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Abstract

Researchers are increasingly using complex models to
understand socio ecosystems (SES) with biophysical and
social dynamics, and their interactions. The initialization
and parameterization of these models require a lot of
data, and their semantics and media are heterogeneous.
Despite various efforts, the proposed approaches are
fairly ad hoc and no general framework has been pro-
posed to initialize complex SES models. This paper aims
at providing a generic framework for the initialization
problem, bearing in mind that model initialization is not
only building the initial state of the model, but also
specifying time series (for example, climate series) and
parameterizing processes. We propose to reformulate the
model initialization issue as a transformation of data
(collected by thematicians) into data structures as used by
computer programs. This enables the use of Model Driven
Engineering (MDE) concepts and the implementation of
domain specific languages (DSL) needed to initialize the
models.

I. Introduction

For around twenty years, researchers have sought to
investigate socio-ecosystems [1] taking into account bio-
physical and social dynamics, and their interactions. To
that end, modelling is an approach that is increasingly
being used by researchers to understand these interaction
challenges, producing increasingly complex models.

As socio-ecosystem models are complex, their ini-
tialization and parameterization require many data from
socio-environmental systems, gathered by thematicians
(ecologists, economists, sociologists, etc.). However, the
semantics of those data, and their support (databases, Ex-
cel files, XML, CSV, shapefiles, etc.) are heterogeneous.
In other words, simulation models handle data structures
that do not necessarily correspond to the data gathered
by the thematicians. In addition, the data structures, and
therefore their needs, very often evolve during the mod-
elling process because of the complexity of the system,
which calls for continuous modification of the initializa-
tion process. It is becoming very important to have a
new way of describing complex models and the existing
data in order to initialize the model, and to express the
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transformations of data structures in a generic way, in
order to be able to create all the elements of the model
independently of the way the model is programmed.

In this article, a distinction is therefore made between
data derived from the observation of a reality, possibly
already interpreted, and data structures which are IT
structures that represent the possible states of a simula-
tion model. Data are physically stored in support (files,
databases), while data structures are internal to a computer
program.

When constructing socio-environmental models [2],
[3], model initialization consists of constructing the initial
state of the model, the specification of time series (e.g.
climate series) and parameterization of the processes. To
cope with this initialization problem, Hill and Vickers
[4] constructed a modular language making it possible to
express the hierarchical structure of the specifications of
the components of a system in order to configure it. David
et al. [5] constructed the XELOC language, based on the
XML language, to automatically initialize a multi-agent
model from semantic maps provided by thematicians. De-
spite these efforts, the approaches proposed are relatively
ad hoc. No general framework has yet been considered for
initializing complex models such as socio-environmental
models.

It is proposed here to reformulate the model initial-
ization issue in terms of a problem of transformations of
data into data structures, and data structures into other
data structures. Thus, the model initialization process
consists of describing the sources of heterogeneous data
of thematicians in order to generate the available data
structures, describing the data structures of the simulation
model that we consider as being functions of time, then
describing the chain of possible transformations between
these data structures to create the elements of the model.

We showed in [6] that by using the concepts proposed
by MDE (Model Driven Engineering) [7], it is possible
to formulate generically the problem of initializing and
observing complex socio-environmental models by using
domain specific languages (DSL). In order to be able to
use MDE, we have to formulate the initialization process
in terms of MDE. The purpose of this article is to propose



a common framework for the initialization problem by
implementing three DSLs in order to specify the data and
data structures of the simulation model, with flexibility,
along with the chain of transformations between them, in
order to initialize the model.

In order to be generic, our second proposal is to con-
sider that the construction of the initial state of the model,
the specification of the time series (e.g. climate series) and
the parameterization of the processes are one and the same
thing, namely the partial specification of time functions. In
fact, a simulation can be seen as the construction of a time
function defined from the initial time to the final time, for
which initialization is a partial specification. The initial
state is the value of that function at the initial time, a time
series is a sub-part of that function and parameterization
specifies some time functions in different forms such as
differential equations.

Thus, in section II, we introduce and justify the
methodology used to design the DSLs for initializing
complex models. In section III, we present the implemen-
tation of three domain specific languages L1, L3 and L2
that can be used to resolve the initialization problem for
complex socio environmental models in a generic manner.
Lastly, before concluding, we present some results in
section IV.

II. Methodology

According to [7], MDE is a design and development
methodology for model-based software. It is used to easily
construct DSLs and is increasingly being used to develop
complex applications [8]. One of the advantages of using
DSLs is to enable modellers to focus themselves on
their concerns and their field of research, in order to
easily construct models that reflect the complexity of the
explanations they give of reality. The application code
is then generated automatically. For DSL construction,
OMG (Object Management Group)[9] proposed the mod-
elling pyramid (Figure 1) which is based on five basic
concepts: the real system, the model that represents that
system, the meta-model used to define the model, the
meta-meta-model that serves to specify the meta-model
and the transformations between the levels [10].

We showed in [6] that by using the concepts pro-
posed by MDE, we are able to formulate the problem
of initializing and observing socio-environmental models
in a generic manner (Figure 2). This paper describes its
implementation for initialization.

ITI. Use of languages L1, L2 and L3

We propose to define the following three DSLs to
specify the initialization process:

e A language (L1) to specify how to create data
structures using numerous data from different het-
erogeneous Sources;

o A language (L3) to initialize the model in the form
of the partial specification of a time function;

o A transformation language (L2) making it possible to
map the data structures generated from language L1
and specified by language L3, in order to generate
the initial state of the model with some time series
and parameterization.

A. Language L1

Language L1 is a DSL used to describe the different
data sources and the semantics of the available data
independently from their source. The aim of L1 is to be
able to generate data structures from heterogeneous data
sources.

1) Principle of language LI: For language L1, we
need a meta-model that makes possible to access any
data source and specify the data structures to be generated
independently of the data sources. The data derived from
L1 might possibly be considered as the initial state
of the model (the data structure of the model on its
initial date), parameters, or chronological series. In the
literature, some similar functionalities exist already for
generating heterogeneous data sources. ETL tools (Extract
- Transform - Load) such as Informatica, Talend Open
Studio, GeoKettle, Pentaho Datalntegration, CloverETL
are used to extract, transform and automatically generate
data from one set of data support to others. The Geotools
project is a free and open source GIS toolkit developed in
Java. It can also be used to access and manage different
georeferenced data sources. In addition, Wiederhold [11]
proposed a data integration architecture called “mediator
architecture” or “virtual integration”. The principle is to
have a mediator that provides an overall scheme and
unique vocabulary to express user queries. Inmon [12],
Widom [13] and Chrisment et al. [14] presented the
”data warehouse” or “materialized integration” architec-
ture. Whilst in virtual integration data remain stored in
the original source, with materialized integration data are
extracted from the original source and stored in a data
warehouse. Our specifications were largely inspired by
these approaches and implemented using EMF (Eclipse
Modelling Framework) [15]. The difference lies in the
generation of data structures rather than data.

2) Meta-model of language LI: For its implementa-
tion, we used the Ecore meta-meta-model [15] of EMF.
We defined a meta-model (Figure 3), of which:

o Part is used to specify heterogeneous data sources.
They may be databases, Excel files, shapefiles, CSVs
and even input graphic interfaces, so ultimately any
sort of supports and applications that supply data.
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Fig. 2. Mapping the modelling pyramid to initialization implementation

o Another part is used to specify a generic data struc-
ture to be constructed from diverse data sources,
because although data are stored or entered on di-
verse support, their processing needs them to be
represented in data structures.

3) Model derived from LI: A textual or graphical
concrete syntax can be associated with a meta-model. In
order to construct a model that conforms to L1, we defined
a textual concrete syntax with the XText [16] framework
that uses the EBNF [17] metalanguage, and a graphical
concrete syntax with the GMF (Graphical Modelling
Framework)[18] , in addition to the tree concrete syntax
automatically generated by the EMF tools. An extract of
the textual concrete syntax of L1 is shown in Figure 4.
Some editors based on these concrete syntaxes are sup-
plied to thematicians to specify the data sources they use
in order to generate a generic data structure. Nevertheless,
it is also possible to construct the specification of data
structures from metadata when they exist.

We applied this approach with a set of real hetero-
geneous data sources used by the Mirana model [2].
This model supplies tools for managing databases and
loading Excel files and shapefiles (Figure 5). It is therefore
possible to pass through the graphic interface derived from
the model itself (Figure 5) to specify data sources. The
concrete syntax corresponding to this specification is then
generated automatically.

- ConnectionMetamodel returns ConnectionMetamodel:
{ConnectionMetamodel}
'DatasourceSpecification’
o
i3
connectionSpecifications+=ConnectionSpecification*
vy,
P

ConnectionSpecification returns ConnectionSpecification:
DatabaseSpecification | C5VSpecification | XMLSpecification

DatabaseSpecification returns DatabaseSpecification:
{DatabaseSpecification}
'DatabaseSpecification" name=STRING
g
(*dbtype' ':' dbtype=STIRING)?
user=STRING) ?

(*user' ':

('passwd' ':' passwd=S5TRING)?
("host' ':' host=STRING)?

("port' ':' port=STRING)?
("schema' ':' schema=S5TRING)?
(*database' ':' database=STRING)?

CSVSpecification returns CSVSpecification:
{CSVSpecification}
'CSvVSpecification' name=STRING
Y

Fig. 4. Extract of the textual concrete syntax of language L1

B. Language L3

Language L3 is a DSL used to describe the simulation
model.

1) Principle of language L3: Initialization not only
specifies the state of the system at the initial time, but also
the partial specification of certain time series (e.g. climate
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Fig. 5. Graphic interface for loading data into the Mirana model

series), along with the parameterization of the processes,
or even explicit or differential equations. Consequently,
the target is not merely a state represented by a data
structure but must be seen as a function of time, which
will be partially specified. We therefore feel it is important
to consider this total function as a theoretical object
that is partially defined on initialization and completed
by simulation. Formally, we therefore have the function
Y ¢ [tinitial, tfinat] — S,t — s¢ in S, where S is the
set of possible system states. This function is also called
the trajectory in [19]. The initial state becomes the spec-
ification of X(t;nitiar). A time series or parameterization
become the specification of part of 3.

2) Meta-model of language L3: Using Ecore [15], the
language L3 serves to describe the simulation model as
being a function of time. Many types of functions are
possible, namely:

e Y = sVt, such that the value is the same for all times

during simulation;

e X = f(t), where f is an explicit function of time

(e.g., axt+b);

o X =df(t), where df is a simple differential equation

of time;

e X = F(t) which defines a difference equation;

o X = step((t1,51), ..., (tn, Sn)), which defines a con-
stant function as bearing t1 > tinitial> tn < tfinal
and it is considered that ¥(¢) = s; in the interval
[tinitial, t2[, S; in the interval [t;,¢;11[ and s,, in the
interval [ty finall;

o X =1I((t1,81),.., (tn, sn)) defines a linear interpo-
lation or other more complex interpolation model, as
t1 2 tinitial> tn < tfinal-

These functions of time can be specified in different
ways depending on their nature. The meta-model that we
propose to specify:

o A set of parameters (to set explicit time functions
and differential equations);

e A set of parameters and a time step (to set the
difference equations);

o A sequence of values, a start date and a time step
(to set the constant functions per stage);

o A list of pairs time/value with the type of inter-
polation (to set linear interpolation or other more
complex interpolations models).

An extract of the meta-model is shown in Figure 6.

3) Identification of the elements to be initialized in the
model: To simplify the construction of time function spec-
ification, we defined a graphic interface (Figure 7) that can
be used to extract the different elements or concepts of
the simulation model of interest to us, along with their
properties whatever the language used for programming.
It is then necessary for each selected attribute to define a
time function from those proposed, in order to obtain a
set of time functions that conform to language L3.

C. Language L2

L2 is a transformation language. Its purpose is to
provide to the modeller a generic transformation tool that
is simple to handle and capable of constructing partial
specification of the simulation model as a function of time
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based on data derived from the data structure generated
in L1 and from the model specified by L3.

1) Principle of language L2: Remember that the basic
principle of model transformations is to start off from a
model M, that conforms to a source meta-model M M,
then to specify the possible links between the source meta-
model and the target meta-model in order to generate
another model M, that conforms to the target meta-model
M My, such that M M, may be equal or not to M M,.
In the literature, there are several types of tools that can
be used for mapping, transformations or compositions of
models such as QVT, ATL, AML, AMW or Kompose
[10]. In the model transformation we are developing:

o Languages L1 and L3 are source meta-models, and
language L3 the target meta-model;

« Part of the target model can be introduced as source
model (Figure 8);

o The transformations can be in cascade.

Nevertheless, when transforming data structures into
time functions, the transformation rules vary from one
model to another. They depend on the modellers and
cannot be defined generically. We therefore propose de-
signing a domain specific language, adapted to themati-
cians that can be used to specify the transformations
they wish in order to initialize and parameterize the
model. To implement L2, we applied the rule-based model

transformation principle [20] which more effectively met
our requirements.

Transformation
(12)

Fig. 8. Transformation of L1 to L3

2) Meta-model of language L2: The meta-model of
language L2 comprises three major parts (Figure 9),
namely:

e An ”input” part to specify the input data structures
needed for transformation. These data structures are
derived from the meta-models of languages L1 and
L3 (as sources);

o A “transformation” part to describe all the possible
transformations of the data structures derived from
L1 and L3, in order to create some new data struc-
tures and initialize and parameterize the simulation
model;

o An “output” part to specify the type of output that
conforms to the meta-model of language L3 (the
target meta-model) after transformation.

3) Model derived from L2: The construction of a
transformation model is shown in Figure 10. It can be
specified from a concrete syntax such as GMF (on the
left), or XText (on the right) or another. It is then possible
to have transformation blocks in cascade, blocks linked to
each other by inputs and outputs, to form a non cyclical
graph up to obtaining the complete system.

We implemented the grammar of language L2 with
XText (Figure 11). It enables the user to:
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XInitializer{
transformation { ..;}
Output N
input{ ..;}
(13) output: ..;
}

Fig. 10. The three parts of L2 concrete syntax
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o Construct and initialize the model from external data
(L1) and from elements of the model (L.3)

o Specify how to recover the value of each parameter
of the time functions described in L3. In fact, the
principle is to specify the path where the data used
to parameterize the functions are located, then to use
them during transformation.

— For a constant function (X(¢) = s), the specified
path enables the extraction of a single parameter

— For an explicit time function (X = f(¢)) or for a
simple differential equation of time (X = df (¢)),
the specified path enables the extraction of a
sequence of values with a fixed time step.

— For a constant function by stage (X =
step((t1,51),,(tn,S,))) or a linear interpola-
tion (X = linear((t1,$1),, (tn, Sn)) such that
t1 > tinitialy tp, < tfinal’ the SpeCiﬁed path
enables recovery of a sequence of values with
intervals.

All these specifications are independent descriptions of
other parts of the system.

IV. Implementation

With the DSLs L1, L3 and L2 that we propose, we
are able to exploit all the heterogeneous data provided by
thematicians for parameterizing simulation models.

generate 12 "http://www.xtext.org/LltoL3/L2"
import "http://www.eclipse.org/emf/2002/Ecore™ as ecore
import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes

ModelInit:
'init'initializationName=ID':"
initializers+=Initializer*;

= Initializer:
{Initializer}
nameInitializer=ID '{'
package+=Package*
('transformation'transformation=Transformation) ?
(*input''{'input+=Input*'}"')?
('output''{'output=Output?'}’)?

“ Package:
'package’ packageName = STRING';'

= Input:
{Input}
typeInput=ID nameInput = ID
(('=''datalist' ' (' datalistPathLl = STRING ');')?|

Fig. 11. Extract of L2 concrete syntax

A. Construction of the generic structure from het-
erogeneous data sources

Using language L1, we can generate the input data
structure of the Mirana model [2] from a set of real,
heterogeneous data sources. Figure 12 shows an exam-

[d) default datasource_diag =8 +0 5 =) vl

4 DataBasel A | @ palette
4 postgis NEE fault datasource_diagram [ datasrc &2 | d) *datasoun
4 hasina R R DatasourceSpecification{
4 hasina + b3 Da ification "Dat sel" {
4 localhost ;p(é(:lll spz'g\f/.ey : "postgis"

atabase
4 542 : "hasina"
s Sé:ﬂzv sezney passwd :"hasina®
4 Antontona oL el host: "localhost"

+ port :"5432"
spéciier schema : "public"
DatabaseSpecification Shape. database : "Antontona"

Fig. 12. Extract of a data source specification with L1

ple of L1 graphical and textual concrete syntax use to
generate a code from the specification of a data source.
The generated code makes it possible to read the scheme



of the database then generate the input data structure of
the model (Figure 13).

ructure dstruct £3

ElementType{ name "Antontona"
ElementType{
name "Actions" type ComplexType
ElementType{
name "Duree"
type Float

type ComplexType

ElementTypel{
name "Quantite"
type Float
¥
ElementType{
name "out"
type String
ElementType{
name "Action"

type String

Fig. 13. Extract of the data structure generated from a specification of
data sources

B. Specification of the model

Using the graphic interface that we described in section
III-B3, we can extract all the data structures of the Mirana
model with their properties. These data structures with the
input data structures generated by L1 are then manipulated
by language L2 to generate the application code enabling
model initialization.

C. Specification of the transformation chain

With language L2, we are able to construct different
data structures that can be used to initialize all the data
structures of the Mirana model. We give below a few
examples of using language L2 to initialize certain data
structures of the model.

1) Creation of institutions in the model: In Mirana, an
institution is a set of norms that are constitutive for vo-
cabulary and regulatory for ”laws”. To create institutions
in the model, it is necessary to specify the place where
its initializer or its constructor is located, then to specify
the input data needed for its construction (Figure 14). It
is up to the generator to then seek the constructor in the
source code of the model, along with the data from the
generic structure instantiated by L1 to be able to construct
elements of the “Institution” concept.

InstitutionInitializer{
transformation{
package "mirana.institutions";
new Institution(name:String):

input{
name:data("L1.BD Ambohilero.Institutions.Institution");

output:institutions

Fig. 14. A way of constructing institutions with L2

2) Construction of constitutive norms in the model:
In the Mirana model, the constitutive norms define the
terminology in the form of a set of norms structured by
generalization/specialization relations and all/some rela-
tions. These norms may denote either objects (identifiers),
or sets of objects (concepts or categories). For each norm,
it is specified what type of object it can designate. Thus
a distinction is made between:

o The roles that designate individuals seen as parts of
an organization;
o The resources that designate stocks;
o The places that designate territories or parts of terri-
tories;
o The actions that designate activities.
The specification with L2 described in Figure 15 can be

used to generate the code that makes it possible to define
the constitutive norms of each institution.

init InstitutionInitializer;
ConceptInitializer{

transformation{
switch(zole) {

itution = Root.getInstitution(institutionName) ;

titution.addPlace (concept) ;

case "ac nstitution.addActor (concept)

case "action": institution.addActivity(concept) :

case "ressource": institution.addResource (concept) ;

input{
String institutionName = datalist ("Ll ions.Institution”);
String concept = datalist("L1.BD Am ero.Institutions.Concept”);
String role = datalist("L1.BD Ambohilero.Institutions.Categorie");

output{
report;|

TerritoryInitializer{

Fig. 15. Extract of the specification of constitutive norms with L2

3) Model initialization code generator: Specification
of the transformation chain with L2 enables the automatic
generation of the application code to construct and initial-
ize the model (Figure 16).

Institution. [3) RegutativeNo. [ Role java [3) constitutive. [3) Exchange java [3 mitobjectjava 52 | P40 =0

nainstitutionsInstitutions = new ArrayList<Object>():

static DataStructureExplorer obs:

eExplorer explorer){

Fig. 16. Extract of the code generated by L2 to initialize the Mirana
model



V. Conclusion

We have shown by implementing languages L1, L2
and L3 that it is possible to formulate generically the
initialization problems for complex models such as socio-
ecosystems, by using the concepts proposed by MDE. We
have thus been able to provide some tools and know-how
enabling thematicians to easily exploit the data available
to them. This approach has been applied to facilitating the
initialization of the Mirana complex model.
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