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Abstract

PalmElit implements the genetic improvememtcemarketing prograra for CIRAD® oil palm seeds.
The commercial seeds embody 80 years of genetic improvement work undertaken by IRHO, CIRAD
and PalmeElit in conjunction witeveralpartners of excellence located on each of the continents
where oil palm is gnen. An increase of more than 60% in oil yields was achieved sinceTIt60.
result illustrates the efficiency of the recurrent ipocal selection (RR8hderlying the conducted
breeding programSo far.assessmenof parental breeding valudsaslargelyrelied on progeny
testing, which is @ efficient buttime- and moneyconsumingstep within the RRS schem#ith the
recent development of oil palm genomic resources, genomic sele(@&pppears as an attractive
strategy toincrease the efficiency afil palm breeding program©n a theoretical point of view, GS
has the potential to increase thate ofgenetic @in by shortening the breeding cycle and/or
increasing the selection intensity.

PalmElit, together with its research partner CIRAD dees bading researcfor nearly 10 years in
order to develop and assess the implementation of GS in oil palm breé&dinge of the key
achievements have been sharedth the scientific communitgince2015(Cros et al., 2015a, 2015b,
2017a; Marchal et al., 201@hich corroborate the potential of GS in terms of increased genetic gain
Further research is still ongoing to answer the simpld critical- question what is the optimal use

of GS in terms of genetic gaintime- and costefficiency? In this paperfollowing a brief reviewon

the GShistory and keyonceptswe present our latest results whickddress critical aspects such as
predictionaccuracy an@ptimal use of GS withinreedingschemesWe extend andliscuss our
conclusions itight ofthe literature available in oil palm armather crop species=inally, we

summarize the perspectives and challengesstarcessfuimplemertation of GS in oil palm.

Introduction
Pros and cons of the classical recurrent reciprocal selection

Oil palmvarietiestypically consists itenerahybrid crosses between heterotic group A (mostly Deli
origin, durapalmg and group B (mostly African origjpssiferapalmg. Selection and breeding
among the parental populations usually relies on progeny testing $iyloed performances might
not be accurately predicted based on parental performar(€sley and Tinker, 20154 order to
achieve arefficient and sustainenprovement of its commercial hybridBalmElit employs a



recurrent reciprocal selection (RR8ategy for both group A and B parental populatigBsiuudouin
et al., 1997)This strategy aims at improving the general combining abilities (GCA) of the parental
population along the successive breeding cydhess and cons dhe RRS in oil palimave ben
already debatedCorley and Tinker, 2015&ccording to Gallai&allais and Poly, 199@he main
advantages of recurrent selection are:

9 increasing the frequency of genes and associatfanaring thetype of variety to be

developed

1 enabling effeave recombination, hence highéffective multitrait breeding

1 preventing an overapid loss of variation, providedlis carried out correcyl

91 partially fixing heteosis

9 ensuringcontinuous, longerm progress

1 providing outputs directly applicable for vetal creation

When RRS is appliedoil palm, one breeding cycle extends over a long period of time (~20 years) in
contrast with some annual crops (e.g. 3 months in rice). Despite this long cycling time, a high genetic
gain rate has been achievethse 1960 (~+1%/year for yiel@QurandGasselin et al., 2010)

highlighting the potential of oil palm in terms of genetic improvement. The main limitation in terms

of cost and timeefficiency relates to estimation of the parental G&#l hybrid valuesince it

traditionally requires progeny testinfpr each parentThustechniques allowing faster and/or

cheaper GCAr hybrid valuesstimation could greatly improve oil palm breeding, including RRS.

New tools ofthe agrigenomics eramarker assisted selection argenomic selection

Asmoregenetic and genomic resourcbecome availabléor oil palm, new breeding tools become
available such as marker assisted selection (M&&wed for crops itCollard and Mackill, 2008n
MAS,molecular marker dataan be usedo predict phenotypés), based on known association
between thechosen markgs) andphenotypds). Marker-phenotype associations can be identified
using approaches such gsantitative trait loci QTL) mapping. In that case, markers linked with the
strongest QTk can be selectednd usedor predicting the associated phenotyp€his selection
method can be efficient provided that:

1 MAS is faster and/or cheaper than the conventional phenotypic screening

1 QTLsareaccuratey identified @ippropriate experimentatlesignto guarantee a high

detection power ando limit the risk of false positiveend of QTL effect overestimatign

linkage between markers and QTLs is strong

association betweemarkei(s)and the phenotypés)is conservedn the populationand the

environmentwhere the selection will bearried out

1 alimited number of)Tls accoungfor a sufficient part of thgphenotypicvariation(e.g. the
trait is essentiallynono- or oligagenic)

1
1

The latter point defines one major drawllaof the classical MAS stragegince many agronomic
traits arequantitative andthus likelyinfluenced by a large number of loci. Genomic selection (GS)
was developed as a specific casd#Sdesignedor quantitative traits(Meuwissen et al., 2001
genomic selection, individuals are genotyped over a dense set of gemodeemarkers that can
ideally account for all QTLs in the genomased on marker data, a genomic estimated breeding
value (GEBV, with BV and GCA generally linked by BV = 2*@®&)assigned to each genotyped
individual provided that the model was calibrated using an appropriate training set (TS) which
combines genotypic and phenotypic data for the trait(s) of interest.

GS was first developed and implemenfed cattle breeding ad haslater found its way toplant
breeding.Publication trends clearly illustrate the research expansion for GS in plsumts2009



(Figurel). Despite the amount of research conductadd the growing evidence for its potential in
hybrid breedingMarulanda et al., 2016; Zhao et al., 203actical implementation of GS has
remained limited to a few speci@scludingwheat, maizerye, pines cassava, anccently oil palm
(Cros et al., 2017a; Kwong et al., 2017)
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Figure 1: Publication trends for GS in plants. Publications trends were estimated by counting the number of publications in the
plant field that contains "genomic selection" in the title and are referenced on Google Scholar.

Potential of GS in oil palm breeding

As evoked earlielGScouldimprove many aspects of thal palm breedingrrograms

1 the estimation of the value of hybrid crosses which have not been phenotypethat
respect, GS can directly support the identification and selection of commerciadlhyb
with higher agronomic value

1 the estimation ofthe GCA of individuals among tgermplasmIn that case, GS can
assist the process of recombination within the germplasm to increase the geaéiie v
of the parental ppulation

9 the durationof the breeding gcle(reduction)by replacingpart of, or the entire
phenotyping process

1 the selection intensityincreasefor both hybrid crosses and parental populatidns
includingindividuals for whictonly genotypic datais available

In the following article, weeview thelatest results which address critical aspects such as prediction
accuracy and optimal use of GS within breeding schemes. We extend and discuss our conclusions in
light of the literature available in oil palm and other crop species. Finallyumensirize the

perspectives and challenges for successful implementation of GS in oil palm.



Current status for GS in oil palm
From classical breeding tgenomic selection at PalmElit: past, present, and future

In the past for CIRAD® germplas@®CA estimabn wasbased orappropriate statistical analysis of
genetic trials withcomplexexperimental designs (e.g. incomplete and unbalanced factorial designs).
Lately, we implemented a pedigrdmsed bst linear unbiased prediction {BLUP) approach to

improve farental GCA estimation in the context of these complex genetic trial designs. By borrowing
information from the pedigree (under the form of a kinship ngtr pedigreebasedBLURcould also
estimate GCAof individualswhich are not tested but are related progenytested individualgP-
BLUPFigure 2AB). This example illustrates how appropriate statistics can estimate GCA of untested
individuals, provided that a suitable trainisgt(TS is available for calibrating the model.

Study on seven yield components indicated that GCA prediction accuracy t+BingH3

intermediate tohigh depending on the trait and the heterotic group considefreahging from 0.2 to
0.82, Table 1Cros et al.20179. However, this approach requireaccurate knowledge of the
germplasm pedigreéCorley and Tinker, 2015ahd cannot account for Mendelian sampling. This is
illustrated by the fact that pedigree informatiarannotdiscriminate individuals within fuslib

families although these have distingenotypes as a result of Mendelian segregatieigure 2AB).
Thus, FBBLUPbased GCA estimation is not suitable for idimenily selectionTo overcome this
limitation, wedecided to test whether GS could perform better thaBBEURFigure 2)For genome
based predictions, we used a similar BLUP model, that we destjastéBLUPThe GBLUP method
was successfully applied for hybrid predictiovamious species, includingaize, soybean, rice,
triticale and sunflowe(Zhao et al., 2015Moreover, a previous study of Cros et al. indicated that
this modelperforms similarly to several other tested models when applied on empirical oil palm data
(Cros et al., 2015a)
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Figure 2: Comparison of GCA calculation methods based on a simple case.

The general model used for GCA prediction can be written as follows:
9 81 aAOa+Zds+ ZpSaz+ €

whereY is the vector of the phenotypes of the hybrid individuglgndb are the vectors of fixed
and random effects due to the experimental design, respectivelndZ their associated incidence
matrices,ga andgg are the vectors of GCgadditive effectspf A and B parentgespectivelysag is
the vector of SCAdominance effectsdpf crossesZa, Zs andZp their incidence matrices andis the
vector of residual effectCovariance definition for GCAs defines the main difference between P
BLUP and BLUP. For-BLUP, the covariancedsrived from genealogicaélationships (pedigree
information) whereas for @BLUP, it is derived from genomic relationships (marker data).

A training se{TS)orresponding to ~500 crosses from 150 A parents and 156 B parents grown in one
site in Indonesia was used to predict vadder a validation sefvS)f ~200 crosses from 67 A

parents and 42 B parents grown in another location in Indonesia (for detail§rsseet al., 2017ja

The parents of botA'S and VS were genotyped using genotypiyrgequencing (GBS) which

produced >B00 high quality SNPs suitable for. Gl&e hybrid crosses were phenotyped but not



genotyped.Comparison of the prediction accuracies betweeBIRJP and BLURndicatedthat G
BLUP can perform better thanBLUP depending on the group and the trait (Tdbénd Figure 3).
This observation holds true for parental GCA and hybrid value predigt@nbest improvement was
obtained for FFB.
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Figure 3: Correlation between P-BLUP and G-BLUP prediction accuracies. The plots are based on the same data as shown in
Table 1.

Table 1: Accuracy of P-BLUP and G-BLUP for yield components in the study of Cros et al. 2017a

Prediction accuracy across populations (sites)

Hybrid value GCA Group A GCA Group B
Yield component P-BLUP G-BLUP P-BLUP G-BLUP P-BLUP G-BLUP
FFB 0.37 0.66 0.22 0.30 0.40 0.77
BN 0.73 0.78 0.62 0.69 0.82 0.85
ABW 0.71 0.73 0.66 0.73 0.79 0.79
FB 0.37 0.33 0.39 0.48 0.45 0.34
PF 0.28 0.27 0.26 0.21 0.36 0.29
OoP 0.55 0.65 0.32 0.16 0.60 0.67
OER 0.52 0.53 0.45 0.43 0.69 0.67

FFB: annual cumulative fresh fruit bunch, in kg

BN: annual cumulative bunch number

ABW: annual average bunch weight, in kg

FB: fruit-to-bunch ratio, in kg

PF: pulp-to-fruit ratio, in %

OP: oil-to-pulp ratio, in %

OER: oil extraction rate, in %

For G-BLUP, the accuracy corresponds to the accuracy obtained with the maximum number of SNPs
Bold: G-BLUP prediction accuracy higher than P-BLUP

A simulation study was performed to assess the potential gain when empl@8ras a preselection

step on FFB within the classical RRS scheme (Figure 4). For example, FFB in the top 100 hybrid crosses
could be increased by ~11% when applying the preselection on a breeding population of 5000 A and
5000 B palms This example demoas#s that a simple preselection step using GS can already greatly
improve the genetic gain in commercial hybrids.
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Figure 4: Representation of the simulation design used to estimate the genetic gain of genomic preselection on FBB (B)
compared to a classical RRS scheme (A). The analysis is described in Cros et al. 2017a

Overview of the researcpublished byother entities

Until now,very few studies have begiublished on GS applied to oil palm. We briefly summarize
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2015b, 2017a; Marchal et al., 2016)

The first publication on GS in oil palm was presented by VdodgBernardd\Wong and Bernardo,
2008) This work wasonducted in associationwith Applied Agricultural Resources Sdn. Bhd (AAR).
Based on simulated data for a small oil pglanentalpopulationderived from a single crosg/ong
and Bernardo demonstratkthe potential ofgenomicselection compared to phenotypic selection
and QTlLbasedmarkerassisted selectiorhe study alsprovidedthe first estimates of gain
depending on parameters such as the size of the breeding population, the number of repidation
phenotypic assaysindthe heritability of the traf. Thecost per unit gain anthe time per unit gain
were calculated to assethe efficiency of each breeding strategies conducted oveB8Yyears
(corresponding to 2 cycles of classical phenotygledion or 4 cycles of markeassisted ogenomic
selection).The improvemenbbtained withGS(up to +25% in tl response to selection with a
population size N=7@&ndcost per unit gain reduced by at least 26% compared to phenotypic
selection)was mairy attributed to the shorter generatiotime when selectiorwas based solely on
genotypic data (6 yeanrs 19 years for a traditional selection cycl&his analysis alsuggestshat
increasng the number oparentalpalmstestedcould bemore efficient han increasing the number
of replication in field tests. However, since this study was conducted with simulated data under
specift assumptionghe resultsneed to be validated with empirical data

A recent study by Sime Darby reported interesting results related tantipdementaion of GS for
earlyselection amongommerciahybrid populationgKwong et al., 2017,218 commercial hybrids
were genotyped and phenotyped for 6 production traits witirying heritability The GS strategy



appliedwas to usepart of the hybrid population as TS to predict the value of the other part (=VS).
This study mainly focused on optimigithemarker set and statistical methdd maximiz the
prediction accuracyhile reducing the number of markers (potentially leading to reduced
genotyping costs)The resuls of Kwong et al. are further discussed below.

Implementation and optimization of GS in oil palm
Considerations for optimizing the use of GS

Several studieprovide evidence fothe efficiency ofjenomic predition for increasing the gain in
agronomic traits€.g. in oil palmCros efal., 2017a; Kwong et al., 201 till, there is a large gap
between the experimentadtudiesand GS routine implementation in breedirgveral facts can
explain such discrepancy

9 Additional costs due to genotypimgight render the method less profitahl&@hus, GS
implementation implies an accurate estimationkmfth gainper timeandgain per osts

1 Optimal useof GS could require profound changes in breeding scheme, witan impact

on the traditional breeding practices.

GS might nobe the most optimal selection method for all agronomic traits.

Commercialization of planting material selectalely on the basis of its genomic estimated

valuemight be problematic due to the absence of phenotypic records to demonstrate its real

agronomical valuand check secondary traits which have not been selected for.

=a =

Many studies have focused on deternmgithe optimal parameters for maximizing the gain while
fewer also included cost consideratiofesg.Rajsic et aJ.2016; Wong and Bernardo, 2Q08&igure 5
summarizesome of themain parametes which affect GS gain and costire of which will be
further discussed below.
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Figure 5: Parameters affecting the gain and cost of GS. Parameters affecting the gain and cost are indicated in brown and cyan
respectively. The link between cost and the indicated parameters is direct and given by the formula indicating the total cost for
both phenotyping (left) and genotyping (right). The link between the design parameters and the gain (response to selection) is
indirect with nse; and ng affecting i, and nearly all design parameters affecting the prediction accuracy r. Omitted here is the
generation time, which impacts the gain rate and can be reduced by skipping part or all of the longest phenotyping assays.

x Key parameters for gain maxization

As shown in the formula used to estimate the response to selection (Figure 5), i (selection intensity)
andr (selectiont OOdzN} Od v | NB (1Se& LI NF¥YSGSNE 6KAOK Ol y
mainly an intrinsic genetic feature of the traihder selection within the considered breeding
population. Overall, increasing the size and diversity within the breeding population, and increasing
the prediction accuracpositively contribute to the GS efficiency. The gain rate could also be
increased g shortening the generation time, which would imply to decrease the timetspen
phenotypic testse.g. byimplemening progeny testsat lower frequency throughout theycles

x  Cost minimization
It has been a general concern among breeders that GS wmrebisethe breeding costsSuch
concern should however be allayed by several facts:

1 Genotyping costs remains much smattempared tophenotyping costs, and both
technological progress and increaslagor costs will contribute to widen the gap
betweenthem in the future. To illustrate suchifference, progeny testing iane of our
on-going standard genetic trial in Nigeria co840022,01 n € LISNJ LI} NBy i | f

(@]

(s}

LJk

t



genotyping cost will likely be beloB0e k LJ- f Yarg&sgaimplementationanda
reasonable number of SNRPsxamples oturrent estimates are50-60e k LJ- £ ¥ o0& D. {
and~2000 nnek LI fY 6AGK GKS htonnY {btOd ¢Kdza> S
6onnetv FyR GKS f2¢gSad LKSy2G8LIAy3 02adGa 6cz
costs aysbelow 1/20.

I The cost increase related to GS can be compensated by a decrease in the cost of the
phenotypic assay$:or example, a similar selection accuracy could be achieved using a
smalle but better designed training s€Rincent et al., 2017; Wolft al., 2017)

1 Considering the current genotyping costs per individymlying GSfor direct selectiorin
commercial hybrid seems not economically viabimless the selected hybrids can
provide a sufficient return on investment (e.g. by cloning thdtriy possible to focus the
genotyping efforton the parental palms, allowing both parent and hybrid prediction,
while reducing the genotyping codiSros et al., 2015a, 2015b, 2017a; Marchal et al.,
2016)compared to strategies where hybrid individuals atso genotype@wong et al.,
2017)

x In silicobreeding approackor GS design optimization

Based on thesamescheme desribed in kgure 5,which illustrates a simple use of GS lioeeding
within a parental populationwe tested the impact of severahpameters on costs angeneticgain.
The analysis design is described in Figure 6 and the results in Figure 7.
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Ngy = 25 p'r=c*r*n,*p,=6400 - 22000 € = phenotyping costs per parental palm

p'g =m* pg =50 - 300 € = genotyping costs per palm
i, is directly derived from n,
rylr;= 0.8 - 1.8 (estimation derived from Cros et al. 2017)

Figure 6: Design used to test the influence of several parameters on GS gain and cost. Parameters with a unique fixed value are
indicated in brown. Parameters with variable values are indicated in cyan, the range allowed is delimited by extreme values
estimated based on empirical data. Parameters which are not included are in grey. Parental palm selection without GS
(Scenario 1) consists in progeny-testing nrs=100 parent palms and selecting the top nse=25 palms. Parental palm selection with
GS (Scenario 2) consists in progeny-testing nrs=100 parent palms, estimating breeding values for no breeding palms including
the training set after having all of them genotyped, and selecting the top nse=25 palms. C: number of crosses per tested palm. r:
number of replicates for each tested cross. n.: number of palms tested per cross. pp: phenotyping cost per hybrid palm in the

field. m: number of markers.pg; cost per marylkaadg ghdéotygpingand genbtypingcosts per breeding palm
respectively. i: selection intensity. r: selection accuracy.
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Figure 7: Influence of several parameters on GS gain and cost. The parameters tested are described in Figure 6: increase in
response to GS as compared to phenotypic selection ((R.-R1)/R1), genomic vs phenotypic selection accuracy ratio (ry/ry),
phenotypingandgenot y pi ng costs pep@nlhlyrgsgedtively)yangsizé ahthe(bpeéding population (ng) A.
Additional genetic gain when using GS as compared to selection based on traditional progeny testing for different accuracy
ratios between GS and the traditional method, and depending on the population size. B. Increase in costs depending on the
population size, phenotyping costs, and genotyping costs. C. Cost and gain increment when increasing the population size,
depending on the accuracy ratio, phenotyping costs, and genotyping costs. D. Increase in genetic gain per total cost, depending
on the population size, phenotyping and genotyping costs, and the accuracy ratio.



This analysis suggests that:

1 Even with a lower accuracy, the response obtained with GS will in most paseisi¢d that
Ny is largeenough) ouperform that of traditional selection (Figui).

1 The cost increase (due to genotyping) remains low compared to the traditionall¢ostis
due tothe low genotyping/phenotyping cost ratiddoreover, the genotyping costsould be
compensated by further decreasing the phenotyping costs [esg.fequentphenotypic
tests or decreasing the number of replicajgd-igure 7B).

1 When the size of the genotyped population increases, the gain increasesearlywhile
the cost increasglinearly.Thus, thesffect on the response aidding more palm#o the test
populationis lowabove 1000 individualshile the genotyping cost increment remains
constant(Figure 7C)

1 Consistent witlthe point above, the increase nesponse per cost peaks for a fixed
population size, which depends on the genotyping @henotyping costs (Figure 7D).

Reduction of the genotyping costs

Since GS requires dense markatrfow costsand genomic resources are now available, SNP markers
are now favored over other marker types such as SS&rfar, @ploratory studies in opalm

employed SNP genotyping techniques which provide very large numbers of SNPs at relatively high
costs (several thousand SNPs, f680-6 1 n € k Wlliclh arekealisticestimates for the genotyping
costswith GBS in Cros et a2017a andwith the OP300KSNParray in Kwong et al2017,

respectively. It has been proposed that reducing the number of SNPs used in GS could contribute to
reduce the costdHowever, this strategy has downsides:

1 Reducig the marker number results in th@redictionbeinginfluenced more byrealized
relatednesgather than byQTL effects, thereby decraag the advantage compared to
pedigreebased predictior{Jannink et al., 2010)

1 Although approaches have been proposed to define the optimal maedsand these
sometimes even impvethe prediction accuracy compared predictionusing all available
markers(Cros et al., 2017a; Kwong et al., 201§ defined marker sets ar&ait-specific
andthus, not necessarily optimal fonulti-trait breeding.

In addition to marker number, other technical aspects of genotyping carpbimized For example,
adapting the genotyping technigue depending on the number of marked samplesand
minimizingthe laborintensive stepsn sample collection and handling

Optimization of the GS accuracy

As illustrated irFigure 7 prediction accuracy is a key factor for GS efficiemby. prediction accuracy
reflects how well the model deduced from the training set can predict the genotypic and/or
phenotypic value of théested populationMany factors can affect the accuracy. A brief overview is
given below.



x  Selected trait

Many studies have already highlighted the influence of the trait genetic architecture on GS accuracy.
Critical parameters are for examplthe QTlnumber, the heritability, the respective proportion of
genetic additivity, dominance and epistasitieoretically, the accuracy positively correlates with
heritability and this has already been confirmed in oil péwong et al., 2013s well as in other
speciegCovarrubiag’azaran, 2016; Duangjit et al., 2016; Wolfe et al., 204d{litive effects are

easier to estimate compared to dominant and epistatic eeBecause the part of additivity is

generally larger in hybrids, models based soleladdiitivity can perform well (reviewed iéhao et

al., 2015. In oil palm, this general principle seems to hold true for several yield (its et al.,

2017a; Kwong et al., 2017; Marchal et al., 2016)

x  Trainingset

Besides the quality of both genoty@ad phenotypic dat, the training set design represents a
critical factor.The training set combines phenotypic and genotypic data in order to calibrate the
model used for prediction. Ideally, the training set should be large and cover all the genetsitgiv
present in the test population in an unbiased man(tepic reviewed irzhao et al., 2005 This
implies that the relatedness between the training set and the test population muashighas
possible(Cros et al., 2015a; Zhao et al., 20@bjle population structure must remain low
(exemplifiedin Duangjit et al., 2016As a consequencgehe training set needs updating along the
breeding cyles.Since compliance with tise rules can prove difficult when dealing with typical
breeding populations, some methods have been proposed to optimize the training set design
(Rincent et al., 2017; Wolfe et al., 201F)r breeding companies, a good knowledge of the history
and genetic®f the breeding population can significaniypportthe training set design.

x  Statistical models

A range of statistical methods are available for GS and their efficiency has been already compared in
several studie¢Covarrubiag?azaran, 2016; Cros et,&015a; Heslot et al., 2012; Jannink et al.,
2010; Kwong et al., 2017; Zhao et al., 20Irbjnany caseshe modelsdisplaysimilar performances.
On a theoretical point of view, some models might be better suited than others depending on the
genetic arcitecture of the trait considred. Some 8yesian models, for example, can potentially
better account for traits which are affected by QTLs with vargiifect variancege.g. a few QTLs

with largevarianceand many with smallevariancg, contrary to BLURhich assumes equal effect
variance for all QTLSo far, we have privileged the use eBGUP model (which is analogous to rr
BLUP) implemented in ASR@&dince this model hagroven its robustness and efficiency for a
diversity of trait and specig€ovarubiasPazaran, 2016; Heslot et al., 2012; Jannink et al., 2010;
Zhao et al., 2015)ncluding yield traits in oil palfCros et al., 2015a, 2017a)

At the instar ofFFBBN and ABW in oil palm (Figurd, Tisné et al., 200)5agronomic traits are

often correlated. This implies thamdependentselectionon each correlated trainight not yield the

best results. Multivariate GS, together with index selection, has the potential to overcome this issue.
Multivariate GS cafor exampleincrease the acaacy as shown for BN and ABW in oil péiharchal

et al., 2016)

x  Genotypic data
When many markers are available (e.g. several thousand), using all of them can decrease the
accuracy and heritabilityA similar result isbtained with too few marker§Croset al., 2017a; Kwong



et al., 2017) The optimal marker number and density is determined by factors such as relatedness,
effective population sizeand genetic diversitgJannink et al., 2010; Zhao et al., 2015)

Several studieassessed the impact afarker selectiorbased on criteria such #ise marker
distribution, LDandassociation withthe trait. For example, Kwong et al. showed that marker
selection based on association and LD can lead to improved ac¢irsopng et al., 20170ne
drawback of his strategy, however, is that the marker set defined is taiid populationspecific.

The quality of the genotypic data can affect the prediction accuracy. For example, missimg data
undesirablethough imputing cartompensate for itespecially whensing pedigree datéCros et al.,
2017a) In that respect, genotyping techniquesich yieldhigh-quality dataat low missing rates
should be privileged
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Figure 8 : Heritability and correlations for BN, ABW and FFB depending on the population considered. Figure extracted from
Tisné et al., 2015. A. Phenotypic correlations (rp) and genotypic correlations in heterotic groups A (rga) and B (rgs) between FFB,
BN and ABW. B. Relationship between average bunch weight (ABW) and bunch number (BN) in a A x B population. The grey
scale indicates the density of points with similar BN and ABW values. Isoproduction curves are drawn with corresponding FFB
values given on the right of the curves. C. Narrow sense heritability (h?) for the three production traits, i.e. FFB, BN, and ABW
estimated from A x B individuals.

Integrating GS within effective breeding schemes

How to optimally integrate GS within the selection scheme is a#tangling questionin the context

of a breeding program, where resources are limitethlementingGSwithout any cost increase

implies a resource reallocatiorew published studies report investigations on strategies to apply GS
for hybrid breedingdEndeinan et al., 2014; Longin et al., 2015; Lorenz, 2013; Marulanda et al., 2016;
Riedelsheimer and Melchinger, 2018} leastthree types of scenarios can leavisaged: within
population GS, across population GS, and across generation GS. A comparisdghretteeenarios

was performed in cassayevhich highlights the tradeoff between selection accuracy and distance
between training set and test populatigivolfe et al., 2017)

In oil palm,Cros et al. showed thiaterest ofaddingGSas awithin populationpre-selection stefo

the conventional RREros et al., 2017aJhough more dicientin terms of genetic gaithan

classical RRS, the generation time in itisnariodoes not dereasecompared to RRS. In a more
recentsimulationstudy,Qos et al. assessed the gdor FFBn breeding strategies where the

training set is updated onlgverysecond or third generation, and includes indivéls from one or

two generations (Figure @ros et al., 20179bAs expected, the selection accuracy and gain decreases
with the number of generationbetween GSelection candidates ardaining set(Figure 10)In this
simulation, updating the training set every second cycle by progeny testing and aggregation of data



from two cycles performed best (Figure 10B). Thins generation time can be dramatically
shortened every second cyckhich compensates for the slight decreaseiadiction accuracy.

This scheme can certairie further improved, since many other paratees can be modulad to
improve theoverall efficiency. The most promising strategies can then be implemented in the field to
determine their actual performance.
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GS: genomic selection.
In the « within-cycle GS », 120 selection candidates were progeny tested. In the « across-cycle GS », no candidate was progeny tested.

Tr2Gen: GS model trained on the aggregated data of two cycles, TrlGen: GS model trained on the data of one cycle

D training set for GS models (note that the only phenotyped individuals are the hybrids) .- number of selection candidates
o

C1, C2, C3, C4: breeding cycles (with C1 starting with parental generation 0) (250 per population and cycle)

Figure 9: Comparison of breeding strategies involving a training set based on generation (Tr1Gen) or two successive
generations (Tr2Gen) and updated every second (PT-noPT) or third generation (2PT-2noPT). 18 individuals were selected
within each population at each cycle. Figure from Cros et al., 2017b.



Figure 10: Selection accuracy for BN in group B (A) and genetic gain for FFB (B) for the breeding schemes described in Figure
9. The breeding population size was fixed to 250 individuals per population and cycle. 18 individuals were selected within each
population at each cycle. Data for Tr1Gen and Tr2Gen are presented in light grey and dark grey respectively. Figure from Cros
etal., 2017h.

Conclusion and discussion
Concluding remarks

Similar to what was already shown in other hybrid species (Zhao et al., 2015), GS has the potential to
increase the breeding efficiency in oil palm. Simple strategies such as the ones described above could
significantly increase the genetic progress in oil palm. Using GS as a pre-selection step can already
increase the FFB by 11% over one RRS cycle compared to traditional phenotypic selection (Figure 4,
Cros et al., 2017a). Similar to what was observed in black spruce and maritime pine (Bartholomé et
al., 2016; Lenz et al., 2017), the selection accuracy is not significantly increased with GS as compared
to pedigree-based selection for some agronomic traits (Cros et al., 2017a). For these, a higher gain
can only be obtained if GS is associated with a reduction in the generation time and/or an increased
selection intensity. So far, oil palm studies have focused on GS for yield traits. However, as suggested
by a study in wheat, GS could also be efficient with other traits such as disease resistance (Juliana et
al., 2017). This needs to be tested in the future.

Since genotyping generates additional costs, resource reallocation (i.e. by minimizing progeny testing)
might be necessary to compensate for those, as proposed in Figure 9. For this, we also concentrate
the genotyping effort on the breeding population, thus limiting the number of individuals to genotype,
while the value of commercial hybrids (not genotyped) can be accurately predicted based the parentsd
genetic value. From our own data, we note that the cost of progeny-testing one individual is far above
its genotyping cost, and the gap is expected to widen in the future as the genotyping costs are
gradually decreasing. The optimal strategy is difficult to determine since many parameters need to be
taken into account. Some of them are illustrated in Figure 6. Thus, GS will likely be implemented
differently depending on the economic and technical constraints applying to the oil palm breeding
companies.



