1st International Conference on

Bioenergy 🚜 Climate Change

Towards a Sustainable Development

BIOMASS BLENDING AS A WAY TO REDUCE NO_X EMISSIONS DURING THE COMBUSTION OF BIOMASS RESIDUES

Brice Piednoir, Jean-Michel Commandré, Anthony Benoist, Sarah El Fassi, Gilles Vaitilingom

Research Unit BioWooEB, Montpellier

Doctoral School Energy & Environment

Approach

- Which compounds contained in biomass can influence NO_x emissions?
- Can synergies be implemented by biomass blending to reduce NO emissions?

Procedure

Selection of biomass residues

Lab scale pelletization

Combustion experiments

NO emissions: blending strategy

Influence of N

Combustion of « pure » samples

Blend: extremal N-content samples

Pine Bark & Grape Marc

Combustion setup

Total flow rate: 3,8 Nl.min⁻¹

Typical emission profiles: CO and CO₂

- Low CO concentration:
 - < 1 000 ppm (0,1%vol)
- Efficient combustion:

•
$$\frac{CO+CO_2}{Fuel-C} > 90\%$$

$$\bullet \ \frac{CO}{CO + CO_2} < 1,5\%$$

Typical emission profile: NO

Influence of N

Combustion of « pure » samples

NO emissions and N-content for the fuels selected in this study

Influence of N

Combustion of « pure » samples

Blend: extremal N-content samples

Pine Bark & Grape Marc

NO emissions: Pine Bark & Grape Marc blends

NO emissions: Pine Bark & Grape Marc 0,9%N

NO emissions: Pine Bark & Grape Marc

Influence of Ca

NO emissions: Rice Husk & Rape Straw

Gap between theoretical and experimental results : fixed %N

Influence of Ca

NO emissions: Rice Husk & Olive Pomace

Gap between theoretical and experimental results : fixed Ca/N

Conclusions on NO emissions

Influence of N

Correlation on « pure » samples

Non linearity for blends

Influence of Ca

Thank you for your attention

Work fully financed by: CIRAD

Contact:

brice.piednoir@cirad.fr