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Abstract 14 

Nondestructive methods such as near infrared spectroscopy (NIRS) are increasingly used in sorting 15 

lines to assess quality traits of unripe fruit, i.e. dry matter (DM) and total soluble solid (TSS) contents, 16 

in order to create homogenous batches of fruit. The use of this approach is based on the assumption 17 

that fruit quality traits at harvest are reliable indicators of their post-harvest behavior and their 18 

quality after ripening. The present study tested this assumption by analyzing the relationships 19 

between quality traits at harvest and after ripening. In parallel, models were developed to determine 20 

the capacity of NIRS measurements on unripe fruit at harvest to predict their shelf life and quality 21 

after ripening.  22 

The quality traits DM, TSS content, pulp color (PC) and titratable acidity (TA) of 92 mangoes from 23 

different harvests, production years, and orchards were compared at harvest and after ripening. 24 

Previously developed NIRS models were used to nondestructively assess the quality traits of the 25 

mangoes at harvest. New partial least squares (PLS) regressions using different variable selection 26 

procedures and preprocessing techniques were used to predict fruit shelf life and fruit quality after 27 

ripening based on NIRS measurements at harvest. 28 

Weak relationships (r² < 0.41) were found between fruit quality traits measured at harvest and after 29 

ripening, except for DM content (r² = 0.61). The PC of mango measured at harvest was found to be 30 

the best indicator of fruit shelf life. Errors of PLS regressions to predict the TSS content (RMSEV = 31 

1.1%), titratable acidity (RMSEV = 0.52%), and the Hue angle of the flesh (RMSEV = 1.86 °) were in the 32 

same range as those of linear regressions based on quality traits assessed at harvest except for PC. 33 

This work provides evidence that fruit maturity and quality should be assessed using different 34 

indicators. 35 
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Introduction 39 

The heterogeneity of quality and maturity of fruit at harvest is a widespread problem in numerous 40 

species that needs to be addressed all along the supply chain to reduce postharvest losses and to 41 

insure constant quality for consumers. After harvest, fruit are generally sorted and graded to create 42 

homogenous batches based on the assumption that their post-harvest behavior and quality will be 43 

similar after ripening. To improve quality assessments based on visual rating, i.e. absence of defects, 44 

size, color and shape, several nondestructive methods have been developed to assess other fruit 45 

quality descriptors at the time of measurement such as total soluble solid (TSS) content, titratable 46 

acidity (TA), and the dry matter (DM) content. These methods include the electronic nose (Lebrun et 47 

al., 2008), near infrared spectroscopy (NIRS) (Jha et al., 2012a; Nordey et al., 2017; Saranwong et al., 48 

2004; Subedi et al., 2007), visual spectroscopy (Jha et al., 2006), and specific gravity (Kapse and 49 

Katrodia, 1996).  Sorting fruit using quality traits measured at harvest assumes that the fruit 50 

composition at this stage is a reliable descriptor of its quality after ripening, and of its shelf life, i.e. 51 

the length of the period between harvest and the ripe fruit stage. This assumption relies on the fact 52 

that the quality of ripe fruit is determined at harvest since the accumulation of dry matter and water 53 

in fruit stops once the fruit is picked. Fruit dry matter contains the preliminary metabolites and 54 

precursors of secondary metabolites that undergo considerable changes during fruit ripening and 55 

hence determine the quality of ripe fruit. In a few days, ripening processes increase fruit quality to its 56 

optimum, which then decline until the fruit become inedible due to over ripening. Metabolic 57 

pathways of preliminary and secondary metabolites are controlled by a balance of different 58 

phytohormones, including ethylene, abscisic acid and gibberellins. The metabolism of these 59 

phytohormones and their involvement in ripening processes are used to differentiate climacteric 60 

fruit from non-climacteric fruit. Managing fruit shelf life is essential to insure optimum fruit quality 61 

for consumers, especially in the case of highly perishable climacteric fruit such as mango, banana and 62 

avocado. The shelf life and the quality of fruit after ripening are known to be closely related to their 63 

stage of maturity at harvest since the shelf life of fruit harvested early is longer but their quality is 64 



reduced, i.e. they are smaller, have a lower sugar content, paler pulp, than fruit harvested later (Joas 65 

et al., 2012; Nordey et al., 2016).  66 

Although the quality of fruit varies considerably with their stage of maturity, this does not mean that 67 

fruit composition is a reliable indicator of fruit maturity since the concentration of primary and 68 

secondary metabolites is known to vary considerably depending on the growing conditions, e.g. 69 

irrigation, the fruit to leaf ratio, and the position of the fruit in the canopy (Léchaudel and Joas, 70 

2007). For this reason, several studies on mango (Lechaudel et al., 2010), papaya (Urbano Bron et al., 71 

2004), and apple (Song et al., 1997) preferred to use the optical proprieties of chlorophyll in the fruit 72 

peel assessed with a fluorometer as an indicator of fruit maturity rather than fruit quality descriptors. 73 

Although several studies on mango (Saranwong et al., 2004; Subedi et al., 2007), apple (Palmer et al., 74 

2010), and kiwifruit (Jordan et al., 2000; McGlone et al., 2002b) focused on the relationship between 75 

DM content and TSS content at harvest and after ripening, few investigated relationships with other 76 

quality traits such as TA and pulp color (PC), which are also of importance in consumers’ perception 77 

of quality. 78 

The first objective of the present study was to investigate the validity of the assumption that fruit 79 

quality descriptors measured at harvest are reliable indicators of the shelf life of fruit and of their 80 

quality after ripening. Mango was used as a model since numerous studies have underlined the 81 

capacity of NIRS measurements to non-destructively measure several fruit quality traits in mango: 82 

TSS content, dry matter content, titratable acidity and pulp color (Cortés et al., 2016; Jha et al., 83 

2012b; Marques et al., 2016; Nagle et al., 2010; Nordey et al., 2017; Rungpichayapichet et al., 2016; 84 

Schmilovitch et al., 2000). We took advantage of previously developed NIRS models to analyze the 85 

relationships between the quality traits measured at harvest and after ripening in a set of mango 86 

fruit sampled from different orchards, harvests and production years. Although numerous studies on 87 

mango focused on the use of NIRS to measure fruit quality traits (see above mentioned studies) and 88 

maturity (Cortés et al., 2016; Nagle et al., 2010; Rungpichayapichet et al., 2016; Subedi et al., 2007)  89 

at the time of measurement, only a few investigated the potential of NIRS measurements at harvest 90 



to predict the quality of ripe fruit (Subedi et al., 2007) and shelf life. The second aim of this study was 91 

thus to evaluate the accuracy of NIRS measurements for such predictions. The results of this study 92 

should help stakeholders of fruit value chains choose reliable indicators to assess fruit shelf life and 93 

quality after ripening.  94 

  95 



Material and methods 96 

Samples 97 

A total of 92 mango fruit (Mangifera indica cv. ‘Cogshall’) harvested during the 2010–2011 and 2014–98 

2015 production seasons in four orchards in the northwest, west and southwest of Reunion Island 99 

(20◦52’48’’S, 55°31’48’’E) were used. Tree size, spacing and ages differed between orchards, as did 100 

fertilization, irrigation and pruning. Fruit were harvested between 90 and 120 days after full bloom to 101 

account for the wide range of variation in the stage of maturity at harvest from the green mature to 102 

the yellow point stage considered as the onset of fruit ripening for Cogshall mangoes (Lechaudel et 103 

al., 2010). A NIR spectrum was collected for each fruit at harvest, after which the fruit was weighed 104 

and left to ripen at 20 °C and 80% relative humidity (RH).  105 

The mangoes were destroyed for composition analysis after ripening. To ensure that ripe fruit was 106 

the same physiological age for analysis, respiratory metabolism and climacteric rise were used as 107 

indicators. Previous studies on the Cogshall cultivar (Joas et al., 2009; Joas et al., 2012; Joas et al., 108 

2010) showed that the fruit quality traits TSS content and TA, firmness vary according to the 109 

climacteric stage of the fruit. In line with these studies, mangoes were considered to be ripe with 110 

correct quality and taste three days after they had reached their highest respiration rate. Respiration 111 

rates were measured daily on each fruit by placing the mango in an individual 3 L airtight jar, and CO2 112 

concentration was measured at 20 min intervals for 1 hour by gas chromatography using an Agilent 113 

M200 instrument (SRA, Marcy l’Etoile, France).  114 

Measurements of fruit quality 115 

At the ready to eat stage, mango cheeks were cut off longitudinally to measure the PC with a Minolta 116 

Chroma Meter CR300 (Konica Minolta, Osaka, Japan) and described using the Hue angle criterion. 117 

Variations in TA, DM content and TSS content within mangoes (Nordey et al., 2014) were taken into 118 

account through measurements made on a puree obtained by blending the fruit flesh in a Grindomix 119 

blender (Retsch, Haan, Germany). Fresh juice was extracted by filtering the puree through gauze to 120 



measure the TSS content using an ATC-1E refractometer (Atago, Tokyo, Japan) and TA. TA, expressed 121 

as mass percentage of citric acid (%), was measured using an automated titrimeter (TitroLine easy, 122 

Schott, Mainz, Germany) with a 0.05 mol L−1 NaOH solution. The DM content of the flesh was 123 

calculated from the dry mass measured after lyophilization compared with fresh mass.  124 

Chemometrics 125 

At harvest, NIR spectra measurements were collected on the surface of the fruit near the apex over 126 

the 600–2300 nm wavelength range using a portable spectrometer equipped with a contact probe 127 

(LABSPEC 2500, Analytical Spectral Devices, Inc., Boulder, CO, USA). In line with our previous studies 128 

NIR measurements were made on the fruit apex since peel color changes in this part of the fruit is 129 

used as an indicator of the fruit maturity for cogshall mangoes (Lechaudel et al., 2010; Nordey et al., 130 

2017).   131 

NIR measurements were used to non-destructively measure the fruit quality traits DM, TA, TSS and 132 

PC at harvest using previously developed partial least square (PLS) models (Nordey et al., 2017). The 133 

accuracy of the models was expected to be satisfactory since they were calibrated on mangoes taken 134 

from similar orchards in the same year of production as the ones used in the present study. Spectral 135 

measurements collected at harvest were also used to predict the shelf life of the fruit and their 136 

quality after ripening by establishing new PLS models.  137 

Samples were divided into calibration and validation sets at an 80:20 ratio for each quality trait 138 

evaluated, i.e., DM and TSS content, PC and TA, by random sampling on percentiles of the quality 139 

attribute values. Partial least squares regressions (PLSR) were established using the PLS package 140 

(Mevik and Wehrens, 2007) of the R software (R Development Core Team, 2012) using the 141 

methodology described by (Cornillon, 2010). The number of PLSR factors was determined to reduce 142 

the prediction error by cross validation on 20% of the calibration set using the mean square error of 143 

prediction as an indicator.  144 

Several spectral data pre-processing and variable selection methods developed in our previous study 145 

(Nordey et al., 2017) were tested to improve the prediction performance of PLSR. The preprocessing 146 



methods tested were first and second derivatives using the Savitzky-Golay smoothing filter with a 147 

second-order polynomial and a 10-nm window size using the prospectr package (Stevens and 148 

Ramirez-Lopez, 2013). Interval partial least square (IPLS) regressions, associated with the stepwise 149 

and the backward methods, were performed to select the combination of wavelength windows that 150 

best predicted performance. Algorithms for IPLS regressions were designed following the 151 

methodology presented by Andersen and Bro (2010). As proposed by Nicolaï et al. (2007), the root 152 

mean square error (RMSE) was used as an indicator to evaluate the predictive performance of PLSR 153 

using the calibration (RMSEC) and prediction (RMSEP) datasets. 154 

Statistical analysis 155 

Covariance analyses were performed to assess the impacts of growing conditions, i.e. years of 156 

production and orchards, on relationships between quality traits measured at harvest and after 157 

ripening. 158 

A principal component analysis (PCA) was performed to analyze variations in raw NIR spectra 159 

collected on fruit at harvest using the FactoMineR package (Lê et al., 2008). Fruit shelf life was 160 

plotted as a supplementary categorical variable and the positions of the shelf life categories were 161 

plotted on the PCA plot with their confidence ellipses at 95%. Simple and multiple linear regressions 162 

were calibrated and tested using the same calibration and prediction data sets as those used for 163 

PLSR. A variable selection procedure was applied to the accuracy of multiple linear regressions 164 

following the methodology suggested by Cornillon (2010) based on the LEAPS package (Lumley and 165 

Miller, 2009) and on the Bayesian information criterion (BIC). The root mean square error (RMSE) 166 

was used as an indicator to evaluate the predictive performance of linear regressions for the 167 

calibration (RMSEC) and prediction (RMSEP) datasets. A relative RMSEP was calculated as the ratio 168 

between the RMSEP and the mean of all measurements. 169 

  170 



Results 171 

Changes in fruit quality attributes between harvest and after ripening 172 

Figure 1 shows the relationships between the fruit quality traits TSS content, dry matter content, TA 173 

and PC measured at harvest using NIRS spectra and after ripening using destructive measurements. 174 

Results revealed marked variations in quality at harvest since fruit weight varied between 170 g and 175 

665 g (data not shown), TSS content varied between 4.5 and 20%, TA varied between 2.25 and 176 

12.22%, DM content varied between 12.2 and 23.9%, the hue angle of the PC varied between 83.5 177 

and 116.7 °. Fruit were ripe from two to 17 days after harvest and their fresh mass varied between 178 

156 and 637 g (data not shown), DM content varied between 10.8 and 21%, TA varied between 0.35 179 

and 4.35%, TSS content varied between 10.2 and 22%, and the hue angle of the PC varied between 180 

80.15 and 92.7 °. Weak relationships were found (r² < 0.41) between quality traits at harvest and 181 

after ripening, except for DM content (r² = 0.61). The TSS content in ripe fruit was correlated (r² = 182 

0.67, Figure 1E) with the DM content measured at harvest, in contrast to TA (Fig. 1F) and PC (Figure 183 

1G).  184 

The fruit shelf life was related to the PC (r² = 0.7, Figure 1J) and to the TSS content (r² = 0.62, Fig. 1H) 185 

and to a lesser extent to TA (r² = 0.5, Figure 1I) and to the DM content (r² = 0.45, Figure 1K) measured 186 

at harvest. All relationships established between quality traits measured at the harvest and after 187 

ripening were found to vary significantly with growing conditions, i.e. the year of production and/or 188 

the orchard. 189 

The accuracy of linear regressions between quality traits at harvest and after ripening is shown in 190 

Table 1. The variable selection procedure made it possible to increase the accuracy of multiple linear 191 

regressions to predict fruit quality traits after ripening. This approach showed that PC and DM 192 

content of the ripe fruit were best predicted using DM content at harvest as the only indicator. 193 

Although the TSS content in ripe fruit was well predicted using DM content at harvest as the only 194 

explanatory variable, our results showed that including TA and PC in the multiple linear regression 195 

slightly increased prediction accuracy. TA of fruit after ripening was found to be best predicted using 196 



PC and TA measured at harvest. In line with previous results, PC at the harvest was shown to be the 197 

best indicator of fruit shelf life. 198 

 199 

Use of NIRS measurements at harvest to predict the quality of ripe fruit and shelf life   200 

NIRS spectra measured on fruit from 600 nm to 2,300 nm at harvest (Figure 2A) were used to predict 201 

their shelf life at 20 °C and 80% RH, as well as their quality traits after ripening.  202 

Reflectance spectra acquired at harvest varied with the shelf life of the fruit (Figure 2A) and a 203 

principal component analysis on raw NIR spectra was performed to highlight these variations (Figure 204 

2B). Principal component analysis revealed more variation in the NIR spectra acquired on fruit with a 205 

longer shelf life. 206 

PLSR were developed to predict the quality of fruit after ripening and their shelf life at harvest using 207 

NIR measurements. The results of the preliminary analyses displayed in Figure 3A to 3E underline the 208 

difference in the capacity of NIR windows to predict fruit quality traits and shelf life. These figures 209 

also show that quality traits in ripe fruit are linked to different regions in the NIR spectra. Different 210 

data preprocessing methods (first and second derivative) as well as variable selection procedures 211 

(IPLS backward and stepwise) with different sized windows in the NIR spectra (10, 25, 50 and 100) 212 

were used to increase the prediction accuracy of PLSR (Table 2). The models with the least prediction 213 

errors were selected for the calibration and validation datasets. Models with similar accuracy but 214 

fewer factors were selected to increase the robustness of the results. In line with Figure 3A to 3E, 215 

different regions in the NIR spectra were selected in the models to predict quality traits (Figure 3F to 216 

3J). Predictions of the TSS content in ripe fruit were found to rely on reflectance measurements at 217 

harvest from 1,000 nm to 1,200 nm, as well as on reflectance measurements around 1,800 nm. 218 

Similar results were found for DM content since reflectance measurements around 1,000 nm were 219 

selected by the variable selection procedure to predict this trait. Predictions of PC and TA in ripe fruit 220 

were both related to measurements in the NIR region from 1,600 to 1,800 nm. Reflectance 221 



measurements in the visible region (around 800 nm) were found to be of importance only for the 222 

prediction of fruit shelf life.  223 

Prediction accuracies of the selected PLSR are shown in Figure 4. A RMSEP of 1.1%, 0.52%, 1.86 °, 224 

1.26% and 1.78 days were found for the TSS content, TA, the hue angle of the PC, DM content and 225 

the shelf life, respectively. Marked discrepancies were found between the accuracy of models since 226 

relative RMSEP of 6.9%, 46%, 2.1%, 8%, 18.3%, and 18.3% were obtained for the TSS content, TA, the 227 

hue angle of the PC, DM content, and the shelf life, respectively.  228 

Errors of the same order of magnitude were obtained when predicting quality traits and shelf life 229 

using PLSR and linear regressions based on the quality traits assessed at harvest, except for the PC, 230 

i.e. RMSEV = 1.86 ° versus 3.17 °. 231 

 232 

 233 

  234 



Discussion 235 

Are fruit quality traits at harvest reliable indicators of fruit shelf life and quality after ripening? 236 

Our results show that the color of the pulp is a good indicator of fruit shelf life (Fig. 1J, Table 1). 237 

This result is in line with previous measurements made on mango by Subedi et al. (2007), who 238 

reported that fruit maturity was better correlated with PC (r² = 0.79) than with DM content (r² = 239 

0.66). Previous studies showed that the color of mango flesh is closely linked with its carotenoid 240 

contents (Vasquez-Caicedo et al., 2005), mostly represented by all-trans-carotene, all-trans-241 

violaxanthin, and 9-cis-violaxanthin (Litz, 2009; Rosalie et al., 2015). The biosynthetic carotenoid 242 

pathway is known to be triggered during fruit ripening leading to marked changes in the color of the 243 

mango flesh. The better capacity of PC to predict the fruit shelf life than the other traits studied 244 

could be explained by the lower sensitivity of the carotenoid metabolism to fruit growing conditions 245 

than the sensitivity of sugars and acids (Joas et al., 2012; Rosalie et al., 2015) and by the impact of 246 

phytohormones in the carotenoid metabolism that drive fruit ripening (McAtee et al., 2013).  247 

Not surprisingly, our results showed that fruit DM contents at harvest and after ripening were 248 

closely correlated. Although the composition of fruit DM undergoes major changes during ripening, 249 

its content varies only slightly due to water losses and fruit respiration (Nordey et al., 2016). 250 

During ripening, the starch that accumulates in mangoes throughout their development on the tree 251 

is converted into soluble sugars, i.e., saccharose, glucose and fructose, thereby increasing the fruit 252 

TSS content (Léchaudel et al., 2005). In line with the results of previous studies (Saranwong et al., 253 

2004; Subedi et al., 2007), our results indicated that TSS content at the harvest is not a reliable 254 

indicator of the TSS content in fruit after ripening, which is better predicted by DM content at 255 

harvest. Several modeling approaches have been developed on mango (Léchaudel et al., 2007), 256 

peach (Lescourret et al., 2011), and tomato (Liu et al., 2007) to predict changes in fruit DM during 257 

fruit growth and ripening. These models predict the DM composition of fruit by simulating changes in 258 

the fruit maturity stage and its dry mass balance. Empirical relationships used in the modeling 259 

approaches developed on mango can roughly predict mango glucose, fructose and sucrose contents, 260 



and malic, citric, pyruvic and oxalic acid contents, since correlation coefficients (r²) obtained between 261 

predictions and observations ranged between 0.43 and 0.66 (Léchaudel et al., 2007). One of the main 262 

problems involved in predicting changes in the composition of fruit DM is simulating the impacts of 263 

ripening. Further work combining modelling approaches to simulate the metabolism of 264 

phytohormones involved in fruit ripening (Génard and Gouble, 2005) and their impacts on metabolic 265 

pathways of primary and secondary metabolites is thus needed to better predict changes in the DM 266 

composition of the fruit during ripening. 267 

In contrast to TSS content, fruit TA after ripening was poorly correlated with predicted fruit DM 268 

content at harvest (Figure 3F). Numerous organic acids are responsible for variations in TA in mango, 269 

but citric and malic acids are known to have the most influence (Léchaudel et al., 2005; Medlicott 270 

and Thompson, 1985). Some modelling approaches have also been developed to simulate TA and the 271 

pH in fruit flesh during fruit growth and ripening (Etienne et al., 2013; Lobit et al., 2003). These 272 

approaches are hampered by the number of organic acids in fruit and by the lack of knowledge on 273 

the mechanisms involved in their metabolism and storage. These models succeeded in underlining 274 

the close relationship between organic acid metabolism and fruit respiration. This relationship was 275 

used by our team to hypothesize that the observed variations in TA among mangoes after ripening 276 

can be partly explained by differences in the climacteric respiratory crisis observed between fruit, 277 

depending on their stage of maturity at harvest (Nordey et al., 2016). Interestingly, the multiple 278 

linear relationships we established in the present study (Table 1 ) reinforce this hypothesis, since, as 279 

mentioned above,  TA in the fruit after ripening was better predicted using both TA and PC at 280 

harvest, and the latter was the best indicator of fruit maturity (Table 1, Figure 1J).  281 

Like TA, PC after ripening was poorly correlated with DM content and PC at harvest. This is in 282 

agreement with the results obtained by Joas et al. (2012), who already underlined the lack of 283 

proportionality between the carotenoid content in fruit at harvest and in ripe fruit (Figure 1C). In 284 

contrast to DM and TSS contents, these authors reported that the carotenoid content in mango flesh 285 

at harvest did not vary either with the fruit carbon supply (Joas et al., 2012) or with the fruit water 286 



supply (Rosalie et al., 2015) but did vary with the stage of maturity at harvest (Joas et al., 2012). The 287 

impact of carbohydrate availability in fruit on the metabolism of carotenoids was discussed by 288 

Poiroux-Gonord et al. (2012), who suggested that carotenoid biosynthesis was not promoted by 289 

higher concentrations of carbohydrate precursors. Our results confirm their hypothesis, since PC 290 

after ripening was not correlated with TSS or DM content at harvest.  291 

Finally, the results of the present work confirm that fruit DM content at harvest is a reliable 292 

indicator of TSS content in ripe fruit, which is known to be closely correlated with their sugar content. 293 

Nondestructive measurements such as specific gravity and NIRS have already been successfully used 294 

to accurately predict the DM content of several fruit species including mango (Nordey et al., 2017; 295 

Saranwong et al., 2004) and kiwi (Jordan et al., 2000; McGlone et al., 2002b). In the present study, all 296 

relationships between fruit quality traits at harvest and after ripening were found to vary with fruit 297 

growing conditions, i.e. with the orchard and/or year of production. To avoid the need to develop 298 

specific relationships for each growing condition, the robustness of these linear regressions could be 299 

could be improved by including samples of several seasons and growing regions within the 300 

calibration.  301 

Our results also showed that DM content at harvest was not a reliable indicator of TA or PC after 302 

ripening. The PC at harvest was found to be the best indicator of fruit shelf life. TA in ripe fruit was 303 

found to be linked to PC and TA at harvest, suggesting that it varied with the stage of maturity at 304 

harvest. Our results underline the fact that although the stage of maturity of fruit and their quality 305 

are closely related, they should not be assessed using the same indicators.    306 

 307 

Use of NIRS to predict fruit quality after ripening and shelf life at harvest 308 

Unlike other nondestructive measurements such as weight or density, NIRS spectra are collected in 309 

specific locations in the fruit. Like in previous studies (Lechaudel et al., 2010; Nordey et al., 2017) NIR 310 

measurements were made on the fruit apex, whereas in other studies, measurements were made on 311 

the mango shoulders (Saranwong et al., 2004), or in the center of the fruit cheek (Rungpichayapichet 312 



et al., 2016), or at several different locations (Jha et al., 2014; Marques et al., 2016). Since marked 313 

variations in both mango quality and maturity were measured previously (Nordey et al., 2014), we 314 

would have expected predictions of quality and maturity to vary according to the position the 315 

measurements were made on the fruit. In contrast to previous studies (Nordey et al., 2014; 316 

Saranwong et al., 2004), NIR measurements collected in the present study were used to predict the 317 

quality and maturity of the fruit as a whole and not of the fleshy part of the measuring area. It is so 318 

assumed through the approach used in the present study that quality and maturity in the apex part 319 

of the fruit are reliable indicators of the quality and maturity of the whole mango. It is worth noting 320 

that automation of the proposed method would be hampered by the need of make NIR 321 

measurements at a specific position on the fruit. However, this challenge could be overcome by 322 

developing new models based on several NIR spectra randomly collected on the fruit surface.  323 

The accuracy of predictions of  fruit quality after ripening made at harvest using NIRS spectra (Table 324 

2) was found to be of the same order of magnitude as linear regressions based on the prediction of 325 

quality attributes at harvest, except for the color of the pulp, i.e. RMSEV = 1.86 ° versus 3.17 °.  326 

In contrast to other quality attributes, the accuracy of PLSR to predict TSS content in fruit after 327 

ripening was lower than the accuracy of PLSR previously developed to predict the fruit quality at the 328 

time of measurement: 1.1% versus 0.6%. This can be explained by the smaller difference in quality 329 

attributes between ripe fruit than between unripe fruit harvested at different stages (from green 330 

mature to fully ripe). 331 

Like in other fruit, mango spectra were dominated by a water spectrum with overtone bands of OH 332 

bonds at 970, 1450 nm and a combination band at 1940 nm (Figure 2)(Nicolaï et al., 2007). The near 333 

infrared spectrum of mango is also composed of overtones and combination bands of organic 334 

compounds. In line with previous studies, NIR measurements made at harvest at around 1000 nm 335 

played an important role in predicting dry matter content and TSS content in ripe mangoes. This 336 

region of the NIR spectra was linked to overtone starch at 990 nm. This result supports the results 337 



previously obtained by Saranwong et al. (2004) suggesting that the starch content of mango at 338 

harvest is a good indicator of TSS content in ripe fruit.  339 

PLSR using NIR spectra at harvest predicted DM content (Fig. 4D) and TSS content (Figure 4A) in ripe 340 

fruit better than PC (Figure 4C) and TA (Figure 4B). Our results confirm the conclusions of previous 341 

studies concerning the limited accuracy of NIR models to predict TA in mangoes that may be 342 

hampered by the number of different organic acids in this species as well as by changes in the ratio 343 

of the two main organic acids during ripening (Marques et al., 2016; Nordey et al., 2017; Schmilovitch 344 

et al., 2000). Similar results have also been reported in apple (McGlone et al., 2002a) and in passion 345 

fruit (Maniwara et al., 2014). The TA and PC of ripe fruit were found to be best predicted in PLSR 346 

using NIR measurements at 1600-1800 nm. Previous studies using NIRS showed that the β carotene 347 

content in mango (Rungpichayapichet et al., 2015) and Chinese kale (Chen et al., 2009) was related 348 

to absorbance of around 1750 nm. This is in agreement with linear regressions showing that 349 

titratable acidity in ripe fruit is linked to PC at harvest. 350 

The NIR models developed in the present study succeeded in predicting fruit shelf life with an 351 

average error of less than two days. These results are satisfactory compared with the measurement 352 

error of shelf life using fruit respiration, which is around one day. The results in Figure 4J show that 353 

the region of the spectrum near 800 nm is important to predict fruit shelf life. This region is related 354 

to absorption by chlorophyll pigments, which are known to be a reliable descriptor of mango 355 

maturity (Lechaudel et al., 2010). The chlorophyll content in mango peel is known to increase during 356 

the first stages of mango development and to decrease during fruit ripening (Medlicott et al., 1986). 357 

Although several authors used NIR measurements to predict the stage of maturity of mangoes 358 

(Cortés et al., 2016; Nagle et al., 2010; Rungpichayapichet et al., 2016; Subedi et al., 2007), to our 359 

knowledge, this is the first report on the use of NIRS to predict fruit shelf life at harvest. It should be 360 

noted that the fruit shelf life of fruit predicted in the present study is for storage at 20 °C and 80% 361 

RH. In any other post-harvest conditions, PLSR would need to be recalibrated to predict fruit shelf 362 

life. Our results provide evidence that NIR models can help predict some quality traits of ripe fruit, 363 



i.e. dry matter, TSS content and shelf life. Future studies should use more samples to improve the 364 

robustness and the accuracy of the models, especially for predictions of TA of ripe fruit at harvest.  365 

Conclusions 366 

The quality and the maturity of fruit are two notions that are often confused since similar indicators 367 

are used to assess them. The present work used NIR models to analyze the relationship between 368 

mango quality traits at harvest and after ripening. Our results provide evidence that fruit DM content 369 

at harvest is a useful indicator of TSS content in fruit after ripening but not of TA or PC. Pulp color at 370 

harvest was found to be the best indicator of fruit shelf life because of its relative insensitivity to 371 

growing conditions. The NIR models we developed enabled prediction of fruit shelf life, TSS content 372 

and DM content in ripe fruit. Prediction accuracy was nevertheless lower for fruit acidity and PC. 373 
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Tables and figures 388 

 389 

Figure 1:  Relationship between (i) quality traits measured at harvest and after ripening (A to D), (ii) 390 

quality traits measured after ripening and dry matter content measured at harvest (E to G) and (iii) 391 

shelf life and quality traits measured at harvest (H to K). Correlation coefficients (r²) are indicated in 392 

the figures and asterisks indicate whether years and orchard significantly impact relationships 393 

displayed with p. values of  0.001 ***, 0.01**, and 0.05*.    394 



 395 

Figure 2: Raw NIR spectra acquired on the peel at the apex of the mango fruit at harvest with 396 

averages calculated by range of self-life (A) and their scores in the principal component analysis (B). 397 

Average fruit shelf life is shown as supplementary categorical variables with their confidence ellipses 398 

at 95%.  399 



 400 

Figure 3: Prediction performances of the selected PLSR regressions, in terms of root mean square 401 

standard error of calibration (RMSEC), for different wavelength windows (from a starting point to an 402 

end point) and the NIR regions selected for percentage total soluble solid (TSS) content (A-B), 403 

percentage titratable acidity (TA) (C-D), percentage pulp color (PC) (E-F), percentage dry matter  404 

(DM) content (G-H) and shelf life (in days) in the best models  (I-J).    405 



 406 

Figure 4: Accuracy of selected partial least square (PLS) regressions in predicting total soluble solid 407 

(TSS) content (A), titratable acidity (TA) (B), pulp color (C), dry matter content (D) and shelf life (E) 408 

with calibration and validation data sets. 409 

  410 



Table 1: Accuracy of linear regressions based on quality attributes measured at harvest: percentage 411 

titratable acidity (TA), percentage dry matter content (DM), percentage TSS content, and hue angle 412 

of the pulp color (in °) to predict the shelf life and quality of fruit after ripening. 413 

Quality traits in ripe fruit Quality traits measured at harvest RMSEC RMSEP 

Titratable acidity 

Titratable acidity 0.13 0.09 

Dry matter content 0.13 0.1 

TSS content 0.13 0.1 

Pulp color 0.13 0.1 

All 0.1 0.16 

Pulp color & titratable acidity 0.12 0.07 

Pulp color 

Titratable acidity 3.21 3.60 

Dry matter content 2.84 3.17 

TSS content 3.14 3.30 

Pulp color 3.13 3.23 

All 2.16 3.91 

Dry matter content 

Titratable acidity 2.26 1.84 

Dry matter content 1.67 1.06 

TSS content 2.03 1.78 

Pulp color 1.84 1.50 

All 1.22 1.62 

TSS content 

Titratable acidity 2.47 2.07 

Dry matter content 1.53 1.22 

TSS content 2.13 1.82 

Pulp color 1.91 1.49 

All 1.06 1.57 

Titratable acidity & Dry matter content & Pulp color 1.41 1.18 

Shelf life 

Titratable acidity 2.83 2.57 

Dry matter content 3.04 2.08 

TSS content 2.55 2.05 

Pulp color 2.27 1.56 

All 1.91 1.79 

 414 

 415 

  416 



Table 2: Capacity of partial least squares regressions (PLSR) to predict quality of fruit after ripening and their shelf life at harvest using NIR spectra 417 

with different variable selection and preprocessing methods. The root mean square error (RMSE) was used as an indicator to evaluate the predictive 418 

performance of PLSR for calibration (RMSEC) and prediction (RMSEP) datasets. 419 

   DM (%) TSS content (%) Titratable acidity (%) Hue angle of pulp color (°) Shelf life (days) 

  RMSEC  RMSEV  Factors  RMSEC  RMSEV  Factors  RMSEC  RMSEV  Factors  RMSEC  RMSEV  Factors  RMSEC  RMSEV  Factors 

 No variable selection 0.91 1.57 9.00 1.12 1.42 11.00 0.17 0.68 20.00 2.14 2.90 5.00 2.02 1.75 12.00 

 IPLS_Backward_10 1.45 1.77 8.00 1.93 1.68 3.00 0.66 0.50 1.00 2.74 2.76 3.00 3.43 2.62 3.00 

 IPLS_Backward_25 1.44 1.42 4.00 2.14 2.21 3.00 0.67 0.52 1.00 2.78 3.12 3.00 3.36 2.29 2.00 

Raw spectra IPLS_Backward_50 1.40 2.05 7.00 2.19 2.13 5.00 0.67 0.51 1.00 1.72 2.75 7.00 3.26 2.61 4.00 

 IPLS_Backward_100 1.19 1.26 5.00 1.54 1.44 6.00 0.46 0.46 6.00 2.21 2.57 4.00 2.78 1.94 5.00 

 IPLS_Stepwise_10 1.41 1.46 7.00 1.11 1.69 10.00 0.52 0.66 7.00 1.99 3.93 7.00 2.50 1.48 7.00 

 IPLS_Stepwise_25 1.25 1.83 6.00 1.09 2.01 11.00 0.22 0.54 15.00 1.86 2.78 7.00 2.82 2.14 4.00 

 IPLS_Stepwise_50 1.38 1.98 5.00 0.99 1.27 11.00 0.63 0.45 3.00 2.11 1.86 4.00 2.46 1.84 7.00 

 IPLS_Stepwise_100 0.63 1.69 13.00 1.64 1.59 6.00 0.32 0.52 12.00 1.87 2.54 6.00 2.48 1.76 4.00 

 No variable selection 0.88 1.62 7.00 1.24 1.66 6.00 0.21 0.58 15.00 1.53 2.38 9.00 0.94 2.62 18.00 

 IPLS_Backward_10 1.13 1.53 6.00 1.37 1.59 9.00 0.61 0.53 3.00 2.67 3.09 4.00 2.69 2.66 4.00 

 IPLS_Backward_25 2.38 2.16 2.00 2.12 2.40 3.00 0.66 0.53 1.00 1.63 2.06 12.00 3.55 3.15 3.00 

 IPLS_Backward_50 1.44 1.96 10.00 2.13 2.21 4.00 0.63 0.48 2.00 2.52 2.49 6.00 2.96 3.53 6.00 

First derivative IPLS_Backward_100 1.47 1.31 3.00 1.84 1.27 3.00 0.62 0.45 5.00 2.29 2.39 7.00 2.21 2.19 9.00 

 IPLS_Stepwise_10 0.71 1.87 10.00 1.25 1.78 9.00 0.54 0.48 6.00 2.34 2.57 8.00 2.19 2.12 10.00 

 IPLS_Stepwise_25 1.14 1.93 10.00 0.99 1.48 11.00 0.62 0.45 3.00 2.24 3.68 5.00 2.66 2.58 7.00 

 IPLS_Stepwise_50 1.05 1.68 9.00 1.13 1.15 9.00 0.51 0.54 5.00 2.16 2.72 4.00 1.98 1.78 5.00 

 IPLS_Stepwise_100 1.14 1.27 5.00 1.04 1.10 9.00 0.35 0.53 10.00 1.92 2.28 7.00 2.03 1.64 6.00 

 No variable selection 0.86 1.62 8.00 1.01 1.20 9.00 0.21 0.55 14.00 0.29 3.07 20.00 0.66 2.65 19.00 

 IPLS_Backward_10 1.49 2.12 4.00 1.62 1.80 6.00 0.61 0.46 4.00 2.26 3.29 5.00 2.50 1.62 3.00 

 IPLS_Backward_25 1.38 1.81 7.00 2.54 2.27 2.00 0.62 0.49 2.00 2.20 2.84 5.00 2.47 1.79 3.00 

 IPLS_Backward_50 1.39 1.65 5.00 1.35 1.26 6.00 0.66 0.47 2.00 2.76 2.86 1.00 2.72 2.45 5.00 

 IPLS_Backward_100 1.55 1.87 5.00 1.86 1.45 3.00 0.62 0.47 3.00 1.95 2.11 7.00 2.92 2.19 3.00 

Second derivative IPLS_Stepwise_10 1.21 1.66 7.00 1.25 1.82 11.00 0.57 0.60 6.00 1.93 2.94 9.00 1.81 2.65 12.00 

 IPLS_Stepwise_25 1.39 1.60 3.00 1.00 1.75 13.00 0.63 0.47 1.00 1.56 3.45 10.00 2.40 2.17 6.00 

 IPLS_Stepwise_50 1.13 1.67 5.00 1.12 1.14 7.00 0.61 0.50 2.00 1.84 3.05 9.00 2.36 1.41 4.00 

 IPLS_Stepwise_100 1.31 1.36 5.00 1.17 1.11 5.00 0.65 0.53 1.00 1.85 2.44 4.00 2.12 1.86 7.00 

 420 
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