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Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse

life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated

with rare cases of human infection. In the rubber tree, this fungus causes theCorynespora

leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and

Africa. It has also been found as an endophyte in South American rubber plantations

where no CLF outbreak has yet occurred. The C. cassiicola species is genetically

highly diverse, but no clear relationship has been evidenced between phylogenetic

lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector,

is thought to be involved in the necrotrophic interaction with the rubber tree but

some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out

to identify other putative effectors involved in CLF. The genome of a highly virulent

C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled.

In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases,

peptidases, secreted proteins and enzymes associated with secondary metabolism.

Comparison with the genomes of 44 other fungal species, focusing on effector content,

revealed a striking proximity with phylogenetically unrelated species (Colletotrichum

acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca,

and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate

effectors involved in the compatible interaction with the rubber tree were identified by

transcriptomic analysis. Differentially expressed genes included 92 putative effectors,

among which cassiicolin and two other secreted singleton proteins. Finally, the genomes

of 35 C. cassiicola isolates representing the genetic diversity of the species were

sequenced and assembled, and putative effectors identified. At the intraspecific level,

effector-based classification was found to be highly consistent with the phylogenomic

trees. Identification of lineage-specific effectors is a key step toward understanding

C. cassiicola virulence and host specialization mechanisms.
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FIGURE 5 | Intraspecific phylogenomic tree and putative accessory effectors of C. cassiicola isolates. The maximum likelihood phylogenomic tree was based on

12,420 conserved protein sequences. Branch lengths are indicated by the bar (substitutions/site); 1,000 bootstrap values are shown as percentages. The isolates

names are followed by their country and host codes, and by the toxin class, as indicated in Table 1. The diagram on the right represents the composition in putative

accessory effectors (i.e. either absent or varying in copy number in at least one isolate).

S8). Accessory effectors were found in all functional categories, in
variable ratios: 24 were associated with the secondarymetabolism
(38.1% of all putative effectors in this category), 195 were
CAZymes (16.9%), 24 lipases (3.9%), 135 peptidases (22.1%) and
234 “other secreted proteins” divided into 108 LSPs (26.3%) and
126 SSPs (24.7%). The distribution was evenly balanced between
secreted (307) and non-secreted (305) accessory effectors. The
distribution of the putative accessory effectors in the different
isolates is depicted in Figure 5 as the sum of orthologs found in
each functional category. CCP isolate, being the reference, has all
612 putative accessory effectors. Of these, only 20 were specific
to CCP (1 secondary metabolism gene, 6 CAZymes, 4 peptidases,
1 lipase, 4SSPs, 3 LSPs, Table S8). Twenty-two others, shared by
CCP, CCAM2 and CCAM3, were specific to Clade C isolates (2
secondarymetabolism genes, 8 CAZymes, 7 peptidases, 1 lipase, 4
LSPs) (Table S8). However, no effector specific to an isolate other
than CCP (i.e., not sharing significant homology with a CCP
protein) could be identified, since CCP was used as the reference.

We carried out an intraspecific PCA based on the composition
in accessory effectors found among the 36 C. cassiicola isolates
(Figure 6). Despite the high number of dimensions, the first two

explained >32% of the total variance. The classification obtained
was fully consistent with the genome-wide phylogeny depicted in
Figure 5. We note that the phylogram and the accessory effector
PCA cladogram were obtained by totally independent datasets:
in the first case, the ∼12,000 core genes (found in all isolates
in one copy), and in the second case, the accessory effector
gene subset. This result suggests that new accessory effectors
have been acquired mostly through evolution. However, isolated
acquisitions by horizontal gene transfer cannot be excluded,
though not detected here. Whatever the classification approach,
no clear structure by geographic origin or host plant could be
established.

Further work could seek to relate specific sets of predicted
effectors with biological features such as pathogenicity
specificities on various hosts, or virulence profiles on different
rubber clones. However, such biological information is still
scarce. CCP and its closest relatives, CCAM2 and CCAM3
(Clade C), show the highest effectors diversity. They were
previously found to be more aggressive than isolates of other
types when spore-inoculated on the susceptible rubber clone
PB217 (Déon et al., 2014). Their filtrates were also found to

Frontiers in Microbiology | www.frontiersin.org 15 March 2018 | Volume 9 | Article 276



Lopez et al. Corynespora cassiicola Effectors Genomic Analysis

TABLE 4 | Putative core and accessory effectors identified among 36 C. cassiicola isolates.

Effector categories CCP total effectors Accessory effectors

Total Secreted Not secreted Total Secreted Not secreted

Nbr (% of CCP) Nbr (% of CCP) Nbr (% of CCP)

Secondary metabolism 63 63 24 (38.1) 24 (38.1)

Cazymes 1,152 326 826 195 (16.9) 45 (13.8) 150 (18.2)

Lipases 104 40 64 24 (3.9) 5 (12.5) 19 (29.7)

Peptidases 630 124 506 135 (22.1) 23 (18.5) 112 (22.1)

Other LSPs 411 411 108 (26.3) 108 (26.3)

Other SSPs 510 510 126 (24.7) 126 (24.7)

Total 2,870 1,411 1,459 612 (21.3) 307 (21.8) 305 (20.9)

Accessory effectors are effectors either absent or varying in copy number in at least one isolate, as opposed to the core effectors, found in exactly one copy in each of the 36 isolates.

Only conventional ER/Golgi-dependent secretion was considered; LSP (large secreted proteins, >300 amino acids), SSP (small secreted proteins, <300 amino acids).

be highly toxic when tested on detached leaves over a range
of rubber clones, using a method based on electrolyte-leakage
measurements (Tran et al., 2016). We advance the hypothesis
that the effector expansion in Clade C isolates may favor higher
virulence and/or a broader host range. Some isolates in Clade
A4 also displayed high filtrate toxicity on various clones in
Africa (Tran et al., 2016). In our analysis, four putative accessory
effectors (626988, 580294, 580296 and 580661) were found in
all A4 isolates, but not in other types besides two Clade C and
two Clade A5 isolates. None was differentially expressed in CCP,
but their expression in A4 isolates remains to be investigated.
Isolates in Clade B are also frequently associated with CLF in
Asia (Shuib et al., 2015). In our study, nine candidate effectors, all
potentially secreted, were shared by Clade B and C isolates only,
among which one LSP (577878) differentially expressed in CCP.
Finally, three isolates (E55, E79 and E139) categorized as rubber
tree endophytes (Déon et al., 2012b) had effector repertoires
equivalent to or even larger than that of pathogenic isolates of
the same clades. These endophytic isolates may be adapted to
a broader host range thanks to their large effector repertoires.
Whether they may be necrotrophs on some hosts and which
effector(s) might be involved is unknown.

Within the 353 differentially transcribed CCP genes revealed
by the RNA-Seq analysis (Table S6), 19 were categorized
as potential accessory effectors (Table S8). Fourteen were
upregulated and five downregulated. Nine are CAZymes
(597,988; 577,841; 574,440; 577,285; 568,400; 569,191; 577,402;
618,747; 600,578), four are peptidases (149614; 495460; 366051;
514786), three are “other LSPs” (513,290; 673,479; 577,878) and
three are up-regulated SSPs, among which cassiicolin, shared by
18 isolates, and two uncharacterized SSPs (24,345 and 646,750),
specific to CCP.

The interspecific clustering revealed 4,047 singletons in the
CCP genome (i.e. without homology in the other species)
(Table S2), of which 158 were putative effectors. Our intraspecific
analysis revealed that 29 of them were accessory, including two
associated with the secondary metabolism, five CAZymes, five
lipases, one peptidase, nine SSPs and seven LSPs (Table S8).
Interestingly, the SSP 646750 discussed above is the only

FIGURE 6 | Intraspecific principal component analysis (PCA) of 36

plant-associated C. cassiicola isolates based on their composition in putative

accessory effectors (i.e. either absent or varying in copy number in at least one

isolate). PCA was computed from the counts in each effector subcategory

(611 dimensions). Different colors represent different clusters.

putative accessory effector differentially expressed (upregulated)
in the compatible interaction that has no ortholog at either the
interspecific or intraspecific scale. However, its specificity to the
CCP isolate could be artefactual, due to the lack of assembly of
the genome region carrying this gene.

PART 4: The Case of Cassiicolin
The most emblematic and best characterized C. cassiicola effector
to date is the cassiicolin toxin. The Cas1 gene (GenBank
EF667973) was not predicted by the JGI annotation pipeline
despite high RNA-Seq reading coverage (>3,900), possibly due
to its short size and its intron-exon organization. We could
nevertheless locate it on scaffold 130:2337-2848, minus strand.
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According to the JGI VISTA plot of scaffold 130 (4,131 bp),
compared with the other genomes of our interspecific study, no
nucleotide sequence homology could be found by blast against
the entire NCBI nr and MycoCosm databases. This suggests
that the genomic region bearing Cas1 was acquired recently,
either through evolution or horizontal gene transfer from still
unknown organisms. Interestingly, a fragment homologous to
a MOLLY transposon from S. nodurum (GeneBank AJ488502)
was located at the end of scaffold 130, only ∼2 kb downstream
from Ca1. Another gene (580614) encoding a predicted protein
with a SAM-methyltransferase conserved domain was identified
on the same scaffold, between Cas1 and the MOLLY transposon
sequence. Proximity with the transposon suggests that Cas1
and neighboring genes may have been multiplied through
transposition events, although draft genome assembly alone
could not support this hypothesis. The very high RNA-Seq
reads coverage of Cas1 (>3,900) supports this hypothesis. The
neighboring SAM-methyltransferase gene may be involved in
the regulation of cassiicolin activity through methylation: the
mature cassiicolin was shown to carry a methylated mannose
on the second residue (Barthe et al., 2007), but whether this
post-transcriptional modification is required for virulence is
unknown.

In this study, we could confirm that the cassiicolin gene
is transcriptionally up-regulated during the early phase of
the compatible interaction with the rubber tree (Figure 4).
PCR screening had previously evidenced that it was an
accessory effector, since it was detected in only 47% of the
tested C. cassiicola isolates, with various isoforms (Cas1 to
Cas6) used to delineate toxin classes (Déon et al., 2014).
Our intraspecific comparative genomic analysis confirmed the
previously defined toxin classes for most isolates except IA,
JQ and PB, three phylogenetically close relatives isolated from
cucumber (Figure 5). A Cas2 gene was detected in isolate JQ,
previously categorized as Cas0. Additionally, we were able to
identify a new cassiicolin isoform, shared by IA, JQ and PB, that
was named Cas7. To rule out any artifact due to the assembly
process, we confirmed the sequence by PCR amplification and
Sanger sequencing of that region. The Cas7 sequence was
registered in GenBank (BankIt2035475 Seq1 MF564202). It is
quite divergent from the previously identified cassicolin genes,
with only 72.3–76.7% nucleotide sequence identity and 71.9–
77.8% deduced amino acid sequence identity. However, we
were not able to amplify Cas7 transcripts from germinating
spores of the Cas2+7 isolates IA, JQ and PB. RT-qPCR analysis
of Cas2+7 isolates during interactions with plant hosts may
demonstrate the functionality of Cas7 and confirm its protein
sequence.

Cassicolin is the perfect illustration of a species-specific
effector responsible for intraspecific diversity due to sequence
polymorphism, presence/absence and copy number variations.
However, the phenotypic traits associated with these variations
are still unclear. Our transcriptomic analysis revealed the
existence of other candidate effectors with similar features, i.e.
secreted proteins differentially expressed during the compatible
interaction between C. cassicola isolate CCP and the rubber tree,
with similar or higher orders of fold change magnitude. Further

experimentation will thus be needed to clarify the role of each
candidate in CLF.

GENERAL CONCLUSION

This study provides the genomic description of a plant
pathogenic C. cassiicola isolate and the first transcriptomic
analysis for this species. By combining in silico mining of all
putative effectors and experimental identification of the fungal
genes differentially expressed during the compatible interaction
with the rubber tree, we were able to identify pertinent candidate
effectors potentially involved in CLF disease, in addition to the
already characterized effector cassiicolin. Resequencing and de
novo assembly of a large set of C. cassiicola isolates allowed
very accurate refining of the intraspecific phylogeny and the
genome-wide description of their respective effector repertoires.
In addition to core effectors shared by all isolates, accessory
effector repertoires were generally consistent with the phylogeny,
besides a few isolate-specific variations. At this stage, it is difficult
to offer a cogent interpretation of such specificities owing to the
lack of phenotypic information in terms of virulence profiles or
host ranges. Further transcriptomic, proteomic or metabolomic
analyses may help identify the most pertinent effectors. These
could then be used to develop phenotyping tests or genotyping
tools, after identification of their plant molecular targets, for the
selection of tolerant cultivars.
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