Agritrop
Accueil

An a posteriori species clustering for quantifying the effects of species interactions on ecosystem functioning

Jaillard Benoît, Richon Camille, Deleporte Philippe, Loreau Michel, Violle Cyrille. 2018. An a posteriori species clustering for quantifying the effects of species interactions on ecosystem functioning. Methods in Ecology and Evolution, 9 (3) : 704-715.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Jaillard_et_al-2018-Methods_in_Ecology_and_Evolution.pdf

Télécharger (1MB) | Demander une copie

Url - jeu de données - Entrepôt autre : https://doi.org/10.5061/dryad.rh4v0

Quartile : Q1, Sujet : ECOLOGY

Résumé : Quantifying the effects of species interactions is key to understanding the relationships between biodiversity and ecosystem functioning but remains elusive due to combinatorics issues. Functional groups have been commonly used to capture the diversity of forms and functions and thus simplify the reality. However, the explicit incorporation of species interactions is still lacking in functional group‐based approaches. Here, we propose a new approach based on an a posteriori clustering of species to quantify the effects of species interactions on ecosystem functioning. We first decompose the observed ecosystem function using null models, in which species diversity does not affect ecosystem function, to separate the effects of species interactions and species composition. This allows the identification of a posteriori functional groups that have contrasting diversity effects on ecosystem functioning. We then develop a formal combinatorial model of species interactions in which an ecosystem is described as a combination of co‐occurring functional groups, which we call an assembly motif. Each assembly motif corresponds to a particular biotic environment. We demonstrate the relevance of our approach using datasets from a microbial experiment and the long‐term Cedar Creek Biodiversity II experiment. We show that our a posteriori approach is more accurate, more efficient and more parsimonious than a priori approaches. The discrepancy between a priori and a posteriori approaches results from the way each clustering is set up: a priori approaches are based on ecosystem or species properties, such as ecosystem size (number of species or functional groups) or species' functional traits, whereas our a posteriori approach is based only on the observed interaction and composition effects on ecosystem functioning. Our findings demonstrate that an a posteriori approach is highly explanatory: it identifies who interacts with whom, and quantifies the effects of species interactions on ecosystem functioning. They also highlight that a combinatorial modelling of ecosystem functioning can predict the functioning of an ecosystem without any hypothesis about the biotic or environmental determinants or any information on species functional traits. It only requires the species composition of the ecosystem and the observed functioning of others that share the same assembly motif.

Mots-clés géographiques Agrovoc : Minnesota

Classification Agris : F40 - Écologie végétale
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Agences de financement européennes : European Research Council

Programme de financement européen : H2020

Projets sur financement : (EU) Ecophysiological and biophysical constraints on domestication in crop plants

Auteurs et affiliations

  • Jaillard Benoît, INRA (FRA) - auteur correspondant
  • Richon Camille, INRA (FRA)
  • Deleporte Philippe, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Loreau Michel, CNRS (FRA)
  • Violle Cyrille, CEFE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/587771/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-29 ]