Ginning: a way of measuring its specific impact on fiber quality

Jean-Paul Gourlot*, Mamadou Togola**, Eric Gozé*, Bruno Bachelier*, Massa Coulibaly***, and Abdoul Karim Traoré****

CIRAD (France), ** CERFITEX (Mali), ***University of Bamako (Mali), ****IER (Mali)

International Cotton Conference, Bremen, March 2018
Seed-cotton collection => bales

Productivity & Quality depend on
Production conditions (variety, sowing date, crop management, crop protection, pests, diseases, weeds, soil, climate...)
Seed-cotton collection => bales

Productivity & Quality depend on
Production conditions + market organization...

Community seed cotton market

Grower 1
Grower 2
Grower n

Community seed cotton market

Grower A
Grower B
Grower X

Community seed cotton market

Grower I
Grower II

Introduction
Objectives
M & Ms
Results
Conclusion
Perspectives
Seed-cotton collection => bales

Productivity & Quality depend on
Production conditions + market organization + ginning conditions...

Community seed cotton market

Grower 1
Grower 2
Grower n

Community seed cotton market
Grower A
Grower B
Grower X

Community seed cotton market
Grower I
Grower II

Introduction
Objectives
M & Ms
Results
Conclusion Perspectives
Seed-cotton collection => bales

Productivity & Quality depend on
Production conditions + market organization + ginning conditions + characterization conditions

Community seed cotton market

Grower 1
Grower 2
Grower n

Community seed cotton market
Grower A
Grower B
Grower X

Community seed cotton market
Grower I
Grower II

Productivity & Quality depend on
Production conditions + market organization + ginning conditions + characterization conditions

Introduction
Objectives
M & Ms
Results
Conclusion
Perspectives

Source: www.intracen.org
Fiber quality: multi-scale interaction

Bale lots made up according to fiber quality to satisfy a specific requirement of buyers in the textile processing industry

Fiber quality: multi-scale interaction

Seed-cotton production and marketing

FIBRE ‘quality’

Ginning

Fiber quality characterization

Bale lots made up according to fiber quality to satisfy a specific requirement of buyers in the textile processing industry

Characterization:
- Provides an overall view
- Results of an interaction

How to measure the specific impact of one source of variability on fiber quality?
Classing characterization results

Ginning mills: O: D Δ: E +: G X: I

<table>
<thead>
<tr>
<th>UHML (mm)</th>
<th>Rd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction

Objectives

Results

Conclusion

Perspectives

We will use this chart later again
Ginning process: how to measure its specific impact on fiber quality?

Management and scientific issues:

• How to trace the ginning process from fiber characterization results (collected on fiber samples)?

• How varies the ginning impact over time?

• What is the impact of each ginning step in the process?

• How to limit negative ginning impacts at acceptable levels?
Material and methods: Ginning main sequences

Source: www.intracen.org

Material flow

Seed-cotton (SC) truck/module → Seed-cotton cleaners → Gin stand 1 → Gin stand 2 → Gin stand n → Lint cleaner 1 → Lint cleaner 2 → Lint cleaner n → Bales

Module feeder or telescope → Cleaner → Cleaner → Cleaner → Gin stand → Lint cleaning → Fibres → Bale press

Source: www.intracen.org
Material and methods: Experiment 1

Industrial ginning mills A to M, on various given dates

Material flow

Seed-cotton (SC) truck/module → Seed-cotton cleaners → Gin stand 1, Gin stand 2, Gin stand n → Lint cleaner 1, Lint cleaner 2, Lint cleaner n → Bales

Micro-ginning in randomized order (include controls)

Seed-cotton (SC) fed by handfuls → homogenization → micro-ginning → Micro-gin R → $F_{out}(SC_{in})$

Samples at each of n consecutives bales for each date

Characterization in two randomized blocks (including controls)

Introduction
Objectives
M & Ms
Results
Conclusion Perspectives

Togola M. et al. (2017). Feasibility study: A new way to check the stability of industrial ginning along the season, TRJ
Material and methods: Experiment 1

- **Material flow**
 - Seed-cotton (SC) truck/module → Seed-cotton cleaners → Gin stand 1 → Gin stand 2 → Gin stand n → Lint cleaner 1 → Lint cleaner 2 → Lint cleaner n → Bales

- **Length, color and trash parameters measured by SITC**
 - Micro-ginning in randomized order (include controls)
 - Seed-cotton fed by handfuls → micro-ginning → homogenization

- **Samples at each of n consecutives bales for each date**
 - Characterization in two randomized blocks (including controls)

Introduction

Objectives

M & Ms

Results

Conclusion

Perspectives

* Togola M. et al. (2017). Feasibility study: A new way to check the stability of industrial ginning along the season, TRJ

*SC*_{in}
Results: Experiment 1

Industrial ginning mill G

Solid line = F_{out}
Dashed line = $F_{out}(SC_{in})$

Togola M. et al. (2017). Feasibility study: A new way to check the stability of industrial ginning along the season, TRJ
Results: Experiment 1

\[\Delta = F_{\text{out}}(SC_{\text{in}}) - F_{\text{out \: in \: Rd}} (\%) \]

Industrial ginning mill G

Togola M. et al. (2017). Feasibility study: A new way to check the stability of industrial ginning along the season, TRJ
Global impact demonstrated.

Coming from which ginning stage: SC cleaning? Ginning? Lint-cleaning?

\[\Delta = F_{out(SC_{in})} - F_{out \ in \ Rd \ (%)} \]
Material and methods: Experiment 2

Industrial ginning mills D, E, G, I on various given dates

Material flow

Seed-cotton (SC) truck/module

Seed-cotton cleaners

Gin stand 1
Gin stand 2
Gin stand n

Lint cleaner 1
Lint cleaner 2
Lint cleaner n

Bales

Samples at each of n consecutives bales for each date

Material and methods: Experiment 2

Micro-ginning in randomized order (include controls)

Seed-cotton (SC) truck/module

Seed-cotton (SC) fed by handfuls

Micro-gin R

Characterization in two randomized blocks (including controls)

Seed-cotton (SC) truck/module

Seed-cotton (SC) fed by handfuls

Micro-gin R

References:

Togola M. et al. (2017). PhD and paper under preparation for TRJ
Material and methods: calculations of quality Δs

Material flow

Seed-cotton (SC) truck/module

Seed-cotton cleaners

Gin stand 1

Gin stand 2

Gin stand n

Lint cleaner 1

Lint cleaner 2

Lint cleaner n

Bales

S_{cin}

S_{cout}

F_{out}

F_{in}

$F_{out}(SC_{in})$

$F_{out}(SC_{out})$

Δ_1

Δ_2

(Δ_3)

$(\Delta_5 = \Delta_2 + \Delta_3)$

$\Delta_4 = \Delta_1 + \Delta_2$

$(\Delta_6 = \Delta_1 + \Delta_2 + \Delta_3) = \Delta$ of Experiment 1
Results: Experiment 2

Industrial ginning mill D

Delta1: $SC_{out} - SC_{in}$
Delta2: $F_{in} - SC_{out}$
Delta4: $F_{in} - SC_{in}$
Results: Experiment 2
Results: Experiment 2

Industrial ginning mill G

Delta Rd% vs Delta

Delta1: $S_{out} - S_{in}$
Delta2: $F_{in} - S_{out}$
Delta3: $F_{out} - F_{in}$
Delta6: $F_{out} - S_{in}$

Introduction Objectives Results Conclusion

Perspectives
Results: Experiment 2

Industrial ginning mill G, 13/01/2015

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd%</td>
<td>76.1</td>
<td>75.2</td>
<td>74.6</td>
<td>76.2</td>
</tr>
<tr>
<td>+b</td>
<td>11.3</td>
<td>11.2</td>
<td>10.9</td>
<td>10.8</td>
</tr>
<tr>
<td>SqrTrArea</td>
<td>0.54</td>
<td>0.45</td>
<td>0.70</td>
<td>0.45</td>
</tr>
<tr>
<td>SqrTrCnt</td>
<td>4.66</td>
<td>4.05</td>
<td>6.14</td>
<td>4.85</td>
</tr>
</tbody>
</table>

Introduction

Objectives

Results

M & Ms

Conclusion

Perspectives
Results: Experiment 2

Industrial ginning mill G, 09/03/2015

<table>
<thead>
<tr>
<th></th>
<th>F_out(SC_in)</th>
<th>F_out(SC_out)</th>
<th>F_in</th>
<th>F_out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd%:</td>
<td>73.4</td>
<td>75.2</td>
<td>73.7</td>
<td>75.6</td>
</tr>
<tr>
<td>+b:</td>
<td>11.0</td>
<td>11.5</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>SqrTrArea:</td>
<td>0.64</td>
<td>0.47</td>
<td>0.68</td>
<td>0.41</td>
</tr>
<tr>
<td>SqrTrCnt:</td>
<td>5.27</td>
<td>4.40</td>
<td>5.57</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Seed-cotton cleaning

Ginning

Lint cleaning
Results: Experiment 2

Results as they come from the classing office for Rd

Industrial ginning mill G, 09/03/2015

Is there anything special here (significant) … compared to here (non significant)
Experiments conducted in industrial conditions:

- Sampling done on-line
- Micro-ginning and testing were done off-line

⇒ Delays not allowing fast maintenance actions

Would require automated sampling and testing stations

- For lint, already exists (not all characteristics)
- For SC samples: including ginning tool in addition
Application of sampling and testing stations

A) Seed-cotton cleaning \rightarrow Seed-cotton \rightarrow Tested gin line 1 \rightarrow Tested gin line 2 \rightarrow Tested gin line n \rightarrow Micro-ginning \rightarrow LC 1 \rightarrow LC 2 \rightarrow LC n \rightarrow F_out

- Sampling and testing station
- Material flows
- Optional material flows
- Chosen at purpose

Introduction
Objectives
M & Ms
Results
Conclusion Perspectives

Page 25
Application of sampling and testing stations

A) Seed-cotton cleaning → \(SC_{out} \)

B) Seed-cotton cleaning → \(SC_{out} \)

Material flows:
- Tested gin line 1
- Tested gin line 2
- Tested gin line \(n \)
- Micro-ginning
- LC 1
- LC 2
- LC \(n \)

Sampling and testing station

Material flows

Optional material flows

* Chosen at purpose
Application of sampling and testing stations

A) Seed-cotton cleaning → SC_{out}
 SC_{in} → Tested gin line 1 → LC 1
 Tested gin line 2 → LC 2
 Tested gin line n → LC n
 Micro-ginning

B) Seed-cotton cleaning → SC_{out}
 SC_{in} → Tested gin line 1 → LC 1
 Tested gin line 2 → LC 2
 Ref. gin line n* → LC n

C) Seed-cotton cleaning → SC_{out}
 SC_{in} → Ref. gin line 1*
 Gin line 2
 Tested gin line n*
 LC 1
 LC 2
 LC n
 Sequential tests

- Sampling and testing station
- Material flows
- Optional material flows
- Chosen at purpose

Introduction
Objectives
M & Ms
Results
Conclusion Perspectives
Use of sampling and testing stations
Example of logic diagram to establish an on-line diagnosis

- Ginning stage (process)
 - Samplings + characterizations
 - Contextualized results (modules, time, ginning stage, sample ID...)

- Deltas (1 to 6)
 - Load set of limits for each Delta
 - Comparison of Deltas to limits

- Display list of possible corrective actions
 - no

- Comparison of Deltas to limits
 - no
 - Deltas within limits?
 - yes
 - Display « Conform »
 - no
 - Set of limits 1

- Set of limits 1
 - no
 - SC in trashy?
 - yes
 - Display list of possible corrective actions
 - no
 - Display « Conform »
Ginning: a way of measuring its specific impact on fiber quality

Jean-Paul Gourlot, Mamadou Togola, Eric Gozé, Bruno Bachelier, Massa Coulibaly, and Abdoul Karim Traoré

Thank you for your attention

International Cotton Conference, Bremen, March 2018