Organic compared to conventional soybean yielded similarly as an entry crop, similar in the 2nd year (red clover-maize), but 6% higher in the 3rd year (soybean-wheat/red clover-maize) when organic crops are eligible for the organic premium. Yield correlated with grain N% (r=0.81, n=48), weed (r=-0.78), and crop densities (r=0.42) in 2015, crop densities (r=0.46) in 2016, and grain N% (r=0.68, n=84)) and crop densities (r=0.42) in 2017.

Organic compared to conventional maize yielded 32% lower as an entry crop, similar in the 2nd year (red clover-maize), but 6% higher in the 3rd year (soybean-wheat/red clover-maize) when organic crops are eligible for the organic premium. Yield correlated with grain N% (r=0.81, n=48), weed (r=-0.78), and crop densities (r=0.42) in 2015, crop densities (r=0.46) in 2016, and grain N% (r=0.68, n=84)) and crop densities (r=0.42) in 2017.

We planted treated (fungicide and insecticide) GMO maize, soybean and wheat (non-GMO) varieties at recommended and high seeding rates; applied synthetic N at recommended and high rates to maize and wheat; applied herbicide for weed control; and applied a fungicide to the high input treatment in conventional. In organic, we planted maize and soybean isolines and the same wheat variety at the same seeding and N rates (maize and wheat), and cultivated maize and soybean for weed control.

We calculated partial returns using variable (seed, fertilizer, herbicide, fungicide, labor, repair/maintenance, fuel/lubricant, hauling) and fixed (tractor/equipment) costs. We used conventional prices to estimate revenue for 2015 and 2016. We find that yields in organic horticulture are on average 10 to 32% lower than those in conventional horticulture. The variance of yields was not significantly different between organic and conventional systems, hence we find no evidence of a larger inter annual variability in organic versus conventional horticulture. However, the coefficient of variation is significantly higher for organic yields vs. conventional ones reflecting the yield gap between these systems.

We find no significant effect on yield ratios of type of crop, type of product nor type of climate. However, data on tropical zones were scarce.

As a conclusion, despite lower yields, productivity of organic systems is not more instable that productivity of conventional ones, an important result for farmers and future development of organic horticulture.

Keywords: Meta-analysis, organic farming, organic agriculture, horticulture, vegetable, fruit, yield ratio, yield variability

Abstract: More growers contemplate transitioning from conventional to organic cropping systems. The USDA requires a 36-month prohibiting use of GMOs, pesticides, etc. before certifying the land as organic. Growers must thus grow maize, soybean, and wheat during the transition with lower yield, higher cost, and no price premium. Identification of the best crop rotation is critical for profitability during the transition.

The experimental design is a split-split plot with cropping systems (conventional and organic) as whole plots, rotations (red clover-maize-soybean; soybean-wheat/red clover-maize; and maize-soybean-maize) as sub-plots, and management (recommended and high inputs) as sub-subplots.

We find no significant effect on yield ratios of type of crop, type of product nor type of climate. However, data on tropical zones were scarce.

As a conclusion, despite lower yields, productivity of organic systems is not more instable that productivity of conventional ones, an important result for farmers and future development of organic horticulture.

Keywords: Meta-analysis, organic farming, organic agriculture, horticulture, vegetable, fruit, yield ratio, yield variability
INNOVATIVE CROPPING AND FARMING SYSTEMS FOR HIGH QUALITY FOOD PRODUCTION SYSTEMS

CICG, GENEVA SWITZERLAND
27 - 31 AUGUST 2018
COMMITTEES

ORGANIZING COMMITTEE

- Christoph Carlen (president), Agroscope, Conthey, Switzerland
- Alice Baux, Agroscope, Nyon, Switzerland
- Raphaël Charles, FiBL, Lausanne, Switzerland
- Emmanuel Frossard, ETH, Zürich, Switzerland
- Bernard Jeangros, Agroscope, Nyon, Switzerland
- Fabio Mascher, SSA/SGPW and Agroscope, Nyon, Switzerland
- Monique Schwartz-Seale, Agroscope, Nyon, Switzerland
- Sokrat Sinaj, Agroscope, Nyon, Switzerland

SCIENTIFIC COMMITTEE

CORE SCIENTIFIC COMMITTEE

- Emmanuel Frossard (president), ETH, Zürich, Switzerland
- Alice Baux, Agroscope, Nyon, Switzerland
- Christoph Carlen, Agroscope, Conthey, Switzerland
- Raphaël Charles, FiBL, Lausanne, Switzerland
- Bernard Jeangros, Agroscope, Nyon, Switzerland
- Fabio Mascher, Agroscope and SSA/SGPW, Nyon, Switzerland
- Sokrat Sinaj, Agroscope, Nyon, Switzerland

EXTENDED SCIENTIFIC COMMITTEE

- Bernard Belk, Federal Office of Agriculture, Switzerland
- Jan Bengtsson, University of Agric. Sciences, Sweden
- Else Bünemann, FiBL, Switzerland
- Nathalie Colbach, INRA Dijon, France
- Branko Cupina, University of Novi Sad, Serbia
- Philippe Debeake, INRA Castanet-Tolosan, France
- Antonio Delgado, University of Seviila, Spain
- Maria Finckh, University of Kassel, Germany
- Felix Herzog, Agroscope, Switzerland
- Jürg Hiltbrunner, Agroscope, Switzerland
- Eric Justes, CIRAD, France
- Andreas Keiser, HAFL, Switzerland
- Samuel Knapp, Techn. University of München, Germany
- François LeFort, Hepia, Switzerland
- Frank Liebisch, ETH, Switzerland
- Thomas Nesme, Bordeaux Sciences Agro, France
- Astrid Oberson, ETH, Switzerland
- Elisa Pellegrino, Sant’Anna University of Pisa, Italy
- Didier Pellet, Agroscope, Switzerland
- Pirjo Peltonen-Sainio, MTT Agrifood Research, Finland
- Caroline Rémond, University of Reims Champagne-Ardenne, France
- Evan Rrocco, University of Tirana, Albania
- Mariana C. Rufino, Lancaster University, United Kingdom
- Meagan Schipanski, Colorado State University, United States of America
- Urs Schmidhalter, Techn. University of München, Germany
- Fred Stoddard, University of Helsinki, Finland
- Roberto Tuberosa, University of Bologna, Italy
- Marcel van der Heijden, Agroscope, Switzerland
- Christine Watson, SRUC, United Kingdom
- Jacques Wery, Montpellier Supagro, France
- Philip White, James Hutton Institute, United Kingdom
- Judith Wirth, Agroscope, Switzerland
- Noura Ziadi, Quebec Research and Development Centre, Canada