Lessons and challenges in land change modeling derived from synthesis of cross-case comparisons

Gilmore Pontius Jr Robert, Castella Jean-Christophe, De Nijs Ton, Duan Zengqiang, Fotsing Eric, Goldstein Noah, Kok Kasper, Koomen Eric, Lippitt Christopher D., McConnell William, Mohd Sood Alias, Pijanowski Bryan, Verburg P.H., Veldkamp Tom A.. 2018. Lessons and challenges in land change modeling derived from synthesis of cross-case comparisons. In : Trends in spatial analysis and modelling: Decision-support and planning strategies. Behnisch Martin (ed.), Gotthard Meinel (ed.). Cham : Springer International Publishing, pp. 143-164. (Geotechnologies and the environnement, 19) ISBN 978-3-319-52520-4

Book chapter
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
2018_Pontius_Lessons and Challenges in Land Change Modeling.pdf

Télécharger (993kB) | Request a copy

Abstract : This chapter presents the lessons and challenges in land change modeling that emerged from years of reflection and numerous panel discussions at scientific conferences concerning a collaborative cross-case comparison in which the authors have participated. We summarize the lessons as nine challenges grouped under three themes: mapping, modeling, and learning. The mapping challenges are: to prepare data appropriately, to select relevant resolutions, and to differentiate types of land change. The modeling challenges are: to separate calibration from validation, to predict small amounts of change, and to interpret the influence of quantity error. The learning challenges are: to use appropriate map comparison measurements, to learn about land change processes, and to collaborate openly. To quantify the pattern validation of predictions of change, we recommend that modelers report as a percentage of the spatial extent the following measurements: misses, hits, wrong hits and false alarms. The chapter explains why the lessons and challenges are essential for the future research agenda concerning land change modeling. (Résumé d'auteur)

Mots-clés Agrovoc : Environnement, Paysage, Utilisation des terres, Cartographie de l'occupation du sol, Méthode statistique, Modèle mathématique

Mots-clés libres : Land change model, Validation

Classification Agris : P01 - Nature conservation and land resources
U10 - Computer science, mathematics and statistics

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Gilmore Pontius Jr Robert, Clark University (USA)
  • Castella Jean-Christophe, CIRAD-PERSYST-UPR AIDA (LAO) ORCID: 0000-0003-3532-0728
  • De Nijs Ton, RIVM (NLD)
  • Duan Zengqiang, CAU [China Agricultural University] (CHN)
  • Fotsing Eric, Université de Dschang (CMR)
  • Goldstein Noah, Lawrence Livermore National Laboratory (USA)
  • Kok Kasper, Wageningen University (NLD)
  • Koomen Eric, Vrije Universiteit (NLD)
  • Lippitt Christopher D., University of New Mexico (USA)
  • McConnell William, MSU (USA)
  • Mohd Sood Alias, Universiti Putra Malaysia (MYS)
  • Pijanowski Bryan, Purdue University (USA)
  • Verburg P.H., Wageningen Agricultural University (NLD)
  • Veldkamp Tom A., Wageningen Agricultural University (NLD)

Autres liens de la publication

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-06-12 ]