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A B S T R A C T

The objective of this study was to develop an easily replicable sampling methodology using very high spatial
resolution (VHSR) optical imagery to study the effect of landscape composition on crop pest incidence and
biological control. The methodology was developed for the millet head miner (MHM), Heliocheilus albipunctella
(de Joannis) (Lepidoptera: Noctuidae), a key pest of millet in Senegal (West Africa). The sampling plan was
developed according to two main hypotheses: (i) pest incidence increases with millet abundance in the land-
scape, and (ii) biological control increases with the abundance of semi-natural habitats in the landscape. VHSR
satellite imagery (< 1m) provided from a Pléiades sensor was used to map and to quantify the landscape ele-
ments. Covering a square region of 20× 20 km, a hierarchical, broad-scale land cover map focusing on crop
(millet and peanut crops) and tree (tree vegetation) categories was produced and validated with ground truth
data. Then, the landscape variables (tree density index and millet crop density index) were calculated based on a
regular grid of 100 ha for each cell size covering the study area; the variables were then split into three density
classes (low-medium-high) representative of the full landscape heterogeneity and combined into nine landscape
patterns. Finally, according to sampling capacity, track accessibility, and statistical constraints, 45 field sites,
including five replicates for each landscape pattern, were validated and selected for pest monitoring.

1. Introduction

The spatial distribution and dynamics of crop pest populations and
their trophic interactions with primary resources and natural enemies
often depend on ecological processes occurring at scales larger than the
single crop plot (e.g., Kareiva and Wennergren, 1995; Ricklefs and
Schluter, 1993; Tscharntke et al., 2007, 2005; Kareiva and Wennergren,
1995; Ricklefs and Schluter, 1993; Tscharntke et al., 2007, 2005).
Landscape composition can affect pest abundance directly by hindering
its dispersal, mortality or reproduction or indirectly by fostering its
natural enemies. Many studies in recent years, as reviewed by Bianchi
et al. (2006a); Chaplin-Kramer et al. (2011), and Veres et al. (2013),
have shown that the landscape complexity and particularly higher
proportions of semi-natural areas exhibited lower pest abundance or
higher pest control in fields. It is therefore important to finely char-
acterize landscape features to better understand how they can affect the
spatial dynamics of crop pest populations and their natural enemies
(Forman, 1995; Gustafson, 1998; Tischendorf and Fahrig, 2000; Turner

et al., 2001). The calculation of landscape indices derived from the-
matic maps are generally used to quantify the landscape patterns and to
test the relationships between landscape properties (composition and/
or structure) and the distribution of insect populations (e.g., Forman,
1995; Gustafson, 1998; Tischendorf and Fahrig, 2000; Turner et al.,
2001; Carrière et al., 2012). However, sampling strategies and under-
lying ecological assumptions are rarely well argued. A common state-
ment in landscape-pest studies is that to be efficient, a sampling
strategy must be based on environmental gradients that are believed to
exercise primary control over the distribution of the crop pest popula-
tions and their natural enemies, and the sampling sites must be in-
dependently and identically distributed. In the majority of such studies,
the environmental gradients are rarely fully considered over the entire
study area, and the number of sites and their replicates are often limited
because of technical and cost constraints (Veres et al., 2013). However,
the proportion of the host-crop and non-crop habitat areas are mostly
retained as explanatory landscape variables, and the technologies cur-
rently available based on earth observation data could help to fill these
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limitations. To identify arable fields from natural and semi-natural
vegetation, remote sensing data are particularly useful since they pro-
vide a synoptic view and deliver information over large areas at a high
level of detail (Nagendra, 2001). There is a large variety of sensors with
a wide range of spatial and spectral resolutions. In landscape-pest stu-
dies, remote sensing imagery has rarely been used because the spatial
resolution was insufficient to identify habitat biodiversity in highly
fragmented areas and because the cost remained too high. However,
available sensors with a sub-meter resolution (< 0.5 m) such as Quick
bird or WorldView-2 sensors have shown promising results for natural
vegetation identification and in particular for tree species at the crown
scale (Cho et al., 2015; Immitzer et al., 2012; Karlson et al., 2014;
Tooke et al., 2009). This development opens new perspectives in the
ecological domain for the identification of species or groups of tree
species that could promote crop pest natural regulation.

The aim of the paper is to study how very high spatial resolution
(VHSR) optical imagery can help in performing a stratified sampling
method that is easily replicable for landscape-pest studies and uses to
pest biocontrol models. More specifically, the proposed sampling
strategy aims to provide a representative data set including two main
statistical constraints: to sample along a relevant gradient of the land-
scape patterns according to landscape-pest hypotheses, within a highly
constrained framework in terms of the number of sampling sites; and to
maximize the probability of observing the variability of pest incidence,
natural regulation, and insect diversity, especially for natural enemies.
In this way, the sampling plan would serve both for field data collection
(pest, natural enemies, disease) and as a second step to calculate the
pertinent landscape variables around each preselected sampling points
that could be tested statistically in landscape pest models.

Therefore, the sampling methodology was developed from the
millet head miner (MHM), Heliocheilus albipunctella, (de Joannis)
(Lepidoptera: Noctuidae), as a case study. This insect species is a key
pest of pearl millet in West Africa (Ajayi, 1980; Guevremont, 1982;
Ndoye, 1979), causing yield losses up to 85% (Krall et al., 1995; Youm
and Owusu, 1998). This study was carried out over an area in the Se-
negalese Peanut Basin where pest regulation relies only on the action of
natural enemies, and the sampling plan was developed according to two
main hypotheses that are often tested in landscape-pest studies: (i) pest
incidence increases with millet abundance as the “host crop” in the
landscape, and (ii) biological control increases with the abundance of
semi-natural habitats in the landscape. Very high-resolution remote
sensing data were chosen to map the landscape elements because of the
small size of the objects that structure the landscape elements, focused
on crops (millet and peanut crops) and trees (tree vegetation) as well as
the heterogeneity of their spatial distribution. Then, we derived land-
scape variables to perform the sampling design.

2. Methods

2.1. Study area

The study was carry in the Bambey agroforestry parklands (14° 43′
42″ N, 16° 33′ 98″ E) located in the Peanut Basin, which is the most
important area for staple crop production in Senegal (Fig. 1). Covering
an area of approximately 20×20 km, this study site was selected be-
cause of the spatial heterogeneity of semi-natural vegetation patterns
(Fig. 1) and the absence of any insecticidal treatments, which could
disturb the biological control of the MHM by natural enemies. Char-
acterized by a semi-arid climate with only one short rainy season from
July to October and average annual rainfall varying from 400 up to
600mm (Badiane et al., 2000), the landscape is characterized by a
mosaic of arable land under Faidherbia albida parklands. The agri-
cultural system is based on smallholder farming (approximately
0.25 ha) of staple crops dominated by millet and nuts covering 52% and
32%, respectively, of the Bambey area in 2014 (DAPSA, 2014). Live-
stock farmers and growers live together on the same space.

The F. albida parkland is primarily composed of centuries-old trees
that are mostly isolated and regularly distributed. To a lesser extent,
other tree species are presents in the study area, including Guiera se-
negalensis, Balanites aegyptica, Adansonia digitata, Tamarindus indica and
Acacia seyal. The spatial distribution of the trees is characterized by a
high spatial heterogeneity, with the highest densities in the North-West
and the South-East of the study area.

2.2. Environmental data

A Pléiades satellite image was acquired on January 16th, 2013, at a
ground resolution of 0.5× 0.5 m in the panchromatic mode and
2×2m in the multispectral mode, with blue (B), green (G), red (R) and
near infrared (NIR) bands. The acquisition date was chosen during the
middle of the dry season when most tree crowns were leafy and crops
had just been harvested. At this time, millet and peanut fields are
characterized by the presence of crop residue and bare soil, respec-
tively. In February 2013, a land-cover field survey was conducted in the
study area (Fig. 1). The monitored sites were previously selected using a
stratified equal sampling procedure based on a previously acquired
Pléiades image. Therefore, using the ArcGIS software, the study area
was split into 9 tiles, and the sandy tracks were manually drawn. To
facilitate the field navigation, we chose sampling sites along the sandy
tracks. Twenty sampling sites per image tile, focusing on trees and
crops, were preselected via image interpretation of the Pléiades scene,
and the sites were integrated into a GIS database. Then, the sampling
points were exported into a GPS (global positioning system) device,
allowing easy navigation of each sampling point. In the field, the ve-
getation information was collected on the preselected focus point but
also within their vicinity, with the aim to collect as much information
as possible regarding the vegetation type. The vegetation, including
crops and trees, was described on a total of 420 sites with approxi-
mately 50 sampling sites per image tile. All this information was geo-
localized using a GPS and integrated into a geographic information
system (GIS) database.

2.3. Image processing for land cover mapping

A common pre-processing procedure was applied to the Pléiades
satellite image, including orthorectification and conversion of digital
numbers to the top of the atmospheric reflectance. Then, we chose an
object-oriented approach and defined a mapping processing chain in-
cluding different levels of segmentations at various scales and a hier-
archical classification (Blaschke, 2010). While it is essential to capture
small landscape elements, since the image resolution was smaller than
or similar in size to the objects of interest (namely, trees and small
patches of land), there was a large variability of intra-class spectral
signatures and other per-pixel indicators (Blaschke et al., 2014). Thus,
pixel-based classifications would lead to a speckled result far from a
mapping product. In addition, strong post-processing smoothing would
also decrease the potential accuracy of the classification. For the cali-
bration of the method and learning the algorithms, we split the initial
420-sites of the ground truth data set, leaving 164 sites for the eva-
luation step and addressing only the 256 sites remaining. A radiometric
and textural analysis was then performed on these 256 learning sites to
identify the most relevant descriptors of the land covers, with a special
focus on major crops (millet and peanut) and the most abundant tree
species. First, 36 potentially explicative radiometric variables proposed
in the eCognition Developer® software (Baatz and Schäpe, 2000) were
derived, including, for example, the normalized difference vegetation
index (NDVI) and the normalized difference water index (NDWI), which
are useful to discriminate vegetation from bare soil and to separate
different classes of vegetation (Pettorelli et al., 2005; Tucker, 1979).
The soil-adjusted vegetation index (SAVI, Huete (1988)) and the
brightness index are known to minimize the influences of the soil
brightness from the spectral vegetation (Pouget et al., 1990). Then, 64
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textural indices were calculated, corresponding to the 8 different in-
dices derived with the ENVI® software (Germain and Baylou, 1997;
Haralick, 1979) for 8 different neighbourhood sizes (3, 7, 11, 15, 19,
21, 31 and 35 pixels) to cover the various scales of landscape element
textures. The predictive relevance of these indices was then assessed
using a principal component analysis (PCA) with R software. The in-
dividual factor map, for instance, was analysed to decipher which
classes of land cover could be correctly discriminated from the other
classes, and in which principal axis. The eigenvalues of each principal
axis allowed the determination of which variables contributed to the
information deciphered on each principal axis. The variables factor map
was used to verify that the corresponding indicators are not correlated.
Finally, the associated p values were used to test whether the dis-
crimination potential of each selected variable was overestimated. At

the end of this step, eighteen descriptors only were retained: 12
radiometric indices (the mean of each of the blue, green, red, and near-
infrared bands, the mean of the panchromatic band, blue ratio, green
ratio, infrared ratio, brightness, brilliance index, NDVI, and NDWI) and
6 textural indices (the variance and homogeneity in a neighbourhood of
both 15 and 21 pixels, the mean and contrast in a neighbourhood of 7
pixels). Using the ‘multi-resolution segmentation’ algorithm in the
eCognition Developer® (Baatz and Schäpe, 2000), several scale and
shape parameters were tested to find the best compromise to encompass
the large range of patch sizes characterizing the tree vegetation and
field crops present in the study area. Three segmentation levels were
found as appropriate to detect the 16 targeted land use classes, which
are composed of height prevalent tree species (Faidherbia albida, Bala-
nites aegyptica, Adansonia digitata, Acacia seyal, Guiera senegalensis,

Fig. 1. Location of the study area divided in 6 tiles with the 497 ground field sites used for the image processing steps. Infrared coloured Pléiades image from 16
January 2013, ©CNES 2013, distribution Airbus DS/ Pléiades Image/ISIS programme.
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Mangifera indica, Azadirachta indica, and Tamarindus indica), the two
major crops (millet and peanut), market gardens, fallow land, bare soil,
water, roads, and buildings. The first level (L1) included 3 general land
cover classes: roads, urban, and rural areas. The second level (L2) was
based on the segmentation at the sub-field scale, allowing the differ-
entiation of cropped areas from natural vegetation, and even millet and
peanut fields from other crops (such as fallows). The third level (L3)
was aimed at separating tree vegetation from any other land cover type,
with a specific focus on detecting small vegetation patches such as in-
dividual trees. Once each data set was partitioned, a classification ru-
leset was developed. For each class, the radiometric descriptors were
based on the spectral analysis, and the textural descriptors were defined
by expert knowledge using fuzzy rules. These allowed class membership
functions to be established. The membership functions were then ap-
plied at each image segmentation level to finally produce two hier-
archical maps resulting from the respective L2 and L3 image segmen-
tations: a general map where trees were regrouped into one single class
named “tree vegetation”, and a detail map with the height of prevalent
tree species of the study area. Finally, the classification accuracy was
evaluated using the ground truth data that were not used in the clas-
sification process (corresponding to 164 sites). In the error matrix, the
allocated land-cover class of the validation objects was compared to the
observed land-cover class, and the quality of the classification was
measured through the overall accuracy coefficient and the Kappa index
(Congalton, 1991). The overall accuracy is a measure of how many
ground truth pixels were correctly classified. The Kappa index re-
presents the proportion of agreement obtained after removing the
proportion of agreement that could be expected to occur by chance
(Foody, 1992). The latter returned values range from 0 for poor
agreement between the predicted and observed values to 1 for perfect
agreement (Cohen, 1960).

2.4. Landscape metrics

According to our hypotheses (see introduction), we quantified two
landscape variables from the land cover map obtained at a fine scale:
the natural and semi natural habitats, mainly trees, and the millet crop
proportion area, the host crop habitat. In a first step, using the ESRI
ArcGIS ™ software (Redlands, CA, USA), the complete image was di-
vided into a regular hexagonal grid where each cell was 100 ha (Fig. 1).
As recommended by Birch et al. (2007) hexagons are preferable in
ecological applications when the analysis includes aspects of con-
nectivity or movement paths. In our study case, the hexagonal area was
chosen in relation to the maximum displacement capacity of the MHM
natural enemies. According to expert knowledge, this distance was es-
timated for natural enemies to be approximately 1 km from the field
sampling assuming a short-distance dispersal of noctuid moths when
resources are locally available.

In a second step, the hexagonal grid was used to cut the land use
map into 491 landscape units, which allowed the calculation of each
cell’s two landscape variables, the tree density index (TDI) and the
millet crop density index (MCDI). These indices supposedly influenced
the incidence of H. albipunctella and the biological control by natural
enemies. The first variable concerns the natural vegetation and is
mainly composed of isolated trees whose presence and density are
supposed to favour the natural regulation of the MHM. The natural
vegetation can provide food and alternative prey but also shelter from
natural enemies (Elliott et al., 1999; Geiger et al., 2009; Gentry, 1988;
Lys and Nentwig, 1994; Marino and Landis, 1996; Otieno et al., 2011).
We hypothesized that the natural pest control increases with the
abundance of natural habitats, which are mainly trees in the traditional
parkland agroforestry in the landscape (‘natural enemies’ hypothesis).
Then, we calculated the TDI (tree density index), which is the relative
proportion of tree vegetation cover:
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where TAi is the surface area of tree vegetation within grid cell i and the
cell area Bi. Once calculated for each hexagon of the grid, a tree density
map was generated that covered the entire study area.

The second landscape variable is concerned with the millet crop
density, and supposedly influences the MHM incidence as a "source
area" for the MHM, which feeds on the millet panicle for its develop-
ment cycle. It is also well-known that the MHM is a univoltine noctuid
species undergoing its pupal diapause in the soil during the dry season
from October to August. In the same way, we hypothesized that the
MHM incidence will be higher in fields with a landscape dominated by
millet crops than in other fields. Therefore, the millet crop density
index (MCDI) represents the relative proportion of the millet area, and
it was calculated for each grid cell of the land cover map:
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where MAi is the area of the millet crop within a grid cell i and cell area
Bi. Once calculated for each hexagon of the grid, a millet crop density
map was generated that covered the entire study area.

2.5. Sampling design

Due to time and resource constraints, the number of field sites was
fixed to a total of 45. Then, to consider the gradient of the landscape
variable combination densities and minimize the statistical replications,
we decided to keep at least 9 landscape patterns with 5 replicas in each
landscape pattern. Therefore, from the TDI and MCDI density maps, we
first used an agglomerative hierarchical clustering algorithm and, more
specifically, the complete-linkage clustering algorithm to split both the
landscape variables into three optimal classes: low, medium, and high
densities. From the resultant tree dendogram, this method allows users
to specify the number of clusters, k, to be generated. In our case, we
initially chose 4 clusters and then used the cut-tree function based on
the higher relative loss of the inertia criteria to select 3 fin. l homo-
genous classes of densities. The Euclidean distance was calculated to
measure the dissimilarity between each pair of observations and the
Ward’s minimum variance method for the cluster dendogram parti-
tioning. Therefore, we used the R freeware Team (2016) and “Fas-
tcluster,” “cluster,” “devtools” and “JLutils” packages. In a second step,
all three density classes of both landscape indices were combined in
pairs (3× 3 density classes) and allowed to produce a grid map com-
posed of nine landscape patterns. Then, in a third step, 45 sites re-
presenting 5 replications in each landscape pattern were randomly se-
lected from the resulting cluster. To do this step, we used the random
polygon selection tools in the ArcGIS software, which allowed speci-
fying the number of replications for each landscape pattern class. Fi-
nally, two sampling plans were randomly generated for each of the 45
sites. The second plan was used when the first had field access con-
straints that were too strong. The 45 resulting sampling sites were fi-
nally validated on the field in terms of their landscape pattern combi-
nation. Then, observations of the MHM incidence, parasitism rate, crop
damage, and natural enemy diversities were carried out on the 45 se-
lected fields during the following growing season.

3. Results

3.1. Land cover map

The land-cover map validation of the general map (L2) showed a
good match between the predicted and observed classes with a global

V. Soti et al. Int J Appl  Earth Obs Geoinformation 72 (2018) 26–33

29



accuracy rate of 71% and a Kappa index of 0.57. The best discrimina-
tion results were for the “bare soil” (100%), “tree vegetation” (85%),
and “roads” (83%), followed by “urban areas” (70%), “millet fields”
(55%) and “peanut fields” (46%). Regarding the map at a finer scale
(L3), the identification of tree species was poor, with a global accuracy
rate of 38% and a Kappa index of 0.31. Specifically, the global accuracy
rate was 81% for Guiera senegalensis, 38% for Balanites aegyptica, 27%
for Adansonia digitata, 20% for Acacia seyal, 17% for Tamarindus indica,
and 6% for Faidherbia albida. Such results showed that the Pléiades
image was not appropriate for consistent discrimination of tree species
in our case study. Accordingly, the tree species were not taken into
account in the sampling strategy, and the second classification level

(Fig. 2) that grouped all trees in a general class named “tree vegetation”
was used for the landscape metrics calculation.

3.2. Landscape metrics

According to our sampling capacity, the hierarchical clustering al-
gorithm allowed splitting the two maps representing the TDI and the
MCDI into three classes: low, medium and high densities. With 55% of
the surface area, the medium TDI was dominant in the study area. The
high TDI at 22% was found primarily in the north-west region of the
study area, and the low density (23%) was located primarily in the
centre and the north of the study area. Regarding the MCDI, a higher

Fig. 2. Final land cover map resulted from the object-based classification of the second level of the image segmentation allowing differentiating cropped species from
natural vegetation (Pléiades Image, ©CNES 2013, distribution Airbus DS/ Spot Image/ISIS programme).
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density of the millet crop prevailed in the south region of the study area
(48%). Conversely, the presence of the millet was lower in the north,
and north-east regions of the study area had a medium crop density at
38%. Areas where the millet density was low represented only 13% of
the study area.

3.3. Sampling design

A sampling stratification map composed of 9 landscape patterns was
obtained following the combination of the TDI and MCDI class density
pairs (Fig. 3). The pattern that combined a high millet density with a
medium tree vegetation density was the most common in the study area
(30%), followed by the medium millet density with a medium tree
vegetation density (24%). Combinations with the low millet density
were less frequent in the study zone, but they were sufficient to meet
the five sites for each landscape pattern as a statistical requirement.

The geographic coordinates of the centre of each cluster were cal-
culated using the ArcGIS software, exported onto a GPS and validated
in the field based on the landscape features and track accessibility. Once
validated in the field, the 45 sampling sites were selected for further
entomological, agronomic and landscape field surveys.

4. Discussion

The land-cover map at the second level (L2) derived from the Pléiades
imagery allowed a good discrimination of the natural vegetation domi-
nated by trees, bare soil, tracks or roads and urban areas (Kappa=0.70).
The satellite image was acquired in January during the middle of the dry
season. During this season, the majority of the trees were well identified,
because they were leafy (85% well recognized). The millet and peanut
crops were classified based on the presence of post-harvest residues from
the millet plots on the ground. An earlier acquisition, in November or
December, would have been more favourable for millet identification, as
millet residues would be less dry and, therefore, more easily detectable

with remote sensing. This result shows that spectral and spatial properties
of a Pléiades image are still not sufficient to well discriminate the different
types of crops in our study zone characterized by small plots of ap-
proximately 0.25 ha. Indeed, numerous studies carried out with medium-
resolution images made the same conclusions, incriminating the low re-
solution of the images and the fragmented landscape characterized by
small sizes fields and resulting in high regional variability in terms of
agricultural systems and practices (Vintrou et al., 2012). To overcome this
problem, multitemporal and multispectral remote sensing imagery with a
coarse resolution (i.e., NOAA-AVHRR, SPOT-VEGETATION and TERRA-
MODIS) have been widely used for crop identification in recent years
(Hountondji et al., 2006; Justice et al., 1985; Smith et al., 2003; Vintrou
et al., 2012) and have reduced the confusion between different types of
land cover (Husak et al., 2008). However, these studies remain unable to
determine the crop type, especially in arid areas such as in the Sahel belt.
Regarding tree species identification, the results showed some limitations
with a low efficiency using the Pléiades images in the detection of isolated
trees species. However, recent studies in West Africa using very high-
resolution images WorldView-2 (8 spectral bands and 46 cm spatial re-
solution) showed better results in tree species identification (Karlson
et al., 2016). Two factors could explain this difference. The first is the
profile of the Bambey agroforestry parklands where the tree density is
much lower and the tree species are limited. The second factor relates to
the methodology based on the use of satellite imagery time series data,
which facilitates tree discrimination based on differences between their
individual phenological cycles. According to these statements, the use of
satellite time series data could improve the discrimination of crops and
trees in our case study. First, to more accurately identify the two major
crops, we suggest acquiring an additional satellite image just before the
harvesting period, which generally occurs in October. Nevertheless, the
presence of clouds during this period could hamper the image acquisition.
Second, to further separate the tree species, we propose two different
approaches: (1) using satellite images with richer spectral bands and a
high revisit time, such as the WorldView-3 sensor, which has a

Fig. 3. Result of the final stratification design. The colour indicates the 9 landscape patterns resulting from the combination of the density indices MCDI and TDI (1:
high density; 2: medium density; 3: low density). Stars and their numbers (1 to 3) indicate the expected level of MHM abundance and biocontrol based on the
landscape pattern assumptions.
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panchromatic band at 0.31×0.31m and eight multispectral bands at
1.24×1.24m, during the dry season when trees are leafy; or (2) ac-
quiring one Pléiades image per month during the dry season in order to
map all the tree species as a function of the evolution of the leaf density.

We confirm that the remote sensing data, through the character-
ization of land cover/use, is very useful to quantify the landscape ele-
ments in terms of their composition and spatial distribution. The ap-
proaches offer a quasi-continuous and complete land cover with a
gradient of variability, which could be quantitatively estimated and
located in space. In landscape ecology, this allows the study of the effect
of landscape on the presence or abundance of animal species. In our
study, we were able to quantify the trees and millet crops. However, the
selection of the landscape indices is limited by various constraints: the
precision of the object image classification and the number of fields/
observation sites monitored, which was limited in our case to 45 due to
time and resource constraints. It would have been interesting to con-
sider the sampling plan in the tree species diversity as the third variable
to identify species promoting the diversity and abundance of natural
enemies, thus enhancing natural regulation (Bianchi et al., 2006b).
However, it is recommended to limit the number of landscape variables
to consider because of their biological interpretation issues. Never-
theless, we plan to determine the tree diversity richness around each
sampling site in a second step of this research project.

The resulting sampling strategy is based on environmental data for
MHM populations and their natural enemies as a function of the habi-
tats. Combining the two landscape indices calculated from a land cover
map, we obtained a sampling plan offering nine pattern modalities with
five or more possible replications for each. Generally, most studies
dealing with the effects of landscape on the pest incidence concern a
limited number of monitored sites in relatively small areas (Elliott et al.,
2002a,b; Elliott et al., 1999; Holland and Fahrig, 2000; Marino and
Landis, 1996; Prasifka et al., 2004; Purtauf et al., 2005). Here, we
propose a sampling design mixing a grid and an equal stratified sam-
pling method that is considered the most robust and accurate for ha-
bitat suitability modelling (Hirzel and Guisan, 2002). This systematic
method is simple to run and has the merit to consider all the possible
combinations of the environmental variables, which can play a key role
in the distribution of pests and their natural enemies. In the case of
studies dealing with more than two landscape metrics, which result in
more than 200 hundred possible combinations, a non-supervised clus-
tering method is generally used (Danz et al., 2005; Roux et al., 2013) to
reduce the strata for the selection of the final samples. Nevertheless, the
quality of the implementation of such a sampling design will depend on
two critical requirements. First, it is necessary to obtain a fine land
cover map covering all the study area. The use of very high-resolution
satellite image, such as the Pléiades sensor, is useful to inventory land
cover exhaustively over a large area. Additionally, knowledge on insect
biology and ecology is essential because it allows better targeting of
relevant landscape variables and thus limits the number of required
landscape patterns. The selection of a suitable sample design method
ensures that the samples for which time and money has been invested
for collecting can support the desired inferences (Elliott and Décamps,
1973). Knowledge on the dispersal capacity of the targeted species is
also important to consider in the sampling plan (Gilchrist and Meats,
2012) to fix the size and the distance of each observation site. Un-
fortunately, the latter is rarely known, making it necessary to choose an
important distance between the sampling sites to limit any risk of
spatial autocorrelation for the variable of interest (Dale and Fortin,
2014; Pasher et al., 2013). In our case study, based on the knowledge on
the MHM bioecology and their natural enemies, the minimum distance
between each of the 45 sampling sites was fixed at 2 km. This distance is
sufficiently long to allow a multi-scale analysis to be performed in the
future to identify the spatial units at which landscape management
resulting from the research could be developed and implemented (e.g.,
Dunford and Freemark, 2005; Eigenbrod et al., 2008; Holland et al.,
2004).

5. Conclusion

This work proposed a methodology to design a sampling plan for a
wide range of empirical landscape ecology studies. From the case study
of the millet head miner, H. albipunctella in Senegal, we demonstrated
the value of very high spatial resolution satellite imagery (< 1m) to
extract landscape features and, more specifically, tree vegetation as a
potential proxy of the MHM incidence and its regulation by natural
enemies. This work could be easily reproduced to develop systematic
sampling strategies at a landscape scale for studies addressing pest in-
cidence and the conservation of biological control. To improve the
sampling design, we suggest considering tree species, thus performing
tree identification, using satellite images with more spectral bands,
such as the WordView-3 sensor (8 bands and a spatial resolution of
30 cm in panchromatic).
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