
Model Driven Engineering, applied to observation problems of
socio-environmental models

Hasina Lalaina Rakotonirainy
EDMI, University of Fianarantsoa

Fianarantsoa, Madagascar
hasina.rakotonirainy@cirad.fr

Jean-Pierre Müller
GREEN, CIRAD

Montpellier, France
jean-pierre.muller@cirad.fr

Bertin Olivier Ramamonjisoa
EDMI, University of Fianarantsoa

Fianarantsoa, Madagascar
bertinram@yahoo.fr

Abstract
Researchers need to use complex models to understand

socio-ecosystems (SES). However, observing SES models
becomes a difficult task and no general framework exists
to solve this problem. The aim of this paper is to propose
a generic framework to specify the observation of SES
models in order to easily generate the indicators that
thematicians wish to monitor during simulation. To that
end, we propose to reformulate the observation process
as a transformation problem between data structures. This
enables the concepts of Model Driven Engineering (MDE)
to be used in the implementation of the domain specific
languages (DSL). We designed dedicated languages to en-
able specify of what to observe, define which observation
strategy to use, and decide how to generate the indicators.

I. Introduction
Research on the sustainable management of renew-

able natural resources (RNR) has shown how difficult
it is to understand the interactions existing between
social dynamics and biophysical dynamics characteriz-
ing a given socio-ecosystem (SES). Some increasingly
complex models have been developed to facilitate the
shared understanding of stakeholders directly or indirectly
involved in local RNR management. However, using
complex models creates the need to observe what happens
during the simulation [1] in terms of indicators relating to
issues of model comprehension, research or development.
Observing simulation thus becomes as important as the
simulation itself. Observation consists of ascertaining the
state and the evolution of the model during simulation [2]
and establishing synthetic indictors for them.

To that end, some modelling and simulation tools
such as MIMOSA [3] and JAMES II [4] implement the
observation design model which signals changes in model
state. Some tools such as OSIF [5] use aspect-oriented
programming. Other tools such as PowerDEVS [6] use
the classic reactive or proactive mechanism of DEVS
formalism. When simulating discrete events, some re-
searchers have proposed to extend PDEVS formalism to a
generic observation mechanism [2] not influencing model
behaviour during simulation. Despite these efforts, the

approaches proposed for model observation are relatively
ad hoc. They depend on the formalism used during the
model construction and a general framework has yet to
be designed.

The purpose of this paper is to propose a generic
framework to specify the observation of SES models
in order to easily generate indicators. To that end, we
propose to reformulate the issue of model observation as
a problem of transformation of data structures into other
data structures. Thus, specifying model observation aims
at describing which structures of the model need to be
observed, with what observation strategy, then specifying
a transformation chain to transform these structures into
other data structures that are the indicators sought by
thematicians.

With this formulation, model driven engineering
(MDE) concepts [7] can be used to implement domain-
specific languages (DSL) that are dedicated to observing
complex models.

In section II, we introduce and justify the method-
ology used to design the observation DSLs. After that,
we present the observation process we propose for SES
models (section III), along with the preliminary results
(section IV). Lastly, we provide a glimpse of some future
work in the conclusion.

II. Methodology
MDE is a methodology to design and develop for

model-based software packages [7] that enables easy con-
struction of DSLs. One of the advantages of using DSLs is
that modellers can focus on research concerns and fields.
The application code is then generated automatically. For
DSL construction, OMG (Object Management Group)[8]
proposed the modelling pyramid (Figure 1) which is based
on five basic concepts: the real system, the model allowing
to represent that system, the meta-model which is use to
define the model, the meta-meta-model that is dedicated to
specify the meta model and the transformations between
models. In addition, we showed in [9] that by using the
concepts proposed by MDE, we are able to formulate
the problem of initializing and observing complex socio
environmental models in a generic manner using DSLs.

In order to be able to use MDE, we need to formulate
the observation process in terms of MDE (Figure 2),
specifying the meta models to describe the part of the
models simulation trajectories we wish to observe (the
observables - L4), the structure of the indicator we wish
to construct (L6) and transformation between the observ-
ables and the indicators (L5), bearing in mind that L1 to
L3 [9] are dedicated to initialization.

Fig. 1. OMG modelling pyramid

III. Observation process
Figure 3 shows the overall stages we propose to con-

struct the indicators desired by thematicians based on the
data structures of a SES model. In fact, during simulation,
it is possible to track changes in the data structures of
the model by defining an observation strategy and ob-
taining trajectories. Constructing a trajectory may require
us to specify a sampling strategy. Trajectories obtained
in that way are time-indexed data structures (sequence
<dates, data structures >). Consequently, we need to
further transform these time-indexed data structures (i.e.
the trajectories) into manipulable data structures in order
to obtain indicators. Lastly, the indicators can be stored
in a data medium, or visualized.

IV. Preliminary results
We specified the meta-models of the domain specific

languages (DSL) L4, L5 and L6 with the Ecore meta-
meta-model of the EMF (Eclipse Modelling Framework)
[10]. These DSLs are used to specify:

• The part of the model we wish to observe during the
simulation (L4) and how to form a set of trajectories

• The indicators with their visual presentations (L6)
• The transformations of the trajectories into indicators

(L5).
A. Language L4

Language L4 is designed to specify the part of the
model that we wish to observe and track during simulation
with a certain observation strategy.

1) State of the art for model observation: For each
simulation of a SES model, such as the Mirana model
[1], the data and interactions between the elements of
the model are numerous and very complex. Tracking

everything that takes place in the model is very demanding
in terms of time and in storage space. To solve the running
time problem, some tools such as SimExplorer [11] or
OpenMOLE[12] are able to distribute the simulations of
a model with sets of different parameters on clusters
of machines. Some computer programs use the lazy
evaluation technique [13] and avoid computing pointless
results when running a program. However, the solution we
propose needs to be adapted within thematicians needs.
In order to specify a part of a model, we need to provide
a way of precisely selecting and sampling any part of
the state of the model at different levels and on different
scales (spatial and temporal). The most common way in
IT is to use a query language such as SQL to query
relational databases, OQL for object-oriented databases,
OLAP for multidimensional databases, XPath to browse
DOM or XQuery for XML data. Nevertheless, a query
language depends on the data structures to be queried. In
the literature, XML is acknowledged as the universal data
description format [14] and its tree structure can be used
to represent the hierarchy of any data structure. Thus, in
order for L4 to be as generic as possible, we propose to
create an abstract syntax based on XPath and XQuery in
order to specify what we want to observe in the trajectory
of the model. However, we do not work on XML or
database content, but on the data structures themselves.
The fact that a trajectory has to be generated rather than
a state means that we have to add a sampling strategy.

2) Observation strategy: Defining an observation
strategy consists of specifying how, when and how often
the model is observed during simulation, in order to obtain
trajectories. In fact, two types of observation strategy can
be specified, namely:

• Oobserver: Each element of the model will signal
its change in state to a registered observer using
the observer design model [15]. In this case, the
simulation model has to implement this type of
pattern and it is necessary to describe the functions
that enable an observer to subscribe to the element
one would like to track and how the change in state
is signalled.

• Otimed: An observer queries the state of an observ-
able element of the model, specifying the observation
dates (unique, at constant time steps, etc.). It is then
necessary to specify how to extract the information
(getters).

The samples of the model will then be extracted during
simulation according to the choice of observation strategy
to form trajectories. For example, in the context of SES
models, it is possible, by specifying an observation strat-
egy, to track changes in the quantity of resource stocks
for a given geographical space.

Fig. 2. Correspondence between the modelling pyramid and the observation process

Fig. 3. Indicator construction process

Fig. 4. Extract of the language L4 meta-model

An extract of the language L4 meta-model is given in
Figure 4.
B. Language L5

Language L5 is used to transform the trajectories
derived from the implementation of language L4 into
indicators sought by thematicians (specified from lan-
guage L6 section IV-C). However, the trajectories arising
from simulation are obtained incrementally in line with
model evolution and the observation strategy defined from
language L4. It then becomes necessary to have a meta-
model capable of managing the data flows in order to
obtain indicators from the data sequences arising from
the simulation. For that purpose, we propose to employ
”DataFlow” architecture [16], which is an architecture
and technique that has been widely used in the field of

parallelism since the 1970s to perform transformations
that are both incremental and parallel, along with the
data stream management system (DSMS) [17] which can
be used to manage and query data in a continuous data
stream.

Thus, to obtain indicators, we propose the process
described in Figure 5. The principle consists of recovering
the trajectories generated incrementally during simulation,
then preprocessing them with a view to extracting the tem-
poral part, in order to adapt the format of the data to data
stream handling. The next stage consists of implementing
a transformation chain, specified by the user, on the data
stream for as long as the data structures to be manipulated
are available. The results are modified on each arrival of
new data structures.

Fig. 5. from trajectories to indicators

Two types of processing are therefore taken into ac-
count, namely:

• Preprocessing
• Manipulation of data structures to construct indica-

tors.

1) Preprocessing: Preprocessing makes it possible to
obtain some computer data structures from time indexed
data sequences, which are recovered during simulation.
In substance, for each available time indexed data item
(simple or complex), an attributive structure is created
with a time attribute, along with an attribute with the
simple or complex data item.

2) Manipulation of data structures to generate in-
dicators: In order to understand the relations existing
between the data structures of a model, or obtain synthetic
indicators, thematicians use data processing and statistical
analysis. They call upon tools such as R, STATA, SPSS or
SAS. These tools have several packages able to automati-
cally process various calculations, methods and statistical
models. When simulating a SES model, the data structures
available derived from the transformation of trajectories,
along with the indicators to be constructed, evolve in line
with the evolution of the model. Consequently, the indi-
cators obtained from various operations (mean, median,
standard deviation, quantile, etc.) also evolve in line with
the data structures available during the simulation process.

We therefore propose a meta-model (Figure 6), based
on data stream management, which meets the expectations
of thematicians, making it possible to specify transfor-
mations (statistical methods, arithmetic calculations, etc.)
along with the types of data they need in order to function,
so as to execute them and obtain some results each time
the necessary data are available.

Specification based on this meta-model is used to
obtain a graph where the nodes are the transformations to
be carried out and the arcs serve for the circulation of the
available data streams, in order to form the inputs needed
to activate a node, and their outputs (results obtained
after the performance of a transformation), which may be
indicators sought by thematicians. The outputs of a node
can be used as inputs for other nodes. The resulting graph
represents the execution structure for the transformation
chain that needs to be implemented to generate the desired
indicators.

Fig. 6. L5 meta-model to obtain the indicators

For example, let us assume that, during simulation,
we wish to ascertain changes in the average area of a
type of specific habitat, in hectares, within a geographical
space. To do that, we merely need to specify a function
that is able to calculate the mean of a sequence of data,
along with the input data stream needed for its execution.
Each time the simulation model evolves (i.e. new data
available), the function uses the new available input data
structure and updates the mean of the values observed up
to then.
C. Language L6

Language 6 serves to specify the structure of the
indicators, along with their presentations on the user
side. It should be noted that an indicator is a computer
data structure that represents the information needed by
thematicians to understand the functioning of the model so
as to carry out an assessment or make decisions regarding
the system being studied. The indicator may be stored in
a data medium (database, files, etc.) for possible uses, or
visualized in an interactive visualization tool.

For this, we propose a meta-model comprising two
parts:

• A part to specify the structure of the indicators
• Another part to specify data sinks charged to visually

present the indicators or store them on a medium.
A part of the meta-model of language L1 [9] is used

to specify data structures. It can also be used to describe
the structures of indicators in language L6.

1) State of the art for the visual presentation of data:
Many researchers have been interested in the visualization
problem for around forty years. Solutions for representing
data, information or knowledge are continuing to evolve.
In the 1970s, some computer science laboratories worked

on the visualization of scientific data, which led to the
development of metric and statistical methods, techniques
and processes to represent scientific data. In the 1990s,
multiple-expert cross-referenced approaches bringing to-
gether engineering and cognition were proposed in order
to improve the understanding of the data being studied.
These approaches gave rise to an important field of
research on the graphic representation of information
known as ”InfoVis” [18]. It consists of transforming data
structures into visual forms that can be understood by
stakeholders in the system. To that end, Card et al. [19]
formalized the data visualization process (Figure 7) in
order to enhance knowledge starting from raw data or
data tables.

Fig. 7. Process of creating visualization according to [19]

At the same time as these approaches, some other
data visualization techniques saw the light of day.
Among others, the technique called ”design” or ”OOR”
(for Object-Oriented Representation), inspired from the
object-oriented concept, can be used for the visual rep-
resentation of complex data. The so-called ”extended
viewpoint” approach [20] was developed to represent and
control the visualization of complex information systems
(CIS). To that end, Bihanic and Polacsek [20] used MDE
and defined DSLs composed of a modelling language
conforming to MOF [21] to represent the data of the
CIS (source language), a language called VSML (Visual
Semantic Unified Modelling Language) also conforming
to MOF to represent graphically the model of the CIS
(target language) and a model transformation language
used to pass from a CIS model to a visual representation
model (Figure 9).

Fig. 9. Transformation of the modelling language to the VSML

In computer science, as in scientific visualization, there

arose the need to separate what one wishes to visual-
ize (the model) from how one visualizes it (the view).
To that end, Trygve Reenskaug developed the Model
View Controller (MVC) architecture [22], which is a
standardized framework whose principle is to separate
the data (model), the presentation (the view) and the
processing (the controller) for easier handling, and easier
visualization of voluminous and complex data.

For the visual presentation or storage of indicators,
we based ourselves on [20] and [22] and we propose
a meta-model (Figure 8) based on the ”Model View”
(MV) architecture of the MVC design model. The MV
architecture consists of distinguishing the data model,
notably the indicators and their visual presentation on the
user side, or their storage on a data medium.

2) Representation of indicators: The proposed meta-
model enables the user to specify:

• A data model: to specify the class of model, along
with the specific methods adapted to loading and
containing the indicator data

• A view (or data medium): to describe what compo-
nent (e.g. list, tree, database table, file, etc.) will take
charge of visualizing or storing the data recovered
from the data model

• The association between the model and the view:
to specify the method (setModel) used to associate
the data model with one or more views in order to
generate one or more visualizations of the indicators.
A data model can be visualized or stored at the same
time in different components. This specification then
enables the automatic generation of an executable
code to display the data via a tree, plot, map, label,
etc. or to store them on a data medium such as the
tables of a database, files, etc..

3) Example of using L6: Let us take the example
of a data structure (or an indicator) that describes the
area of habitats in hectares in a geographical space at a
given time. To display these data in a graphic component
”JTable” of the Java language, it is necessary to specify:

• The model class (DefaultTableModel) along with
the parameters of its constructor or the methods
associated with it (addColumn, addRow, etc.) in
order to load the data into a table model instance

• The class of the graphic component (JTable), to
display the data in a table

• The relation (setModel) between the view (JTable)
and the model (DefaultTableModel) so that the data
recovered from the DefaultTableModel model are
displayed in the JTable component. This specification
automatically generates the executable code, making
it possible to visualize the data in a table (Figure
10).

Fig. 8. Meta-model of language L6

Fig. 10. Example of visualization generated from L6

V. Conclusion and Prospects
In this paper, we have specified DSLs L4, L5 and

L6 using MDE concepts making it possible to formulate
the observation process for complex SES models in a
generic manner. Nevertheless, in order for this proposal
to be operational, we still need to specify, for each meta-
model, a textual or graphical concrete syntax, along with
generation of the associated code.

Acknowledgements
This research was funded by a PhD grant from

AIRD/CIRAD.

References
[1] S. Aubert, J.-P. Müller, and J. Ralihalizara, “Mi-

rana: a socio-ecological model for assessing sus-
tainability of community-based regulations,” Inter-
national Environmental Modelling and Software So-
ciety (iEMSs), p. 8, 2010.

[2] G. Quesnel, R. Trepos, and r. Ramat, “Observations
of discrete event models.” in SIMULTECH, N. Pina,
J. Kacprzyk, and M. S. Obaidat, Eds. SciTePress,
2012, pp. 32–41.

[3] J. P. Müller, “Mimosa: using ontologies for modeling
and simulation,” in Proceedings of the 8th Asia-
Pacific complex systems conference (Complex’07),
2007.

[4] J. Himmelspach, “James ii: Extending, using, and
experiments,” in Proceedings of the 5th International
ICST Conference on Simulation Tools and Tech-
niques, ser. SIMUTOOLS ’12. ICST, 2012, pp.
208–210.

[5] J. Ribault, O. Dalle, D. Conan, and S. Leriche, “Osif:
a framework to instrument, validate, and analyze
simulations,” in Proceedings of the 3rd International
ICST Conference on Simulation Tools and Tech-
niques. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engi-
neering), 2010, p. 56.

[6] F. Bergero and E. Kofman, “Powerdevs: a tool for
hybrid system modeling and real-time simulation,”
SIMULATION, vol. 87, no. 1-2, pp. 113–132, 2011.

[7] J.-M. Jézéquel, B. Combemale, and D. Vojtisek,
Ingénierie Dirigée par les Modèles : des concepts
à la pratique..., ser. Références sciences, Ellipses,
Ed. Ellipses, Feb. 2012.

[8] OMG, “About the Object Management
Group,” 2014, 05.10.2014. [Online]. Available:

http://www.omg.org
[9] H. L. Rakotonirainy, J. Müller, and B. O. Ramamon-

jisoa, “Towards a generic framework for the initial-
ization and the observation of socio-environmental
models,” in Model and Data Engineering - 4th Inter-
national Conference, MEDI 2014, Larnaca, Cyprus,
September 24-26, 2014, 2014, pp. 45–52.

[10] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks, EMF: Eclipse Modeling Framework 2.0,
2nd ed. Addison-Wesley Professional, 2009.

[11] F. Chuffart, N. Dumoulin, T. Faure, and
G. Deffuant, “Simexplorer: Programming ex-
perimental designs on models and managing
quality of modelling process,” IJAEIS, vol. 1,
no. 1, pp. 55–68, 2010. [Online]. Available:
http://dx.doi.org/10.4018/jaeis.2010101304

[12] J. Passerat-Palmbach, M. Leclaire, R. Reuillon,
Z. Wang, and D. Rueckert, “OpenMOLE: a Work-
flow Engine for Distributed Medical Image Anal-
ysis,” in International Workshop on High Perfor-
mance Computing for Biomedical Image Analysis
(part of MICCAI 2014), Boston, United States, Sep.
2014.

[13] T. Johnsson, “Efficient compilation of lazy evalua-
tion,” SIGPLAN Not., vol. 39, no. 4, pp. 125–138,
Apr. 2004.

[14] D. Florescu and D. Kossmann, “Storing and query-
ing xml data using an rdmbs,” IEEE Data Engineer-
ing Bulletin, Special Issue on, vol. 1060, no. 22, p. 3,
1999.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[16] J. B. Dennis and D. P. Misunas, “A preliminary
architecture for a basic data-flow processor,”
SIGARCH Comput. Archit. News, vol. 3, no. 4,
pp. 126–132, Dec. 1974. [Online]. Available:
http://doi.acm.org/10.1145/641675.642111

[17] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Manku, C. Olston, J. Rosen-
stein, and R. Varma, “Query processing, resource
management, and approximation in a data stream
management system.” CIDR, 2003.

[18] K. Andrews, S. F. Roth, and P. C. Wong, Eds.,
IEEE Symposium on Information Visualization 2001
(INFOVIS’01), San Diego, CA, USA, October 22-23,
2001. IEEE Computer Society, 2001.

[19] S. K. Card, J. D. Mackinlay, and B. Shneiderman,
Eds., Readings in Information Visualization: Using
Vision to Think. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999.

[20] D. Bihanic and T. Polacsek, “Models for
visualisation of complex information systems,”
in 16th International Conference on Information
Visualisation, IV 2012, Montpellier, France, July 11-
13, 2012, 2012, pp. 130–135. [Online]. Available:
http://dx.doi.org/10.1109/IV.2012.32

[21] MOF, “Meta object facility (mof) 2.0 core specifi-
cation,” OMG, Tech. Rep. formal/06-01-01, 2001,
oMG Available Specification. [Online]. Available:
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[22] S. Burbeck, “Applications programming in
smalltalk-80(tm): How to use model-view-controller
(mvc),” 1987.

