperature from 
WorldClim Version 1.476. This method has been tested in Africa and South America with very good results78. The 
AWD was then computed as following:

∑= −
>=

=
AWD PETi Pi

whenPETi Pi
( ),

(1)i

i

1

12

with PETi the potential evapotranspiration for month i, and Pi the precipitation for month i. Thus, here the accu-
mulated water deficit of the dry season represents the best variable to capture water availability through precipi-
tation seasonality and the effect of temperature in potential evapotranspiration.

The ISRIC World Soil Information team in collaboration with the AFSIS project (African Soil Information 
System) have produced predictions of soil properties at 1 km resolution for Africa using about 12,000 soil profile 
data79. The ISRIC soil properties estimates were used for six soil characteristics that can be potential determinants 
of savanna structure2,5,11: percent of sand, clay and silt, organic carbon content, pH (~phosphorus availability) 
and the cation exchange capacity (~fertility) in 100-cm of soil depth (data averaged). We used the monthly L3JRC 
burnt area product to derive an estimate of fire frequency48. For this analysis, monthly data layers from 2000 to 
2007 were combined to calculate the total number of times individual pixels burned over the time period. We 
used population density data for the year 200080; due to important differences in population densities across 
the study area, the data were log-transformed. Land-use data (cropland and pasture) were derived from the 
Harmonized Global Land Use for years 1700–2100 version 140, available for the entire globe at 0.5-degree spatial 
resolution. Historical data (1700–2005) are based on HYDE 3.1; we averaged the density of cropland and pasture 
per pixel for the years 2000 to 2005.

In Africa, herbivores can represent an important disturbance11,81 thus playing a role in determining tree cover. 
Nevertheless, data availability on herbivore abundance is sparse and unreliable so we could not include herbivore 
abundance as a predictor.
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All the data were re-projected in WGS-84 at a resolution of 5 km using a nearest neighbour procedure. After 
creating a regular grid of 142,993 points, average percent tree cover, fire frequency, climate, soil and land use data 
were extracted to perform statistical analysis.

Modelling framework. Random Forest models use a classification or regression tree approach that recur-
sively partition predictor variables. The algorithm creates multiple bootstrapped regression trees without pruning 
and averages the outputs; each tree is grown using a randomized subset of predictors82. These models are very 
effective in reducing variance and error in high dimensional data sets by taking an ensemble of unpruned trees. 
Moreover, growing large numbers of trees does not overfit data and random predictor selection keeps bias low, 
providing good models for prediction35. Several metrics are available to help interpreting these models. Variable 
importance can be evaluated based on how much worse the prediction would be if the data for that predictor 
were permuted randomly; it is thus possible to rank predictors based on their relative importance82. This type of 
models has been previously used to predict the impact of climate change on vegetation and biome distribution 
with good results14,41.

In order to avoid collinearity between soil variables, Pearson correlation matrix was computed for potential 
variables and only those with correlation coefficients with any other lesser than 0.7 were considered in the analysis 
(Table 1). We randomly selected seventy percent of the dataset to calibrate the model, and used the remaining 
30% for validation. We also considered the spatial autocorrelation of the model’s residuals and applied Moran’s 
I, an index of spatial autocorrelation ranging from − 1 to 1, where a positive value indicates a positive spatial 
autocorrelation, and vice et versa, and where values close to zero indicate no spatial autocorrelation83. Due to 
computational limitations, we assessed Moran’s I in a randomized subset of 10,000 pixels of the training data84.

All data were extracted and analyzed in R 3.1.385, using libraries “raster”, “randomForest” and “ape”.

Global changes scenarios and model projections. Representative Concentration Pathways (RCPs) 
represent the trajectory for greenhouse gas and radiative forcing reached by the year 210036. RCPs are independ-
ent pathways produced by four individual modelling groups (Integrated Assessment Model, IAM): one high 
pathway for which radiative forcing reaches >  8.5 W.m-2 (~1370 ppm CO2 eq) by 2100 and continues to rise 
for some amount of time (MESSAGE); two intermediate “stabilization pathways” in which radiative forcing is 
stabilized at approximately 6 W.m-2 (~850 ppm CO2 eq; AIM) and 4.5 W.m-2 (~650 ppm CO2 eq; GCAM) after 
2100; and one pathway where radiative forcing peaks at 2.6 W.m-2 (~490 ppm CO2 eq; IMAGE) before 2100 and 
then declines. Any differences between the pathways can be attributed in part to differences between models 
and scenario assumptions (scientific, economic, and technological). For example, the use of oil stays constant 
in most scenarios, but declines in the RCP 2.6, as a result of depletion and climate policy59. Moreover, the use of 
non-fossil fuels is expected to increase in all scenarios, especially using renewable resources such as wind and 
solar, bio-energy and nuclear power. Thus, a crucial element of RCP 2.6 is the use of bio-energy, carbon capture 
and storage technologies, which results in negative emissions59. The counterpart of this decrease nevertheless is 
a large increase in croplands dedicated to biofuel production86. For this scenario, pasture stays constant in our 
area (Fig. S4) but globally increases mildly. Meanwhile, RCP 4.5 projects a radical change in global land-use 
because in that scenario carbon storage from vegetation is valued as part of global climate policy59. Cropland and 

Variable Unit Range
Selected in 

model
Used for future 

prediction

Tree cover % [0; 100] 
Mean =  36.8 ✓

Mean annual 
precipitation (MAP) mm/year [216; 2296]

Mean =  1205.8 ✓ ✓

Accumulated water 
deficit (AWD) mm/year [0; 1311] 

Mean =  542.7 ✓ ✓

Sand % [6.5; 82.9] 
Mean =  47.9 ✓

Clay % [7.9; 70.7] 
Mean =  36.3

Silt % [2.8; 52.9] 
Mean =  15.8 ✓

Organic carbon 
concentration g/kg [1.3; 65.3] 

Mean =  6.9 ✓

pH [3.7; 8.8] 
Mean =  5.9

Cation exchange 
capacity (CEC) cmol/kg [1.5; 209.6] 

Mean =  12.2 ✓

Fire frequency Nb of fire per year [0; 1] Mean =  0.12 ✓

Cropland % of the pixel [0; 0.6] Mean =  0.07 ✓ ✓

Pasture % of the pixel [0; 0.9] Mean =  0.3 ✓ ✓

Population density
Number of inhabitants 

per pixel (log-
transformed)

[0; 11] Mean =  6.4 ✓ ✓

Table 1.  Available and selected variables used in this study and for simulations of future tree cover.
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pasture, for this scenario, decrease as a combined result of reforestation programs, yield improvement, intensi-
fication and dietary changes86. RCP 6.0 assumes an increase in cropland, especially in urban areas, due to pop-
ulation and economic growth, but a decline in pasture as the result of a shift from extensive to more intensive 
animal husbandry86. Finally, the RCP 8.5 is also expected to increase croplands and pasture lands as a result of the 
large increase in global population86. Each RCP achieves its radiative forcing trajectories by simulating diverse 
land-use, socio-economic and policy scenarios, such that the intensity of land-use change does not monotonically 
increase with RCP radiative forcing59.

Future climate projections for 2070 (average 2061–2080) were taken from all the general circulation models 
(GCMs) for the four RCPs; the GCM outputs are available downscaled and calibrated against Worldclim 1.4 as 
baseline climate87, using absolute change for temperature and relative change for precipitation. Because we used 
an ensemble of all GCMs available, we derived consensus projections of tree cover for each RCP using princi-
pal components analysis. As described in Heubes et al.27, tree cover predicted for each GCM for a given RCP is 
weighted according to the first PCA axis loadings. Future land-use projections for the year 2070 were averaged 
from 2061 to 2080 for the four RCPs40 to be consistent with the climate data. Finally, human population density 
data were derived from IPCC SRES projections A1B80 for the year 2100, which forecasts an increase in population 
density followed by a stabilization and then a decline. The other two scenarios, A2 and B2, have similar projec-
tions for Africa.

To distinguish between climate vs. land-use change effects on tree cover, we simulated future tree cover 
with the Random Forest model we calibrated and using projected climate change (MAP and AWD), land-use 
change (pasture, cropland and population densities), and both14. We kept fire and soil constant in our simulations 
because standard future fire projections are not yet available, and changing soil variables would require building 
a more complex model taking into account feedbacks between soil and vegetation, which is not possible with a 
statistical model.
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