Introduction

African swine fever virus (ASFV), the only member of the Asfarviridae family, often leads to high mortalities in domestic pigs, resulting in devastating impacts to the pig industry of many countries in sub-Saharan Africa, the Indian Ocean and more recently, in eastern Europe.

The natural reservoirs of ASF in Africa are the sarids ticks of the genus Ornithodoros and wild suids, primarily warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus), in which infection is inapparent.

The disease hampers food security and impacts on the well-being of small scale farmers and the development of pig farming in Mozambique. The Sofala Province in Central Mozambique is particularly prone to frequent outbreaks.

Previous studies indicated the frequent occurrence of ASF outbreaks in areas adjacent to the Gorongosa National Park (GNP) in Sofala Province. However, the possible source of those outbreaks has never been investigated.

Materials and Methods

Results

A total of 1658 soft ticks were recovered from warthog burrows and pig pens at the wildlife-livestock interface of the GNP.

Viral DNA was confirmed in 19% of Ornithodoros porcinus porcinus and 15% of O. p. domesticus. Live virus was observed in approximately 50% of the PCR-positive samples with 19 haemadsorbing virus isolates recovered.

Phylogenetic analysis based on the p72 showed isolates clustering in genotype II (homologous to contemporary isolates from southern Africa, the Indian Ocean and Eastern Europe), genotype V (similar to previous isolates from Mozambique and Malawi) and within a new, previously unidentified genotype, designated genotype XXIV.

The isolates classified within genotypes II and XXIV clustered into three major sub-types based on their p30 and p54 sequences.

Based on analysis of the CVR gene, the viruses were classified into eight subgroups.

These viruses were genotyped using a combination of partial gene sequencing (p72, p30 and p54) and phylogenetic comparisons and analysis of the central variable region (CVR) of the B602L gene.

Conclusion

The results suggest that soft ticks found in natural and domestic habitats at the GNP interface act as a permanent source of different strains of ASFV for domestic pigs.

The high infestation rates and genetic diversity of viruses found in those ticks were pronounced and included previously identified genotypes (II, V) and but also a newly identified genotype (XXIV).

This highlights the epidemiological importance of the sylvatic cycle in harboring and disseminating new and existing virus strains in the Mozambican pig value chain.

The recent recurrent emergence of genotype II ASF outbreaks outside the African continent is concerning.

The isolates in this study were genetically linked to viruses currently circulating in Eastern Europe, Russia and China. This highlights the importance and the need to further investigate the characteristics, distribution and diversity of the ASFV maintained within wild hosts in East and southern Africa and the transmission patterns and pathways.

Acknowledgements

The project was supported by the Wellcome Trust (Project number 210163/183 AR/16/GS/234). We thank the GNP authorities for permission and relevant information, the field staff at the Agricultural District Directorate in Gorongosa and The Carbon Sequestration Project in Nhambita for their support during the field work. The following people were involved in the laboratory analysis: Ricardo Lopes Pereira for helping with the warthog sampling and Dr. Elisabeth Spichig, the former head of Regional Veterinary Laboratory provided unfailing support.

References

Boshoff, et al., 2007. Veterinary Microbiology, 121, 45-55.
Nico et al., 2009. Archives of Virology, 151, 2475-2494.