Comparison of different genetic distances to test isolation by distance between populations

Sere Modou, Thevenon Sophie, Belem Adrien Marie Gaston, De Meeus Thierry. 2017. Comparison of different genetic distances to test isolation by distance between populations. Heredity, 119 : pp. 55-63.

Journal article ; Article de recherche ; Article de revue à facteur d'impact
[img] Version Online first - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
Séré et al 2017 Compairson of different genetic distances.pdf

Télécharger (738kB) | Request a copy
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (953kB) | Request a copy

Quartile : Q1, Sujet : ECOLOGY / Quartile : Q2, Sujet : GENETICS & HEREDITY / Quartile : Q2, Sujet : EVOLUTIONARY BIOLOGY

Abstract : Studying isolation by distance can provide useful demographic information. To analyze isolation by distance from molecular data, one can use some kind of genetic distance or coalescent simulations. Molecular markers can often display technical caveats, such as PCR-based amplification failures (null alleles, allelic dropouts). These problems can alter population parameter inferences that can be extracted from molecular data. In this simulation study, we analyze the behavior of different genetic distances in Island (null hypothesis) and stepping stone models displaying varying neighborhood sizes. Impact of null alleles of increasing frequency is also studied. In stepping stone models without null alleles, the best statistic to detect isolation by distance in most situations is the chord distance DCSE. Nevertheless, for markers with genetic diversities HS<0.4–0.5, all statistics tend to display the same statistical power. Marginal sub-populations behave as smaller neighborhoods. Metapopulations composed of small sub-population numbers thus display smaller neighborhood sizes. When null alleles are introduced, the power of detection of isolation by distance is significantly reduced and DCSE remains the most powerful genetic distance. We also show that the proportion of null allelic states interact with the slope of the regression of FST/(1−FST) as a function of geographic distance. This can have important consequences on inferences that can be made from such data. Nevertheless, Chapuis and Estoup's FreeNA correction for null alleles provides very good results in most situations. We finally use our conclusions for reanalyzing and reinterpreting some published data sets. (Résumé d'auteur)

Mots-clés Agrovoc : Génétique des populations, Distance génétique, Vecteur de maladie, Marqueur génétique, Distribution géographique, Isolement, Étude de cas, Modèle mathématique, Modèle de simulation, Ixodes ricinus, Cervus, Glossina tachinoides, Glossina palpalis, Leishmania, Contrôle de maladies

Mots-clés géographiques Agrovoc : Guyane française, Cameroun, Nouvelle-Calédonie, Europe, Burkina Faso, République démocratique du Congo

Mots-clés complémentaires : Leishmania guyanensis

Mots-clés libres : Genetic distance, Isolation by distance, Null alleles

Classification Agris : L72 - Pests of animals
L73 - Animal diseases
U10 - Computer science, mathematics and statistics

Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Sere Modou, CIRDES (BFA)
  • Belem Adrien Marie Gaston, UPB (BFA)
  • De Meeus Thierry, IRD (FRA)

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-06-09 ]