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ABSTRACT 28 

Genomic selection (GS) could make more efficient the two-stage phenotypic breeding scheme used for 29 

rubber production in Hevea brasiliensis. It was evaluated using two trials in Côte d’Ivoire comprising 30 

189 and 143 clones of the cross PB 260×RRIM 600, genotyped with 332 simple sequence repeat 31 

markers. The effect of statistical genomic prediction methods, training size, and marker data on GS 32 

accuracy was investigated when predicting unobserved clone production within and between sites. 33 

Simulations using these empirical data assessed the efficiency of replacing current first stage of 34 

phenotypic selection (evaluation of seedling phenotype) by genomic preselection, prior to clone trials.  35 

Genomic selection accuracy in between-site validations using all clones for training and all markers 36 

was 0.53. Marker density and training size strongly affected accuracy, but 300 markers were sufficient 37 

and using more than 175 training clones would have marginally improved accuracy. Using the 125 to 38 

200 markers with the highest heterozygosity, between-site GS accuracy reached 0.56. Prediction 39 

methods did not affect GS accuracy. Simulations showed that genomic preselection on 3,000 seedlings 40 

of the considered cross would have increased selection response for rubber production by 10.3%. 41 

Hevea breeding programs can be optimized by the use of within-family GS. Further studies 42 

considering other crosses and traits, consecutive breeding cycles, more contrasted environments, and 43 

cost-benefit ratio are required. 44 

 45 

Keywords: marker assisted selection, genomic predictions, selection response, clonal varieties 46 

  47 
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1. Introduction 48 

The rubber tree (Hevea brasiliensis, hereafter Hevea) is almost the only source of commercial natural 49 

rubber (1,4 cis-polyisoprene), 70% of which is used by the tire industry. The production of natural 50 

rubber worldwide has increased steadily over time, and is now exceeding 12 Mt yearly (FAOSTAT, 51 

2018). The total cultivated area, currently over 11 million hectares, is held by smallholders (80%) and 52 

industrial estates (20%). More than 90% of the production takes place in Asia, with Thailand and 53 

Indonesia as the largest producers. Côte d’Ivoire is the seventh world producer, and produced 420 54 

thousand tons in 2017. Predictions indicate that demand for natural rubber will exceed 19 Mt in 2025 55 

(Warren-Thomas et al., 2015), even though rubber plantations are already responsible for deforestation 56 

and pose threats to biodiversity, in particular in South-East Asia (Ahrends et al., 2015; Warren-57 

Thomas et al., 2015). Yield therefore needs to be intensified in existing plantations to meet the 58 

expected demand while minimising environmental cost and increasing the income of poor producers. 59 

Genomic selection (GS) (Meuwissen et al., 2001), the state-of-the-art method of marker-assisted 60 

selection for quantitative traits, can play a key role in taking up this challenge.   61 

Hevea is a diploid species (2n = 36) belonging to the family Euphorbiaceae and originating 62 

from the Amazonian forest. Vegetative multiplication by grafting permitted the development of clonal 63 

varieties from axillary buds grafted on seedling rootstocks (rubber clones). The initial ‘primary’ clones 64 

derived from ortet selection among populations of non-budded trees resulting from natural pollination. 65 

Controlled recombination by hand pollination was then applied to cross the best clonal parents for the 66 

generation of full-sib families.  However, the naturally-low female fertility of Hevea makes it difficult 67 

to construct complex populations of connected families, with highly incomplete mating designs and 68 

strong imbalance in family sizes. This generally did not allow to accurately estimate parental genetic 69 

values and to take advantage of the large within-families variability. This prompted us to adopt a 70 

within-family clonal breeding program which focused specifically on certain large-sized F1 families 71 

(≥200 individuals) obtained with the few parent trees that combined good agronomic performances 72 

and female fertility sufficient to reach the targeted size. Since the 1990s and the development of 73 

molecular genetic markers, these large and highly performing F1 families also gave the opportunity to 74 
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acquire genetic information about the parents using genetic mapping and quantitative trait loci (QTL) 75 

detection (Clément-Demange et al., 2007). These strategies of QTL detection have been applied to 76 

various traits: resistance to Pseudocercospora ulei (Le Guen et al., 2011, 2007; Lespinasse et al., 77 

2000) and to Corynespora cassiicola (Tran et al., 2016), vegetative growth and latex production (An et 78 

al., 2019; Rosa et al., 2018; Souza et al., 2013). However, for complex traits under the control of a 79 

large number of genes with small effects, such as yield, the efficiency of marker assisted selection 80 

approaches based on QTLs is limited, because it overestimates the effect of the strong QTLs while 81 

weak QTLs are not detected (Muranty et al., 2014). 82 

Currently, Hevea breeding involves within-family two-stage phenotypic selection (PS) 83 

followed by large-scale agronomic evaluation (Figure 1, left). Although a large number, i.e. several 84 

thousand, of full-sibs can be evaluated in the first stage (seedling evaluation trial, SET, with non-85 

replicated individuals), selection for rubber production at this stage is not very accurate (Bombonato et 86 

al., 2015; Gnagne, 1988). The second stage consists in small-scale clone trials (SSCT, with each 87 

genotype replicated in the form of several budded trees). The SSCTs make it possible to accurately 88 

assess clone yield, but the number of clones that can be evaluated in these trials is relatively low (< 89 

200). This is followed by a long period of agronomic evaluation of growth rate, latex production, 90 

disease resistance, and other characteristics at the scale of tapped stands, in multi-local large-scale 91 

clone trials (LSCT).  92 

GS is a very promising way to increase the rate of genetic progress in perennial crops 93 

(Grattapaglia, 2017; van Nocker and Gardiner, 2014) because it allows the genetic value of a large 94 

number of selection candidates to be estimated at an early stage. In Hevea, the current SETs prior to 95 

clone trials could thus be replaced by more accurate genomic preselection. If GS is sufficiently 96 

accurate, it could even replace SSCTs. However, the decision to shift from a conventional PS scheme 97 

to a GS alternative calls for detailed studies. Indeed, the relative rate of genetic gain of different 98 

breeding approaches depends on their respective selection accuracy, selection intensity, and generation 99 

interval, with a trade-off between these parameters due to practical and economic constraints in the 100 

breeding program and to biological constraints of the species. Standard statistical methods for GS 101 

predictions include random regression best linear unbiased predictor (RR-BLUP) (Meuwissen et al., 102 
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2001), Bayesian least absolute shrinkage and selection operator regression (BLR) (de los Campos et 103 

al., 2009), and Bayesian reproducing kernel Hilbert Space (RKHS) (Gianola and van Kaam, 2008). 104 

BLR and RR-BLUP are linear approaches with different assumptions regarding the distribution of 105 

marker effects. Thus, RR-BLUP estimates marker effects following a normal distribution with 106 

common variance for all markers, while BLR uses a variance specific to each marker. RKHS is a 107 

semi-parametric and non-linear approach (i.e. using a non-linear genomic matrix) (Pérez-Rodríguez et 108 

al., 2012) that can capture both additive and non-additive effects (Zhang et al., 2016). When the 109 

purpose is to predict genetic values potentially including non-additive genetic effects (like clone 110 

values), it is appropriate to use models that take non-additive effects into account, either by modelling 111 

them explicitly (as it can be done in RR-BLUP and BLR) or implicitly (RKHS). 112 

Despite the great economic importance of Hevea, no study has yet been published on the 113 

efficiency of GS compared with conventional PS in this species. Here, an alternative within-family 114 

breeding scheme for Hevea rubber production was suggested, in which the current phenotypic 115 

preselection of individual seedlings (SET) prior to clone trials (SSCT) would be replaced by genomic 116 

preselection in the nursery (Figure 1, right). As the GS model needs to be trained using phenotypic 117 

data, this alternative scheme would involve two SSCTs. The first, comprising a random sample of 118 

candidate clones (i.e. with no prior selection from SET results), would be used both to evaluate these 119 

candidates and to train the GS model; the second would be used to finalise the selection among the 120 

clones preselected by the GS model. The efficiency of the GS scheme compared with conventional PS 121 

will result from the accuracy and selection intensity (i.e. the number of clones genotyped to undergo 122 

genomic preselection) of GS. Genomic selection accuracy is usually estimated by within-site cross-123 

validation. However, such estimates may be biased upwards (Beaulieu et al., 2014; Lorenz et al., 2011, 124 

p.94; Ly et al., 2013), and GS accuracy is consequently better estimated by validation using 125 

independent sites.  126 

The aim of this study was to carry out the first evaluation of GS for Hevea, using genotypic 127 

and phenotypic data on one family at two sites. For this purpose, two within-family clonal selection 128 

strategies for rubber production were compared: a new breeding scheme combining genomic 129 

preselection and PS, and the current conventional PS scheme. More precisely, (1) within- and 130 
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between-site GS accuracy were estimated for rubber production in unobserved clones, (2) the effect of 131 

three parameters on GS accuracy was evaluated: statistical method of genomic prediction, size of 132 

training population, and molecular data (density and filtering), and (3) the increase in performance of 133 

the selected clones and in response to selection that could be expected from combining GS and PS 134 

compared with conventional PS was estimated using simulations based on the empirical data and on 135 

the between-site estimate of GS accuracy. Data on 330 clones from the F1 cross between two widely 136 

cultivated rubber clones (PB 260 × RRIM 600) were used, with phenotypic data collected from two 137 

independent clone trials in Côte d’Ivoire (189 clones at Site 1 and 143 clones at Site 2) and genomic 138 

data on 332 simple sequence repeat (SSR) markers.  139 

 140 

2. Materials and methods 141 

2.1 General overview 142 

The study was divided into two parts. The aim of the first part was to obtain empirical estimates of GS 143 

accuracy for rubber production of unobserved clones of a F1 cross, with two independent field trials 144 

used for within- and between-site validations. The second part of the study aimed to estimate the 145 

additional annual response to selection that could be expected from combining GS and PS rather than 146 

using conventional PS. This was done by simulations based on the empirical data and on the GS 147 

accuracy estimated in the first part of the study. 148 

For the first part (empirical estimation of GS accuracy), data on 330 clones from the F1 cross 149 

PB 260 × RRIM 600 were used. The clones were evaluated in two independent SSCTs in Côte 150 

d’Ivoire, with 189 clones at Site 1 and 143 at Site 2. The trials were implemented using conventional 151 

experimental designs, which allowed reliable estimations of clone values (hereafter referred to as 152 

phenotypes). The clones were also genotyped with 332 simple sequence repeat (SSR) markers. The 153 

GS model, trained using the molecular data and phenotypes of one part of the clones, predicted the 154 

phenotype of the other clones, for which molecular data only were used as inputs to the model. This 155 

made it possible to measure the accuracy of GS predictions of the performance of clones yet-to-be 156 

observed. The GS validation analyses were performed for predictions within and between sites to 157 
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assess the usefulness of within-site accuracies (i.e. obtained by cross validation) for decision-taking 158 

regarding the practical implementation of GS. In addition, five standard statistical methods for 159 

genomic prediction were compared in terms of GS accuracy. Different training size, marker density, 160 

and SSR sampling method (sampling random SSRs or SSRs with the highest observed heterozygosity, 161 

Ho) were also used to quantify the effect of these three parameters on GS accuracy.  162 

In the second part of the study (comparison of GS and PS schemes using simulation), the 163 

current conventional phenotypic breeding scheme (Figure 1, left) and an alternative scheme combining 164 

genomic preselection and PS (Figure 1, right) were simulated, and the two approaches were compared 165 

in terms of performance of the selected clones and of annual response to selection. The simulation was 166 

calibrated with the empirical data and with the results obtained in the first part of the study (genetic 167 

variance, PS accuracy, GS accuracy, etc.).  168 

 169 

2.2 Empirical estimation of GS accuracy 170 

2.2.1 Plant material and phenotyping 171 

The parents of the F1 cross, PB 260 and RRIM 600, are two well-known and genetically unrelated 172 

clones that were selected in Malaysia. RRIM 600 originated from a cross made in 1937 (TJIR 1 × 173 

PB 86) and is the most widely planted clone in the world due to its high latex yield generated soon 174 

after tapping initiation and good adaptation to a variety of environments. Its potential for rubber 175 

production is medium. PB 260, issued from the cross PB 5/51 × PB 49, was obtained in 1958. It is a 176 

vigorous and high-yielding clone, largely used as female in crossings because it has one of the highest 177 

female fertilities among the best rubber clones used as parents, thus allowing for much larger 178 

progenies than other female parents (Baudouin et al., 1997). It was recommended for plantation in 179 

Asia in the 1980s and 1990s and is still the second most widely planted clone in rubber-producing 180 

countries. 181 

The two study sites are located in the coastal area of south-western Côte d’Ivoire: Site 1 182 

(latitude: 4°40'54" N, longitude: 7°06'05" W, on the SOGB [Société des caoutchoucs de Grand 183 

Bereby] estate, elevation: 33 m a.s.l.,  gravelly clayey loam, with 189 clones), and Site 2 (latitude: 5° 184 
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19' 47.79" N, longitude: 4° 36' 39.74" W, on the SAPH [Société Africaine de Plantations d’Hévéas] 185 

estate, elevation: 89 m a.s.l. deep sandy soil, with 143 clones). The two sites lie approximately 300 km 186 

from each other. The sites have a similar tropical climate, with 1,600 mm mean annual rainfall and a 187 

mean annual temperature of 26°C. Two clones were used at both sites, giving a total of 330 clones. 188 

The two shared clones were not used for GS validation, but only to train the GS model. There was no 189 

preselection of the clones before the trials (i.e. no SET evaluation). 190 

Site 1 and Site 2 trials were planted in July 2012 and July 2013 respectively, following almost 191 

complete block designs, with six blocks and individual trees randomised within each block, and with a 192 

planting density of 1,600 trees per hectare, with a spacing of 2.5 × 2.5 metres. Ramets were produced 193 

in the nursery by grafting on rootstocks generated from seeds issued from natural pollination of clone 194 

GT 1, and transplanted to the trials. The mean number of ramets per clone was 11 (range: 7 - 17) at 195 

Site 1 and 13 (5 - 20) at Site 2. This led to 2,016 ramets at Site 1 and 1,869 at Site 2.  196 

Rubber production was recorded for each ramet according to the following protocol. The 197 

tapping system was in half-spiral on the trunk at 1 m above ground level, tapping every two days 198 

excepted on Sundays. In each trial, the six blocks were tapped by three tappers, with two blocks 199 

assigned to each tapper during the three consecutive months of the experiment. Each tapper tapped one 200 

block per day. No ethephon stimulation was applied to the trees in order to assess the natural latex 201 

flow of every tree. The latex was collected in plastic boxes of 180 ml attached to the trunks with 202 

rubber bands, and covers were screwed over the boxes between two tappings for preserving the latex 203 

production from rain. Every day in each trial, the boxes full of latex were collected and replaced by 204 

empty ones. The coagulated latex from the full boxes was extracted and manually pressed to eliminate 205 

the liquid serum. Tapping started 32 months after planting in Site 1 (end of dry season) and 38 months 206 

after planting in Site 2 (end of rainy season). For each ramet, the amount of rubber aggregated from all 207 

collected boxes during the 3-month tapping period (with a dry rubber content of around 65%) was 208 

computed. These raw production data were analysed for each site with a linear mixed model and the 209 

BLUP methodology, using the ASReml-R version 3.0 package (Butler et al., 2009). This gave the 210 

clone genetic values, adjusted for effects related to the experimental designs (blocks) and for 211 

variations in size among the trees at the time of tapping (i.e. variations in girth of the trunk measured 212 
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at 1 m above the ground just before initiation of tapping). These adjusted clone values are hereafter 213 

referred to as phenotypes. The broad sense heritability of clone mean level (H²) was calculated at each 214 

site as per Eq. (1). 215 

�� =  ��� (��� + 	
��)�     (1) 216 

Where ��� is the genetic variance of the clones, ��� the residual variance and ℎ� the harmonic mean 217 

number of ramets per clone in the trial (Gonçalves et al., 2006), with ��� and ��� obtained from the 218 

linear mixed model. 219 

 220 

2.2.2 Marker genotyping 221 

Leaf samples were collected on the original mother-trees of the clones issued from the seeds of the 222 

cross. Genomic DNA extraction and SSR genotyping were carried out following the method described 223 

by Le Guen et al. (2009). Site 1 clones were genotyped with 332 SSRs (Tran et al., 2016), and Site 2 224 

clones were genotyped with a subset of 296 SSRs (Achour, 2014). Table 1 lists the characteristics of 225 

the SSR molecular data obtained at each site. Sporadic missing SSR data were imputed with BEAGLE 226 

3.3.2 (Browning and Browning, 2007), with parameters niterations set to 25 and nsamples to 20. 227 

 228 

2.2.3 Statistical methods for genomic predictions 229 

Three GS statistical methods were used to predict the genetic values of the validation clones: RR-230 

BLUP, BLR and RKHS. In addition, BLR and RR-BLUP were carried out with two types of model, 231 

i.e. purely additive models (BLR_A and RR-BLUP-A) and additive plus dominance models 232 

(BLR_AD and RR-BLUP_AD). We did not consider the explicit modelling of epistatic effects for the 233 

sake of simplicity and assuming they would be negligible over additive and dominance effects. 234 

For RR-BLUP_A and BLR_A, the model given by Eq. (2) was used. 235 

y = 1µ  + Zama + e   (2) 236 

Where y is the (k × 1) vector of phenotypes of training clones, k the number of clones, µ  the overall 237 

phenotypic mean, 1 a column vector of 1s, ma the (n × 1) vector of allele additive effects, with n the 238 

total number of alleles, Za the (k × n) incidence matrix with elements ���� = 0, 1 or 2 indicating the 239 
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number of alleles j for clone i, and e the vector of residual effects following N(0, σ²e), with σ²e the 240 

residual variance. For RR-BLUP-AD and BLR_AD, the previous model was extended as indicated by 241 

Eq. (3). 242 

y = 1µ  + Zama + Zdmd + e  (3) 243 

Where md is the (p × 1) vector of dominance effects of all possible pairs of alleles at each SSR, with p 244 

the total number over all SSRs of possible combinations between two alleles of the same SSR, and Zd 245 

the (k × p) incidence matrix with elements ���� = 1 or 0, indicating whether clone i possesses allele 246 

combination (pair) j or not. The genomic estimated genetic value (GEGV) ��� of the validation clone i 247 

was obtained by Eq. (4) in RR-BLUP_A and BLR_A,  248 

��� =  ∑ ������������     (4) 249 

and by Eq. (5) in RR-BLUP_AD and BLR_AD, 250 

��� =  ∑ ������������ +  ∑ �������� ���   (5) 251 

with ���� the estimated additive effect of allele j, and ���� the estimated dominance effect of the jth 252 

pair of alleles. For RR-BLUP, the !� " and !� # vectors were the BLUP solutions; and for BLR they 253 

were the posterior mean values over the post burn-in iterations. For BLR, σ²e followed a scaled inverse 254 

chi-square prior distribution, and ma and md followed conditional Gaussian prior distributions N(0, τ²aj 255 

σ²e) for allele j and N(0, τ²dj σ²e) for allele pair j, respectively. The τ²aj parameters were thus specific to 256 

each allele j, and the τ²dj to each allele pair j; and they followed exponential priors with rate λ²a / 2 and 257 

λ²d / 2, respectively, with the regularisation parameters λ²a and λ²d following gamma priors.  258 

For RKHS, the model presented in Eq. (6) was used. 259 

y = 1µ  + g + e    (6) 260 

Where g = Kα is the vector of random genetic values of clones, K the (c × c) kernel constructed from 261 

the SSR data of the c clones, c the total number of clones (i.e. training and validation clones) and α the 262 

(c × 1) vector of regression coefficients to be inferred, with prior distribution N(0, Kσ²α). K gave the 263 

covariance structure among clones and had elements given by Eq. (7). 264 

$�� =  %&��'(�
     (7) 265 
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With )���  the squared Euclidean distance between clones i and j computed from their SSR genotypes, 266 

and h a bandwidth parameter. A multi-kernel approach based on a set of values of h (0.1, 0.5, 2.5) was 267 

implemented, as explained in Pérez and de los Campos (2013). The vector of GEGV *� was obtained 268 

as per Eq. (8). 269 

*� = +,�     (8) 270 

The BGLR R package version 1.0.5 (Pérez and Campos, 2014) was used for BLR and RKHS 271 

with 30,000 iterations, with the first 9,000 as burn-in and a thinning interval of 10. For RR-BLUP,  272 

ASReml-R version 3.0 package (Butler et al., 2009) was used.  273 

 274 

2.2.4 Validation approaches 275 

The analyses were performed for predictions within and between sites, leading to four different 276 

validation approaches (Site 1 cross validation, Site 1 towards Site 2, Site 2 cross validation and Site 2 277 

towards Site 1).  278 

The clones from each site were randomly allocated into k sets used as validation replicates, 279 

with k=7 for Site 1 and k=5 for Site 2. In this way, the number of clones per set was similar in the 280 

validation experiments: 27 for Site 1 and 28 or 29 for Site 2, depending on the set. The allocation of 281 

clones to the validation sets was the same for all validation scenarios. Within-site validations were 282 

conducted using k-fold cross-validation approaches, successively using one of the k sets as the 283 

validation set and the remaining k–1 sets (or only some of them when varying the training size, see 284 

below) to train the GS model. For between-site validations, the k sets from one site (or some of the k 285 

sets when the training size was varied) were used to train the GS model, and the k sets of the other site 286 

were used for validation. The GS predictive ability was obtained for each set as the Pearson correlation 287 

between the GEGV (ĝ) and the phenotype (y) of the clones composing the set. Finally, GS accuracy 288 

was the predictive ability divided by the square root of the broad sense heritability �� (Lorenz et al., 289 

2011, p. 94). 290 

 291 

2.2.5 Effect of training size and SSR density 292 
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To quantify the effect of training size on GS accuracy, the number of sets composing the training 293 

population varied from one to k–1 (within-site validations) or k (between-site validations). For a given 294 

number of ns sets used for training, the different possible combinations of ns sets among the available 295 

sets (i.e. k–1 for within-site validations or k for between-site validations) were used successively. 296 

These combinations of sets became training replicates. The resulting total number of replicates 297 

(validation replicates × training replicates) per validation experiment and training size varied from 5 to 298 

175 (see Supplementary Table S. 1 for details).  299 

To investigate the effect of SSR density on GS accuracy, different numbers of SSRs were also 300 

used, considering six levels of number of SSRs, from 10 to all SRRs. For a given number of SSRs, 301 

eight replicates of random samples of SSRs were made.  302 

 303 

2.2.6 Effect of SSR sampling method 304 

To investigate whether sampling SSRs with high observed heterozygosity (Ho) would lead to higher 305 

GS accuracy than randomly selected SSRs, Ho was computed for each SSR as the mean percentage of 306 

heterozygous individuals and the validations described above were run considering 12 levels of 307 

number of SSRs, from 10 to all SRRs. For a given number of SSRs, eight replicates of random 308 

samples of SSRs were made. With SSR sampling selecting the highest Ho, four replicates were also 309 

made, as some SSRs had the same Ho (in which case, the SSRs were chosen randomly). Here, all the 310 

clones were used to train the GS model.  311 

 312 

2.2.7 Analysis of results 313 

To study the effect of the statistical method for genomic prediction on GS accuracy, analyses of 314 

variance (ANOVA) were performed separately for each validation approach on the accuracy obtained 315 

using all SSRs and all the clones for training, with statistical method and validation replicate as 316 

factors. The mean levels of factors in the ANOVAs were compared using Tukey’s honest significant 317 

difference test. To assess the effect of the SSR sampling method, the Wald-type permutation test of the 318 

R package GFD (Friedrich et al., 2017) was used, given that the assumptions of normality and 319 
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variance homogeneity were not met, with SSR sampling method and validation replicate as factors. 320 

The tests were carried out separately for each SSR level of each validation approach. Prior to these 321 

analyses, GS accuracy underwent Fisher's Z transformation.  322 

 323 

2.3 Comparison of combined GS/PS and PS breeding schemes  324 

The application of the conventional PS scheme on cross PB 260 × RRIM 600 (see Figure 1, left) was 325 

simulated, as well as a GS scheme in which clones of the same cross evaluated in a first SSCT would 326 

be used to train a GS model to make a preselection among unobserved clones (seedlings) of the same 327 

cross prior to their final evaluation in a second SSCT (see Figure 1, right). The simulation was 328 

calibrated with the results of the linear mixed model initially implemented to obtain the phenotypes, 329 

and with the results of the between-site empirical GS validations.  330 

The simulation procedure started with the joint simulation of the true genetic values (TGV) 331 

(g), the seedling phenotypes in SET (y’), the estimated genetic values in SSCT (EGV, i.e. phenotypes) 332 

(y), and the genomic estimated genetic values (GEGV) (ĝ) of n individuals as per Eq. (9). 333 

n = max(3,000, 190+nGS)   (9) 334 

With the 3,000 seedlings evaluated in SET, 190 clones evaluated in the first SSCT (used for both 335 

phenotypic selection and training of the GS model), and nGS the number of additional selection 336 

candidates allowed by GS (i.e. candidates subjected to genomic preselection at the nursery stage, prior 337 

to the second SSCT), with nGS varying from 100 to 5,000. These values were simulated using the 338 

mvrnorm function in the MASS R-package (Venables and Ripley, 2002). This required the variance-339 

covariance matrix between g, y’, y and ĝ given in Eq. (10),  340 

-.
/ �0� 123(�, 56) 123(�, 5)123(�, 56) �76� 123(5′, 5)123(�, 5) 123(5′, 5) �7�123(�, ��) 123(5′, ��) 123(5, ��)

123(�, ��)123(5′, ��)123(5, ��)�0�� 9:
;

  (10) 341 

and the mean phenotypic value of the clones µ , which were obtained as follows. The correlation 342 

between y’ and y (<76,7) was 0.34, taken from Gnagne (1988), and gave the correlation between rubber 343 

production in SET and SSCT for an unselected population related to the cross used in this study. For 344 

each site, the clone phenotypes given by the initial mixed model analyses were used to compute the 345 
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associated variance, �7�. This initial analysis also gave µ , and the accuracy of phenotypic selection 346 

(<0,7, corresponding to the square root of ��) in a SSCT with no preselection (genomic or based on 347 

SET evaluation). The variance of the TGV of the clones (�0�) was obtained as per Eq. (11) (Clark et 348 

al., 2012, appendix 1). 349 

�0� = �7� <0,7��     (11) 350 

The GEGVs obtained from the empirical between-site validations were used to compute the associated 351 

variance, �0��. The GS accuracy (<0,0�) was taken from the between-site validations, and the correlation 352 

between y and ĝ was obtained as per Eq. (12) (Lorenz et al., 2011, p. 94; Muranty et al., 2015, 353 

appendix).  354 

<7,0� = <0,0�  <0,7   (12) 355 

Similarly, the variance of the seedling phenotypes (�76� ) was calculated as per Eq. (13), the correlation 356 

between y’ and g per Eq. (14), and the correlation between y’ and ĝ per Eq. (15). 357 

�76� = �7�/<7>,7�     (13) 358 

<0,76 = �0/�76    (14) 359 

<76,0� = �0�/�76   (15) 360 

The mean values over the two sites were computed for each of these parameters and were used to 361 

calibrate the simulation.  362 

The n simulated individuals served as starting point for the simulation of the conventional PS 363 

scheme and the alternative scheme combining GS and PS. For PS, a random set of 3,000 individuals 364 

was sampled among the n simulated individuals. Among them, the 190 individuals with the highest 365 

performance in SET (i.e. highest y’) were retained to make the first SSCT, and the nsel = 10 clones 366 

with the highest EGV were finally selected among them. For combined GS/PS, a random set of 190 367 

clones were sampled among the n simulated individuals to make the first SSCT. Then, the 185 clones 368 

with highest GEGV were selected among the nGS simulated clones (i.e. among those that were not 369 

evaluated in the first SSCT), to make the second SSCT (only 185 instead of 190 in the first SSCT, 370 

since in practice some clones from the first SSCT would be repeated in the second). Finally, nsel = 10 371 

clones with the highest EBV were selected among the clones evaluated in the two SSCTs. The 372 
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performance of the clones selected in combined GS/PS and PS schemes was computed as the mean 373 

TGV of the nsel selected clones. The annual selection response of the PS and combined GS/PS schemes 374 

was computed as the difference between the mean TGV of the nsel selected clones and the mean TGV 375 

of the n initial clones, divided by the number of years required to complete the breeding cycle (25 376 

years) (Figure 1). The selection intensity of PS and combined GS/PS was computed as the mean EGV 377 

of the nsel selected clones and the mean EGV of the n initial clones, divided by the standard deviation 378 

of the EGV. The simulation process was repeated 5,000 times.  379 

 380 

All analyses and simulations were conducted using the R software, version 3.4.1 (R Core Team, 381 

2017).  382 

 383 

3. Results 384 

3.1 Phenotypic evaluations 385 

Mean cumulated rubber production per tree was 78.7 g in Site 1 (range 0.50 – 318.0) and 244.6 g in 386 

Site 2 (range 0.25 - 840.1). The broad sense heritability of clone mean level (H²) was 0.9 at each site. 387 

 388 

3.2 Statistical methods for genomic predictions 389 

The GS accuracies obtained for rubber production were not affected by the statistical method used for 390 

predictions. When training the GS models with all clones and using all the SSRs, the mean GS 391 

accuracy over validation replicates ranged from 0.33 to 0.60 (Figure 2). However, this variation was 392 

mostly due to the validation approach, with statistical methods having a negligible effect. The 393 

differences in accuracy between statistical methods were thus not significant, regardless of marker 394 

density and size of training set, with no interaction found between the GS prediction method and SSR 395 

number (Supplementary Fig. S 1), nor between the GS prediction method and training size 396 

(Supplementary Fig. S 2). For the rest of the study, only the BLR_A GS prediction method was used. 397 

Indeed, its mean accuracy across the four validation approaches when using all SSRs and all clones for 398 

training (0.498) was slightly higher than that of the other prediction methods (whose mean accuracy 399 
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ranged from 0.488 for BLR_AD to 0.495 for RR-BLUP_A). Furthermore, it was the method that came 400 

out with the best average rank of the four validation approaches. When all the SSRs and all the clones 401 

were used for training, BLR_A gave a mean GS accuracy of 0.594 in Site 1 cross validation, 0.509 in 402 

Site 1 towards Site 2, 0.340 in Site 2 cross validation and 0.550 in Site 2 towards Site 1 validation.  403 

 404 

3.3 Training population size and molecular marker data 405 

GS accuracy for rubber production was strongly affected by the number of clones used to train the GS 406 

prediction model (training size) and by the number of SSRs (Figure 3).  407 

GS accuracy increased with the training size regardless of validation approaches and number 408 

of SSRs used. For instance, when all the SSRs were used, increasing the training size from minimum 409 

to maximum values (i.e. by an average of 447.7%, from 296% in Site 2 cross validation to 600% in 410 

Site 1 towards Site 2), GS accuracy approximately doubled (mean of +93.6% across validation 411 

approaches, from 72.8% in Site 1 cross validation to 111.7% in Site 1 towards Site 2). With all 412 

validation approaches and numbers of SSRs, the increase in GS accuracy associated with increased 413 

training size followed a diminishing returns pattern. Thus, when 296 SSRs were used, increasing the 414 

training size from 28 to 56 clones increased GS accuracy by an average of 36.9% in the four validation 415 

approaches, while doubling the training size again to reach 111 clones increased the GS accuracy by 416 

slightly less (32.1%). Although usually GS accuracy did not reach a plateau, the shape of the curves 417 

showed that further increases in training sizes would have led only to minor additional gains in GS 418 

accuracy (except for Site 2 cross validation, due to the smaller overall population size). Similarly, with 419 

all the validation approaches and training sizes, GS accuracy increased with the number of SSRs. 420 

Thus, increasing the number of SSR from minimum to maximum values (i.e. by an average of 3.0%, 421 

with 3.2% in Site 1 cross validation and 2.9% in other validations) when using the maximum training 422 

sizes, the average GS accuracy over validation approaches increased by 201.6% (from 134% in Site 1 423 

cross validation to 296.2% in Site 2 cross validation). Again, a diminishing returns trend was observed 424 

for all validation approaches. For instance, with the largest training sizes, using 50 SSRs instead of 25 425 

SSRs increased GS accuracy by 36.1% on average across all the validation approaches, while doubling 426 

again SSR density increased GS accuracy by 16.5% only. In Site 1 cross validation, for which more 427 



17 

 

SSRs were available, using 332 SSRs resulted in the same accuracy as using 296. This indicated that 428 

no extra gain could be expected here from using more SSRs. 429 

When SSR density was reduced, using the SSRs with the highest observed heterozygosity 430 

(Ho) generally resulted in significantly higher GS accuracies than using random SSRs (Figure 4). In 431 

particular, when the 125 to 200 SSRs with the highest Ho were used, GS accuracies were always 432 

significantly higher than the accuracies obtained with random SSRs, with an average increase of 433 

13.9% (from 4.6% in Site 2 cross validation with 200 SSRs, to 21.1% in Site 2 towards Site 1 434 

validation with 150 SSRs).  Furthermore, in this range of number of SSRs, the Ho sampling approach 435 

led to almost always higher accuracies than using all SSRs, with an increase in GS reaching an 436 

average of 4.3% for the four validation approaches compared with using all the SSRs (the only 437 

exceptions being with 150 SSRs in Site 1 cross validation and with 200 SSRs in Site 2 cross 438 

validation, when GS accuracy with Ho SSR sampling was very slightly lower than when all SSRs 439 

were used). Mean GS accuracy of between-site validations thus reached 0.561, versus 0.530 using all 440 

SSRs. As expected, due to high variations in Ho among SSRs (Table 1), the SSR samples based on 441 

this parameter had a much higher mean Ho than the whole set of markers (Supplementary Fig. S 3). 442 

Thus, when using 125 to 200 SSRs, mean Ho was 0.78, as against 0.64 with all the SSRs.  443 

 444 

3.4 Validation approach 445 

The effect of the validation approach on GS accuracy was investigated by comparing accuracies 446 

among validation approaches using the same training size and number of SSRs. In this case, within-447 

location analysis gave much higher accuracies for Site 1 than for Site 2 (Figure 3). For instance, using 448 

296 SSRs, within-Site 1 GS accuracy was 0.54 with 108 clones for training, versus only 0.34 for 449 

within-Site 2 accuracy with 115 training clones. By contrast, between-locations accuracies were 450 

similar when making predictions from Site 1 towards Site 2 and from Site 2 towards Site 1; and 451 

between-location GS accuracies were intermediate between the two within-site accuracies. 452 

Site 1 cross-validation accuracy overestimated Site 1 towards Site 2 accuracy for all training 453 

sizes and numbers of SSRs (Figure 3). Thus, when using all the clones for training and all the SSRs, 454 

Site 1 cross-validation accuracy was 0.60, while Site 1 towards Site 2 accuracy fell to 0.51 (-14.9%). 455 
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By contrast, Site 2 cross-validation accuracy largely underestimated Site 2 towards Site 1 accuracy, for 456 

all training sizes and numbers of SSRs. Thus, when using all the clones for training and all the SSRs, 457 

Site 2 cross-validation accuracy was 0.34, while Site 2 towards Site 1 accuracy reached 0.54 458 

(+61.7%).  459 

Regarding the advantage of the Ho SSR sampling method over random sampling (Figure 4), 460 

consistent results were obtained between each within-site experiment and the between-site experiment 461 

in which the considered site was used for training and the other site for validation: in both cases, SSR 462 

sampling based on Ho gave higher accuracies than random sampling. In addition, the number of SSRs 463 

that gave the highest accuracy with Ho SSR sampling was the same in Site 2 cross validation and in 464 

Site 2 towards Site 1 validation (150), in both cases leading to higher GS accuracy than when all the 465 

SSRs were used. Similarly, although the number of SSRs that produced the highest accuracy with Ho 466 

SSR sampling in Site 1 cross validation and in Site 1 towards Site 2 validation differed (200 and 125, 467 

respectively), using the number of SSRs that gave the highest accuracy in Site 1 cross validation for 468 

Site 1 towards Site 2 validation would still have increased GS accuracy compared with using all SSRs.  469 

 470 

3.5 Comparison of combined GS/PS and PS breeding schemes  471 

The variance-covariance matrix between g, y, and ĝ used to calibrate the simulation is given Figure 5. 472 

The mean phenotypic value (aggregated amount of rubber) was 186 g. The GS accuracy (<0,0�) was 473 

0.561, corresponding to the mean accuracy obtained in between-site validations with the 125 to 200 474 

SSRs with the highest Ho. The accuracy of SET (<0,76) was 0.358. 475 

The simulation showed that combining GS and PS outperformed conventional PS in terms of 476 

rubber production of the selected clones and annual selection response when genomic preselection was 477 

applied to a sufficient number of candidates, i.e. at least 1,000. In this case, additional rubber 478 

production was observed in the clones selected using GS (Figure 6). With 1,000 candidates, this 479 

additional production was very low (+0.4%) but increased when more candidates were used for 480 

preselection, and reached 5.9% when preselection was applied to 5,000 candidates. This led to an 481 

increase in annual response to selection when combining GS and PS compared with conventional PS, 482 
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which started from +1% with 1,000 clones subjected to genomic preselection and reached +15% with 483 

5,000 candidates for genomic preselection (Figure 7). The results also indicated that using a larger 484 

population of candidates for genomic preselection would have further increased the superiority of 485 

combined GS/PS over conventional PS, albeit only slightly. Genotyping 3,000 candidates for genomic 486 

preselection appeared as a good compromise between genotyping effort and efficiency of combined 487 

GS/PS (+4.2% mean production for the selected clones, corresponding to a +10.3% increase in annual 488 

selection response). In contrast, combining GS and PS performed worse than conventional PS when 489 

100 and 500 candidates only were used for the genomic preselection. 490 

As these values were means of 5,000 replicates of the simulation, they show the average extra 491 

gain that would result from the application of genomic preselection in many replicates of the F1 cross 492 

studied here. This is of major interest for breeders, but the actual gain that would be achieved in a 493 

given breeding program is also crucial. To assess this (and in particular to assess the probability that a 494 

given application of the GS scheme indeed performs better than the current PS scheme), Figure 7 also 495 

shows the distribution of the relative performance of combining GS and PS compared with 496 

conventional PS, in the form of a boxplot for each number of candidates for genomic preselection. For 497 

instance, the figure shows that with 2,000 candidates for genomic preselection, although the mean 498 

expected extra annual response to selection generated by GS reaches 7%, the first quartile is only 499 

slightly above the value corresponding to a similar performance by PS. This indicates that, although 500 

on average over a large number of replicates combining GS and PS will be better than conventional 501 

PS, for a specific application there is an almost 25% risk that GS would actually not perform better, or 502 

even worse, than PS (with the lowest value obtained being an annual selection response of GS 503 

reaching only 78.3% that of PS). Therefore, the best way to decide on the size of the population of 504 

selection candidates for genomic preselection is to consider both the mean expected annual selection 505 

response of GS and the distribution of the possible values around this mean. Thus, using 3,000 506 

candidates, 75% of the simulation replicates gave an annual selection response of combined GS/PS at 507 

least 4.5% higher than when using conventional PS (with the maximum value reaching +45.6%), and 508 

the risk of GS actually performing worse than PS was low, at 9.2%. When increasing the number of 509 

candidates to 5,000, this risk dropped to 4.6%.    510 
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The increase in the relative performance of combined GS/PS compared with conventional PS 511 

when more candidates are used for genomic preselection resulted from the associated increase in 512 

selection intensity of combined GS/PS. Selection intensity in combined GS/PS was 15% lower than 513 

PS when 100 candidates were used for genomic preselection, but became roughly equivalent to PS 514 

with 1,000 candidates. It further increased to reach +14% when 5,000 candidates were used for the 515 

genomic preselection (see Supplementary Fig. S 4 for details). The fact that the selection intensity of 516 

the combined GS/PS scheme with 1,000 candidates to genomic preselection was similar to the 517 

selection intensity of the PS scheme with 3,000 individuals in SET resulted from the existence of two 518 

stages of selection. Indeed, genomic preselection can retain elite clones for SSCT that could have been 519 

discarded from the SET results, since the accuracy of genomic predictions is higher than SET 520 

accuracy. As a consequence, the 10 best clones selected at the end of the SSCT tend to perform better 521 

if the SSCT is preceded by genomic preselection rather than SET, leading to a higher selection 522 

differential and thus higher selection intensity in the combined GS/PS scheme than in the conventional 523 

PS scheme.  524 

Finally, the better performance of the combined GS/PS scheme compared with conventional 525 

PS was the consequence of the greater selection accuracy of genomic preselection compared with 526 

phenotypic preselection with SET (GS accuracy being 56.7% higher) and of the greater selection 527 

intensity achieved when the number of candidates to genomic preselection was sufficiently high 528 

(≥1,000).  529 

 530 

4. Discussion 531 

The results presented here showed that applying the suggested breeding scheme combining GS 532 

and PS can increase rubber production in the cross PB 260 × RRIM 600. However, the advantage of 533 

this new breeding scheme over conventional PS resulted from GS accuracy, genetic variance and 534 

selection accuracy in SET and in SSCT, which vary among single crosses and traits. In particular, 535 

even in the case of GS implemented within full-sib families like here and despite the existence of 536 

deterministic equations, it remains difficult to predict GS accuracy for a particular trait in a given 537 



21 

 

family (Schopp et al., 2017). The study therefore needs to be extended to other families and traits, in 538 

particular using contrasted F1 crosses in terms of genetic and phenotypic variation.  539 

 540 

4.1 Relevance of within-family GS for Hevea 541 

The within-family GS scheme investigated here will not require restructuring breeding activities, 542 

already organised around full-sib families, and this is clearly a practical advantage for breeders. In 543 

addition, breeding schemes in which selection is applied within single crosses (i.e. full-sib families) 544 

are favourable situations for GS. In such biparental populations, there is a high linkage disequilibrium 545 

between marker alleles and gene alleles, which reduces the required marker density (as full-sibs share 546 

large chromosome segments), and there is no group structure (Crossa et al., 2017; Lin et al., 2014). 547 

Good results of within-family GS as implemented here have been reported in other plant species, with 548 

GS accuracies reaching moderate (i.e. between 0.5 and 0.7, as in the present study) to high values. For 549 

instance, GS accuracy estimated with a single-site cross validation was around 0.6 in a family of 500 550 

Sitka spruce clones (Fuentes-Utrilla et al., 2017) and between 0.59 and 0.91 in a family of 180 Citrus 551 

clones (Gois et al., 2016).  552 

A possible drawback of the within-family GS approach presented here is that it might not always be 553 

possible to obtain a training population of sufficient size. Hevea breeding programs use several 554 

families with limited resources, and the size of each family is therefore constrained. With the family 555 

used here, it appeared that using 175 clones to train the GS model was enough. However, this figure is 556 

close to the maximum amount of resources breeders can invest in a single family, and some families 557 

could require a larger training size, depending on their level of genetic variation. An alternative to the 558 

within-family approach studied here could be to implement GS in a population comprising several 559 

interconnected families, obtained using incomplete diallel or factorial mating designs. Although such a 560 

population would not be easy to obtain in Hevea due to the species’ low female fertility, a comparison 561 

with within-family GS would be informative. This type of GS approach is implemented in a number of 562 

perennial species, including loblolly pine, spruce, eucalyptus (Grattapaglia, 2017), apple (eg Kumar et 563 

al., 2015; Muranty et al., 2015), and citrus (Minamikawa et al., 2017). This is interesting as it leads to 564 

a single (and therefore larger) training population compared with the various family-specific training 565 
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populations required for the within-family GS approach. However, this increase in training size, 566 

although beneficial for GS accuracy, would be offset by a decrease in relatedness between the training 567 

set and the application set, a situation known to have a negative impact on GS accuracy. Therefore, in 568 

practice, a GS approach using a complex population involving several families could be more 569 

complicated to manage, with GS accuracy varying among selection candidates depending on their 570 

actual relationship with the training individuals. This could also actually lead to lower GS accuracies 571 

than family-specific training populations (Crossa et al., 2017; Lenz et al., 2017; Schopp et al., 2017; 572 

Toro et al., 2017; Würschum et al., 2017). In addition, from a practical point of view, the time needed 573 

to achieve and release a commercial clone could be longer with a complex multiparental population 574 

than with separate F1 families. This has to be taken into consideration as it represents a risk for Hevea 575 

breeding, where cycles are long and the resources invested in breeding activities are very limited. 576 

  577 

4.2 Comparison of combined GS/PS and PS breeding schemes  578 

The most important point for breeders regarding GS is the annual selection response that could 579 

result from its use, compared with the annual selection response of PS (Resende et al., 2017). 580 

Although PS and GS selection accuracies play a crucial role in this comparison, other factors that 581 

affect annual genetic gain must also be taken into consideration, i.e. relative generation interval and 582 

selection intensity of PS and GS. A few studies have ventured beyond estimating empirical GS 583 

accuracies and have used these estimates to evaluate the possible gain in annual selection response that 584 

GS could elicit. In eucalyptus, GS annual selection response is expected to be 50% to 300% greater 585 

than that of current PS, depending on the reduction in the duration of the breeding cycle and on GS 586 

selection intensity (Resende et al., 2012, 2017). In black spruce, annual selection response should be 587 

200% higher with the GS approach than with conventional selection, thanks to the shorter GS breeding 588 

cycle (Lenz et al., 2017). In Citrus, annual selection response is expected to increase by 31% to 420%, 589 

depending on how much the breeding cycle is shortened and on the trait concerned (Gois et al., 2016).  590 

In Hevea, like in other perennial crops, the full potential of GS will be achieved over 591 

consecutive breeding cycles. Given the data available for this first GS study in this species, it was only 592 

possible to consider a single breeding cycle, whose duration could not be reduced due to the need for a 593 
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SSCT to train the GS model. This explains why the increase in annual selection response reported here 594 

may seem modest compared with that reported in studies on other perennial crops. However, beyond 595 

the first cycle, breeding cycles will become shorter: only one SSCT will be required, since the GS 596 

model will have been calibrated with data from the first cycle. In addition, the training population used 597 

in the second cycle will comprise the aggregated data of the two SSCTs of the first cycle, and in the 598 

following cycles the data of the new SSCTs will be added to the training population. This is known to 599 

enhance GS accuracy (Auinger et al., 2016; Cros et al., 2018; Denis and Bouvet, 2013). Further 600 

studies are needed to investigate the efficiency of GS over several cycles in Hevea. 601 

Another possibility would be to consider a GS scheme with only one SSCT in which the 602 

genomic predictions would be used to select clones in the second nursery, before their final evaluation 603 

in LSCT, instead of using GS to make a preselection before SSCT. This would have the advantage of 604 

reducing the duration of the breeding cycle. However, a simulation similar to the one presented here 605 

showed that, within the range of the number of selection candidates that can reasonably be genotyped, 606 

this approach was not advantageous in terms of annual selection response because the steep decline in 607 

accuracy between the SSCT (0.95) and the genomic predictions (0.561 on average over the two 608 

between-sites validations, i.e. a 40.9% decrease) was not offset by the shorter generation interval 609 

and/or higher selection intensity made possible by GS (data not shown). Our study therefore focused 610 

on a GS scheme in which the use of GS methodology was limited to the replacement of the 611 

conventional seedling evaluation trials prior to clone trials, and it showed this was sufficient to 612 

enhance the efficiency of the breeding scheme. A similar result was obtained in an oil palm study 613 

(Cros et al., 2017), which evaluated the usefulness of genomic preselection prior to field evaluation, 614 

i.e. without reducing the breeding cycle duration, like in the present study. It thus showed that 615 

genomic preselection would increase bunch production by 6.5% to >10% when 2,000 to 10,000 616 

candidates are used for genomic preselection. 617 

Here, we used a single PS breeding scheme in order to benchmark the breeding scheme 618 

combining GS and PS. However, several PS schemes are possible. For instance, Gireesh et al. (2017) 619 

suggested the use of clonal nursery trials to optimize phenotypic breeding. It would therefore be 620 
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interesting to implement new simulation studies to consider a broader range of possible PS and GS 621 

schemes.  622 

 623 

4.3 Within-site and between-site accuracies  624 

The between-site GS accuracies obtained in this study and the resulting estimate of annual 625 

selection response are appropriate for the environment considered here. The higher GS accuracy 626 

obtained in Site 1 cross validation compared with Site 1 to Site 2 validation was expected from the 627 

literature, which indicated that within-site cross-validations can lead to upward biases in GS accuracy 628 

(Beaulieu et al., 2014; Lorenz et al., 2011, p.94; Ly et al., 2013). For instance, in another perennial 629 

crop, black spruce, Lenz et al. (2017) obtained GS accuracy from between-site validation lower than 630 

accuracies obtained within the same site. The relatively small difference between the accuracies of 631 

Site 1 cross-validation and of Site 1 to Site 2 validation, and the similar accuracies when making 632 

predictions from Site 1 towards Site 2 and from Site 2 towards Site 1, indicated that genotype × 633 

environment (G × E) interactions, that could have been generated by differences in locations and 634 

years, were weak – probably because the two environments were similar. However, significant G × E 635 

interactions can occur in Hevea (see for example Costa et al., 2000; Gonçalves et al., 2006; Tan, 636 

1995), and in this case the between-site GS accuracy would certainly be lower. In this case, the 637 

solution would be to take the environment into account in the prediction model. For this purpose, 638 

rubber geneticists will benefit from the methodology developed in cereals and legumes, where G × E 639 

modelling in the context of GS has been extensively studied (Crossa et al., 2017). Surprisingly, GS 640 

accuracy obtained in Site 2 cross-validation was lower than the GS accuracy found in Site 2 towards 641 

Site 1 validation. What determined this result at this site remains unclear.  642 

The effect of number of markers and SSR sampling method (random or based on high Ho) 643 

observed for a single-site cross validation was in good agreement with the results obtained when a GS 644 

model was calibrated at this site to predict the values of clones evaluated at the other site. This 645 

indicated that, in the environment considered here, a single-site cross validation experiment made it 646 

possible to identify the number of SSRs and the method for choosing the SSRs that would yield the 647 
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best GS accuracy that can be expected from using this experiment to train a GS model for predicting 648 

the rubber production of clones at another site. 649 

 650 

4.4 Molecular data 651 

In this study SSR markers were used, whereas in the vast majority of GS experiments in 652 

animals and plants, genotyping is carried out with single nucleotide polymorphism (SNP) markers.  653 

Simple sequence repeats were used here because this type of marker has already been shown to be 654 

efficient in GS validation studies in oil palm (Cros et al., 2015; Marchal et al., 2016), table grapes 655 

(Viana et al., 2016), and flax (You et al., 2016); and also because the biparental nature of the plant 656 

material used here suggested that the marker density achievable with SSRs could be sufficient. In the 657 

present study, 300 SSRs, which is a rather low density compared with what is usually found in GS 658 

studies, turned out to be sufficient to achieve the maximum GS accuracy that could be reached here. 659 

However, this result holds for the F1 cross and for the training population size considered here, and it 660 

is possible that, in a different situation (for example with a larger training population), the GS 661 

accuracy would benefit from the use of more markers. Also, with the dataset considered here, it was 662 

possible to further reduce marker density with a slight increase, or at least no loss, in GS accuracy by 663 

using a subset of the 125 to 200 SSRs with the highest Ho. With multi-allelic markers in a single cross 664 

between heterozygous parents, Ho actually indicates how informative the markers are. Thus, the SSRs 665 

with Ho=1, which was the case for 25 to 50 SSRs per validation (Supplementary Fig. S 3), were those 666 

for which the two parents RRIM 600 and PB 260 had no alleles in common. When the two parents 667 

were heterozygotes, this corresponded to a situation with a balanced representation of the four alleles 668 

in the cross (the frequency of each allele being around 25%). This suggests that the marker density 669 

required to reach maximum GS accuracy is likely to vary among F1 crosses, depending on parental 670 

relatedness and heterozygosity. Other parameters were used for SSR screening (polymorphism 671 

information content (Botstein et al., 1980, p. 320) and expected heterozygosity, He) but preliminary 672 

analyses indicated that filtering using Ho yielded better results (data not shown).  673 

The practical implementation of GS will require a high throughput and a cost-effective 674 

genotyping method to make the screening of large populations of selection candidates feasible. Even a 675 
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reduced panel of SSRs might not be competitive in terms of cost compared with genotyping 676 

approaches involving SNPs. In addition, if the method is implemented over several generations, it will 677 

probably be necessary to increase marker density in order to limit decline in accuracy (Grattapaglia, 678 

2017, p. 216). To our knowledge, there is currently no SNP array available in Hevea, but genotyping 679 

by sequencing (GBS) (Elshire et al., 2011), which has already been used in this species to construct a 680 

high density linkage map (Pootakham et al., 2015), could generate the molecular data required for GS 681 

in Hevea. Furthermore, approaches specific to biparental crosses that combine GBS and a relevant 682 

imputation methodology could be used to further increase the cost efficiency of large-scale genotyping 683 

(Gorjanc et al., 2017; Technow and Gerke, 2017). 684 

 685 

4.5 Models and statistical methods for genomic predictions 686 

Like in the present study, empirical GS accuracies have frequently been found to be unaffected by the 687 

statistical method of prediction (here BLR, BRR, and RKHS). Several examples with similar results 688 

are thus available in perennial crops. For various growth traits in eucalyptus, similar accuracies were 689 

obtained using BLR, RR-BLUP, and RKHS by Tan et al. (2017a), and using BLR and Bayesian 690 

random regression (BRR, similar to RR-BLUP) by Müller et al. (2017). In oil palm, BLR and BRR 691 

gave the same accuracies for yield components (Cros et al., 2015).  692 

The explicit modelling of dominance effects with BLR_AD and RR-BLUP_AD had no effect 693 

on GS accuracy. Simulations in eucalyptus showed that including dominance in the GS model for 694 

prediction of clone performance improved accuracy when dominance effects were preponderant (ratio 695 

of dominance to additive variance of 1.0) and heritability was high (H²=0.600) (Denis and Bouvet, 696 

2013). Simulations in loblolly pine showed that including dominance in the GS prediction model 697 

improved accuracy when the ratio of dominance to phenotypic variance was over 20% (de Almeida 698 

Filho et al., 2016). With empirical data on eucalyptus, Tan et al. (2017b) reported that GS accuracy for 699 

traits with large dominance variance was increased by including dominance effects in the model. 700 

However, in apple, Kumar et al. (2015), empirically obtained similar GS accuracies with models with 701 

or without non-additive effects for fruit quality traits, despite a high proportion of non-additive 702 

variance in some traits. This apparent discrepancy could come from the fact that Kumar et al. (2015) 703 
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used a training population of around 230 individuals, much smaller than that used by the previously 704 

cited authors, who used training populations of at least 800 individuals. It can therefore be 705 

hypothesised that, in the present study, including dominance effects in the GS models did not affect 706 

accuracy because dominance variance was not large enough and/or because the training populations 707 

were too small (from 114 to 189 individuals). Similar reasons are likely to explain the fact that RKHS 708 

did not perform better than the other methods. 709 

 710 

5. Conclusions 711 

The within-family GS strategy investigated here will lead to the release of more productive Hevea 712 

clones than clones selected with the current PS scheme. This will increase the yield of rubber from 713 

existing plantations, and thus help to meet the demand for natural rubber while minimising 714 

environmental costs. With a F1 cross between two widely cultivated clones, PB 260 × RRIM 600, a 715 

mean empirical GS accuracy of 0.53 was obtained in predictions between two independent sites when 716 

using all the clones for training and all the SSRs. SSR density and training size markedly affected GS 717 

accuracy. Mean between-site GS accuracy reached 0.561 when using the 125 to 200 SSRs with the 718 

highest Ho. In contrast, the statistical method used to obtain the genomic predictions of clone values 719 

did not affect GS accuracy. Based on this empirical result, simulations showed that by applying a 720 

genomic preselection among 3,000 seedlings in the nursery prior to clone trial, instead of the current 721 

low-accuracy phenotypic preselection on 3,000 seedlings, the rubber yield of the clones selected in the 722 

F1 cross considered would have been 4.2% higher, corresponding to a 10.3% increase in annual 723 

selection response. This resulted from the greater selection accuracy of genomic preselection 724 

compared with phenotypic preselection. 725 

The results presented here showed that combining GS and PS can increase rubber production 726 

in the cross PB 260 × RRIM 600. However, before generalising GS in rubber breeding, this study 727 

needs to be extended to other families because the results obtained, and in particular the GS accuracies 728 

and selection response, are affected by the genetic characteristics of the parents of the F1 cross used. 729 

Similarly, studies considering other traits, such as growth and architecture, are needed. It is also 730 
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necessary to compare GS and PS in terms of selection response per unit cost and to investigate the 731 

efficiency of GS over consecutive breeding cycles, which will make it possible to shorten the breeding 732 

cycle in the cycles following model training. Furthermore, using a broader range of environments for 733 

between-site validations will be of major interest. 734 
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Tables 1003 

 1004 

Table 1 Characteristics of the simple sequence repeat (SSR) molecular data obtained at each site. Ho: 1005 

observed heterozygosity 1006 

 Site 1 Site 2 

Number of SSRs 332 296 

Missing data (%) 2.7% 2.2% 

Range of missing data (%) per SSR 0.0% – 58.1% 0.0% – 51.0% 

SSRs with ≤5% missing data (%) 87.3% 92.2% 

Range of missing data (%) per clone 0.0% – 21.0% 0.0% – 32.8% 

Clone with ≤5% missing data (%) 88.0% 95.1% 

Mean number of alleles per SSR (range) 2.56 (2 – 4) 2.56 (2 – 4) 

Total number of alleles 850 759 

Mean allele frequency (range) 0.39 (0.14 – 0.86) 0.39 (0.15 – 0.84) 

Mean Ho per SSR (range) 0.64 (0.34 – 1) 0.64 (0.33 – 1) 

 1007 
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Figures 1010 

 1011 

Figure 1. Conventional phenotypic selection (PS) and combined PS + genomic selection (GS) for a 1012 

single F1 family (cross between C1 and C2 individuals). SET: seedling evaluation trial, SSCT: small-1013 

scale clone trial, LSCT: large-scale clone trial. The height of the boxes is proportional to duration. 1014 

Blue boxes: usual steps of PS. Red: GS steps. Time is expressed in months (m) or years (y). Number 1015 

of seedlings (s.) and clones (cl.) are given as an indication only. 1016 
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 1019 

 1020 

Figure 2. GS accuracy for rubber production according to statistical method of GS prediction, and 1021 

validation approach. Values are means over seven replicates for Site 1 cross validation and Site 2 to 1022 

Site 1 independent validation, and five replicates for Site 2 cross validation and Site 1 to Site 2 1023 

independent validation. Values with the same letter within a given validation approach are not 1024 

significantly different at P=0.05. All the clones were used to train the GS model. All the SSRs were 1025 

used. 1026 
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 1028 

Figure 3. GS accuracy in predicting rubber yield according to number of clones used to train the GS 1029 

prediction model (training size), number of SSRs, and validation approach. For a given number of 1030 

SSRs, random SNPs were sampled. Values are means of seven to 1,400 replicates, depending on 1031 

training size, number of SSRs, and validation approach.  1032 

 1033 

  1034 



38 

 

 1035 

Figure 4. GS accuracy in predicting rubber yield according to SNP sampling method (highest observed 1036 

heterozygosity [Ho] and random), number of SSRs, and validation approach. All available clones were 1037 

used for training. Significance of Wald-type permutation test for method of SNP sampling: *** P < 1038 

0.001, * 0.01 ≤ P < 0.05, ns: not significant. Values are means of five to 56 replicates, depending on 1039 

SNP sampling method, number of SSRs, and validation approach. 1040 
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Figure 5. Variance-covariance matrix between g, y, and ĝ used to calibrate the simulation. g: true 1045 

genetic values, y’: seedling phenotypes in SET, y: estimated genetic values in SSCT, and ĝ: genomic 1046 

estimated genetic values.  1047 
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 1051 

 1052 

Figure 6. Rubber production per ramet of the clones selected using genomic selection (GS) and 1053 

conventional phenotypic selection (PS) according to the number of candidate clones submitted to 1054 

genomic preselection. Values are means over 5,000 replicates. Bars indicate standard deviations. 1055 
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 1058 

Figure 7. Annual response to selection in the GS scheme, expressed in % of the annual selection 1059 

response in the conventional PS scheme, according to the number of candidates subjected to genomic 1060 

preselection. Values in red are means of 5,000 replicates. The horizontal black line indicates annual 1061 

selection response with GS equal to annual selection response with PS.  1062 
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