Natural Rubber Trade Show & International Seminars

3rd - 5th May 2018
Siam Thani Hotel, Surat Thani, Thailand
Content

Welcome Address 2

Invited Speaker

I Global Economic Outlook and Its Impact on Rubber Prices
 Mr. Dar Wong 4

II Outlook on Global Supply and Demand for Natural Rubber
 Mr. Jom Jacob 5

III Smart (Fast - Cheap - Quality) Wood Drying: From Basic Science to Industrial Applications
 Assoc. Prof. Dr. Nirandorn Matan 6

IV Wood Plastic Composite and Their Innovation
 Mr. Thanawatth Sattabongkot 7

V Innovation of Rubber Wood Technology
 Prof. Dr. Paridah Md. Tahir 8

VI Overview of Natural Rubber Research in Prince of Songkla University
 Assoc. Prof. Dr. Charoen Nakason 9

VII Overview of Natural Rubber Application in Thailand
 Mr. Boonharn Ou-Udomying 10

VIII Epoxidized Natural Rubber Production and Application in China
 Prof. Yu Heping 11

IX Understanding of the dynamic structure of unvulcanized NR: an essential step to address its quality variability
 Dr. Laurent Vaysse

X Jump over from the scientific research to commercialization through developing innovative natural rubber product for new applications
 Assist. Prof. Dr. Ekwipoo Kalkornsuraraprane 12
Understanding of the dynamic structure of unvulcanized NR: an essential step to address its quality variability

Laurent VAYSSE
CIRAD, UMR IATE, France

ABSTRACT: The first part of this presentation is a visit of the different structural levels of raw natural rubber. The second aims to show that those structures are continuously changing along the way that transforms the latex exuding from the tree to the raw natural rubber material that is introduced in the mixers of the end-used product manufacturer.

Structural levels of Natural Rubber
Three structural study scales could be proposed to describe raw Natural Rubber (NR). The biochemical composition concerns the chemical structure of the poly(cis-1,4-isoprene) macro-molecules, but also the composition of non-isoprene constituents (lipids, proteins, etc.). The mesostructure includes the macromolecular structure (Mw, Mn, molar masses distribution or MMD) and the aggregates formed by the association of poly(cis-1,4-isoprene) molecules (gel). The bulk properties deal with the materials as a whole, and is characterized by physical properties measurements. Some analytical techniques that are available to assess those structural levels will be presented, together with several examples of results.

Dynamic of structuration of Natural Rubber: a long structuring story from the initial producer (i.e. the tree) to the end-used product manufacturer
Object size-based approach such as the three different structural levels described previously is a good descriptive tool of the NR material at a certain time and is very helpful to develop a common understanding. Nevertheless, this description is valid only at a precise stage of life of the NR before it ends in the mixer of the end-user such as the tire manufacturer. The second part of this presentation aims to show how the structure of rubber is permanently evolving not only from the release of latex by rubber tree to the dry state but also in the period of storage lasting from the production of the NR bale in the “remiller” factory to the time of its use in the end-used product manufacturer. Several examples will be provided (effect of tree age, effect of coagulation, effect of maturation, effect of process including drying, effect of storage.)
Understanding of the dynamic structure of unvulcanized NR: an essential step to address its quality variability

Dr. Laurent VAYSSE
CIRAD, UMR IATE, France

Abstract

The first part of this presentation is a visit of the different structural levels of raw natural rubber. The second aims to show that those structures are continuously changing along the way that transforms the latex exuding from the tree to the raw natural rubber material that is introduced in the mixers of the end-used product manufacturer.

Structural levels of Natural Rubber
Three structural study scales could be proposed to describe raw Natural Rubber (NR). The biochemical composition concerns the chemical structure of the poly(cis-1,4-isoprene) macro--molecules, but also the composition of non-isoprene constituents (lipids, proteins, etc.) [1,2,3]. The mesostructure includes the macromolecular structure (M_w, M_n, molar masses distribution or MMD, ...) and the aggregates formed by the association of poly(cis-1,4-isoprene) molecules (gel) [4,6]. The bulk properties deal with the materials as a whole, and is characterized by physical properties measurements [5]. Some analytical techniques that are available to assess those structural levels will be presented, together with several examples of results.

Dynamic of structuration of Natural Rubber: a long structuring story from the initial producer (i.e. the tree) to the end-used product manufacturer
Object size-based approach such as the three different structural levels described previously is a good descriptive tool of the NR material at a certain time and is very helpful to develop a common understanding. Nevertheless, this description is valid only at a precise stage of life of the NR before it ends in the mixer of the end-user such as the tire manufacturer. The second part of this presentation aims to show how the structure of rubber is permanently evolving not only from the release of latex by rubber tree to the dry state but also in the period of storage lasting from the production of the NR bale in the “remiller” factory to the time of its use in the end-used product manufacturer. Several examples will be provided (effect of tree age [7], effect of coagulation [8], effect of maturation [9,10], effect of process including drying[11] , effect of storage [12,13], ...).
Bibliography

All the presented data are issued from multi-lateral cooperation dedicated to NR materials notably numerous studies conducted in the framework of Hevea Rubber Platform in Partnership (HRPP) based in Bangkok, Thailand, and PlantLipPolGreen based in Montpellier, France and PlantLipPolGreen Asia based in Bangkok, Thailand.

All contributors to the present work are gratefully thanked:
Jérôme Sainte-Beuve(CIRAD), Frédéric Bonfils (CIRAD), Céline Bottier (CIRAD), Christine Char-Raluy (CIRAD), Karim Chelbi (CIRAD), Maxime Geniez (CIRAD), Suwaluk Wisinithorn (PSU), Charoen Nakason (PSU), Jutharat Intapun (PSU), Varaporn Tanrattanakul (PSU),Siriluck Liengprayoon (KAPI, KU), Natedao Musigamart (KAPI, KU), Kittipong Rattanaporn (KAPI, KU), Klanarong Siroth (KAPI, KU), Jatuporn Chaiyut (KAPI, KU), Eric Dubreucq (Montpellier Supagro), Maeva Subileau (Montpellier Supagro), Paul Menut (Montpellier Supagro), Christian Sanchez (Univ Montpellier), André Collet (Univ Montpellier), Francois-Xavier Sauvage (INRA), Chandi Kim (Cambodia Rubber Research Center), Suda Kiatkamjornwong (Chulalongkorn University), Yacine Hemar (University of Auckland), Kantida Wadeesirisak (KU), Chalao Thepchalerm (PSU SupAgro), Sophie Bellacicco (SupAgro), Mélanie Salomez (SupAgro), Sebastien Rollere (UM2), Guilherme De Oliveira Reis (CNPq brazil, UM2).