18th European Weed Research Society Symposium

EWRS 2018

17-21 June 2018
Ljubljana, Slovenia

New approaches for smarter weed management

www.ewrs2018.org

Book of Abstracts
Organiser
Kmetijski inštitut Slovenije (KIS) – Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia

Programme Committee
Dr. Jukka Salonen, Chairman / EWRS Vice-President; Prof. Dr. Hüsrev Mennan, Scientific Secretary; Prof. Dr. Paul Neve, EWRS President

EWRS Scientific Committee
Dr. Theo Verwijst, Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Sweden; Prof. Dr. Garifalia Economou-Antonaka, Faculty of Crop Production Science, Agricultural University of Athens, Greece; Dr. Kirsten Torrese, Norwegian Institute of Bioeconomy Research (NIBIO), Norway; Dr. Roland Beffa, Bayer Crop Science AG, Integrated Weed Management & Resistance Biology, Germany; Dr. Ivo O. Brants, Monsanto Europe S.A, Belgium; Jan Petersen, University of Applied Science Bingen, Germany; Christian Bohren, Research Station Agroscope Changins-Wädenswil (ACW), Switzerland; Dr. Per Kudsk, Professor & Head of Section, Dept. of Agroecology, University of Aarhus, Denmark; Maurizio Vurro, Istituto di Scienze delle Produzioni Alimentari – CNR, Italy; Dr. Marleen Riemens, Wageningen University and Research Centre, Netherlands; Prof. Dr. Svend Christensen, University of Copenhagen, Faculty of Life Sciences, Denmark; Dr. Hanan Eizenberg, Newe Ya’ar Research Center, Israel; Dr. Euro Pannacci, Dept. of Agricultural, Food and Environmental Sciences – University of Perugia, Italy; Dr. Paula Westerman, Group Crop Health, Faculty of Agricultural and Environmental Science, University of Rostock, Germany

Local Organising Committee
Assoc. Prof. Dr. Andrej Simončič, President, Agricultural Institute of Slovenia; Dr. Robert Leskovšek, Agricultural Institute of Slovenia; Dr. Gregor Urek, Agricultural Institute of Slovenia; Prof. Dr. Stanislav Trdan, Biotechnical Faculty, University of Ljubljana; Prof. Dr. Mario Lešnik, Faculty of Agriculture and Life Sciences, University of Maribor; Ela Žilič, M. Sc., Agricultural Institute of Slovenia; Marjeta Urbančič Zemljič, M. Sc., Agricultural Institute of Slovenia

Editor
Andrej Simončič

Published by
Kmetijski inštitut Slovenije, 2018

The publication is published e-only – http://www.ewrs.org

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani
COBISS.SI-ID=295336960
Stylosanthes reduces weed infestation in upland rice cropping systems in the Mid-West of Madagascar

Antsa Rafenomanjato¹, Antsa Rafenomanjato², Aude Ripoche³, Pascal Marnotte⁴, Paolo Barberi², Patrice Autfray³, Jean Augustin Randriamampianina⁵, Anna Camilla Moonen²

¹Scuola Superiore Sant’Anna, Pisa (Italy), ANTANANARIVO, Madagascar
²Institute of Life Sciences, Scuola Superiore Sant’Anna, PISA, Italy
³CIRAD, UPR AIDA, MONTPELLIER, France
⁴CIRAD UPR AIDA, SAINT-DENIS, Reunion
⁵FOFIFA, ANTANANARIVO, Madagascar

In the Mid-West of Madagascar, upland rice is highly suffering from low soil fertility and weed pressure. Farmers cannot afford herbicides and rely entirely on a labour-intensive hand weeding. Recently, a no-till system with stylosanthes, a legume cover crop managed as living mulch, has been introduced. It has been proven to enhance soil fertility, but its effect on the weed community was not yet studied. This work aims at assessing the effect of stylosanthes on weed abundance, weed composition, and rice yield. Field experiments were conducted at Ivory station, Mid-West of Madagascar (19°33.29’S, 46° 24.913’E) in 2016 and 2017. Two factors were tested in a split-plot design with 6 replications: main plot factor was soil management (conventional tillage [CT] vs. no-till with stylosanthes [NT]), and sub plot factor was fertilization (manure [F1] vs. manure + NPK + urea [F2]). Weedy and weed-free plots were set up in each factor combination. Stylo-plots (rice and stylosanthes alone, weeds were removed) were set up only in NT, to test potential competition between stylosanthes and rice. Data collected were total weed cover at 60 DAS, rice yield and weed biomass at harvest (grass weeds, broadleaved and sedge separately). Fertilization did not significantly affect total weed cover. Total weed cover was around 65% lower in NT than in CT in both years. Weed biomass at harvest showed that this reduction was mainly due to a decline of grass weeds, as they were the most important functional group in all systems. In CT, rice yield losses due to weeds were around 50% and 85% respectively in 2016 and 2017 showing an important year effect. In NT, rice yield losses due to stylosanthes + weeds were around 50% in both years. Rice yield loss due to stylosanthes alone was not significant.