Optimum Oil Palm (Elaeis guineensis Jacq.) Planting Density for West Africa

Context: Oil palm in Nigeria, West-Africa and the world

- Most productive oil crop with yield potentials of 4-8 tons of oil per hectare.
- 2.1 million hectares worldwide (average yield 3.8 t/ha) and 4.1 million in West-Africa (average yield 0.7 t/ha) (FAOSTAT, 2016).
- Oil palms are planted for 25-30 years and foliage increases up to 12 years after planting.
- Optimum plant density evolves during the life cycle but can not be changed easily after planting.
- Planting density is essential to maximize yield over the planting cycle.
- For phytosanitary reasons it is preferable to replant at the same density.
- Planting material, soil type and climate are representative of the west-African oil palm regions.
- Higher planting density gives higher yields in the first years which later drop due to excessive interpalm competition.
- Competition for resources between palms is evident through the effect on production.
- Too low a density will not achieve the best yield potential thus underutilizing the land and natural resources.
- Most productive oil crop with yield potentials of 4-8 tons of oil per hectare.
- 21 million hectares worldwide (average yield 3.8 t/ha) and 4.1 million in West-Africa (average yield 0.7 t/ha) (FAOSTAT, 2016).
- Oil palms are planted for 25-30 years and foliage increases up to 12 years after planting.
- Optimum plant density evolves during the life cycle but can not be changed easily after planting.
- Planting density is essential to maximize yield over the planting cycle.
- For phytosanitary reasons it is preferable to replant at the same density.
- Planting material, soil type and climate are representative of the west-African oil palm regions.
- Higher planting density gives higher yields in the first years which later drop due to excessive interpalm competition.
- Competition for resources between palms is evident through the effect on production.
- Too low a density will not achieve the best yield potential thus underutilizing the land and natural resources.
- Most productive oil crop with yield potentials of 4-8 tons of oil per hectare.
- 21 million hectares worldwide (average yield 3.8 t/ha) and 4.1 million in West-Africa (average yield 0.7 t/ha) (FAOSTAT, 2016).
- Oil palms are planted for 25-30 years and foliage increases up to 12 years after planting.
- Optimum plant density evolves during the life cycle but can not be changed easily after planting.
- Planting density is essential to maximize yield over the planting cycle.
- For phytosanitary reasons it is preferable to replant at the same density.
- Planting material, soil type and climate are representative of the west-African oil palm regions.
- Higher planting density gives higher yields in the first years which later drop due to excessive interpalm competition.
- Competition for resources between palms is evident through the effect on production.
- Too low a density will not achieve the best yield potential thus underutilizing the land and natural resources.
- Most productive oil crop with yield potentials of 4-8 tons of oil per hectare.
- 21 million hectares worldwide (average yield 3.8 t/ha) and 4.1 million in West-Africa (average yield 0.7 t/ha) (FAOSTAT, 2016).
- Oil palms are planted for 25-30 years and foliage increases up to 12 years after planting.
- Optimum plant density evolves during the life cycle but can not be changed easily after planting.
- Planting density is essential to maximize yield over the planting cycle.
- For phytosanitary reasons it is preferable to replant at the same density.
- Planting material, soil type and climate are representative of the west-African oil palm regions.
- Higher planting density gives higher yields in the first years which later drop due to excessive interpalm competition.
- Competition for resources between palms is evident through the effect on production.
- Too low a density will not achieve the best yield potential thus underutilizing the land and natural resources.