E-SOVE
the 21st conference 2018

Arthropod Vector Science for the benefit of society: Educate, Empathize, Engage

22nd - 26th October 2018
Palermo, Italy

PROGRAM AND ABSTRACTS
Modelling temporal dynamics of *Culicoides* populations on Reunion Island (Indian Ocean) vectors of viruses of veterinary importance

Y. Grimaud 1,2,3, H. Guis 4,5,6, F. Boucher 3,4, F. Chiroleu 7, A. Tran 3,4,8, I. Rakotoarivony 4,9, M. Duhayon 4,9, C. Cêtre-Sossah 3,4, O. Esnault 2,7, E. Cardinale 3,4 and C. Garros 3,4

1GDS Réunion, 1 rue du Père Hauck, 97418 La Plaine des Cafres, La Réunion, France
2University of Reunion Island, 15 avenue René Cassin, 97715 Sainte Clotilde, La Réunion, France
3CIRAD, UMR ASTRE, F-97490 Sainte Clotilde, La Réunion, France
4ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
5CIRAD, UMR ASTRE, 101 Antananarivo, Madagascar
6Institut Pasteur of Madagascar; Epidemiology and clinical research unit, 101 Antananarivo, Madagascar
7CIRAD, UMR PBVMT, F-97410 Saint Pierre, La Réunion, France
8CIRAD, UMR TETIS, F-97490 Sainte Clotilde, La Réunion, France
9CIRAD, UMR ASTRE, F-34398 Montpellier, France

Reunion Island regularly faces outbreaks of epizootic haemorrhagic disease (EHD) and bluetongue (BT), two viral diseases transmitted by haematophagous midges of the genus *Culicoides* (Diptera: Ceratopogonidae) to animals of economic importance such as cattle, sheep and goats. To date, five species of *Culicoides* are recorded in Reunion Island: *Culicoides bolitinos*, *C. enderleini*, *C. grahamii*, *C. imicola*, and *C. kibatiensis*. Although epizootics and *Culicoides* diversity are already well documented, abundance and seasonality of the five species are not. According to a recent viral screening of local *Culicoides* populations (unpublished data), at least four species are involved in the transmission of each virus. Therefore, characterizing the risk period by modelling the temporal dynamics of the five *Culicoides* species is a key step to better understand BT and EHD epidemiology and improve their control. Between 2016 and 2018, 55 biweekly *Culicoides* catches using OVI traps were set up in 11 sites. A hurdle model (i.e. a presence/absence model combined with an abundance model) was developed for each species in order to determine climatic and environmental drivers of presence and abundance of *Culicoides*.

Regarding abundance, average *Culicoides* catch per site ranges from 4 to 45,875 individuals. Also, diversity differ between sites with *C. imicola* being dominant at low altitude and *C. kibatiensis* at high altitude. A marked seasonality is observed for the 3 other species. Eleven meteorological and environmental determinants were used to model presence and abundance of each species: temperature, humidity, rain, wind, global radiation, vegetation index, eco-climatic area, land use, farm density, animal density and length of nearby watercourse. The association of these determinants to explain presence and/or abundance depends on the species, but each plays a role in at least one species. This is the first study to model *Culicoides* population dynamics in Reunion Island. In the absence of vaccination and vector control strategies, determining periods of high abundance of *Culicoides* is a crucial first step towards identifying periods at high risk of transmission for both viruses.