Drivers of copper availability in agricultural soils receiving long-term applications of organic fertilizers

Context
- Moderate but on-going and long-term contamination of agricultural soils fertilized with organic wastes (OW)
- High Cu toxicity for soil organisms

Scientific issue
- Lack of knowledge on effects of availability and bioavailability of Cu in such moderately contaminated soils

Study’s aim
→ Long-term consequences of recycling organic wastes on Cu availability under real field conditions

Material & Methods
- 4 types of soil: Andosol/ Cambisol/ Nitosol/ Arenosol
- 3 fertilisation types: No fertilizer/ Mineral fertilizer/ Organic fertilizer
- Soil solutions extraction (1:10 ratio)
- \(\text{pCu}^2+ \) measure of Cu availability

Other measurements
- pH
- Dissolved organic carbon (DOC)
- \(\text{pCu} = \log_{10}([\text{Cu}]_{\text{total}} \text{ in soil solution}) \)

Impact of fertilization on soil solution parameters, example of the arenosol

Impact of soil solution parameters on \(\text{pCu}^2+ \), example of the arenosol

Range of pH, pCu, COD and pCu\(^2+\) in soil solutions (n = 94)

Ecotoxicity assays
- DGT (kinetic method)
- RHIZOtest
- Cu bioaccumulation in earthworms

Work in progress
- Ecotoxicity assays
- DGT (kinetic method)
- RHIZOtest
- Cu bioaccumulation in earthworms

Reference
Sauvé et al 2000
T.Djae et al 2017
ISO Norm 16198 - RHIZOtest