There will be epidemics…

EBOLA: WORLD GOES ON RED ALERT

- Spread of Spanish Flu Menaces War Production
- Ebola Out of Control
- Death Toll Growing as Influenza Claims Many More Victims
- Officials: Texas Sees Growing Number of Typhus Cases
- FDA Busts Fake Malaria Medicines
- ZIKA THREAT ON OUR DOORSTEP
- Panic as 1,500 Die of Malaria
- New Hope for AIDS Drug

DENGUE EVERYWHERE

- Brace for Dengue
- African Countries to Plot New Malaria Vaccine
- Panic as 1,500 Die of Malaria

CHOLERA IN YEMEN

- Cholera Epidemic in Yemen Now Affects One Million People

DENGUE SPREADS WORLDWIDE

- Zika Spreads World Wide
- Island Declares State of Emergency Over Zika Virus, Dengue Fever Outbreak

ASTMH ANNUAL MEETING

- Canceled Due to Spanish Flu Outbreak
- Quarantine Wanted as Yellow Fever Spreads
- An American Plague: Yellow Fever Epidemic of 1793

QUARANTINE WANTED

- Island Declares State of Emergency Over Zika Virus, Dengue Fever Outbreak
- Stay away from ASTMH meeting, Louisiana says

RISING MALARIA CASES

- 2016
- 2014
- 2013
- 2018
- 2005

RISING MALARIA CASES

- Six dead, 17 sick from drug-resistant TB
- New Hope for AIDS Drug
- DIPHTHERIA: Why is it Back?
- Malaria Cases on the Rise in Last 3 Years

ASTMH ANNUAL MEETING

- October 28 – November 1, 2018
- Sheraton New Orleans and New Orleans Marriott | New Orleans, LA USA

ABSTRACT BOOK

asthm.org ajtmh.org #TropMed18
any given time increasing the possibility of malaria-arboviral co-infections. More studies are needed to establish the relationship between vectors of different diseases and impact of immunity in disease transmission.

148

DRIVING FORCE AND IMPACT OF URBANIZATION ON THE ECOLOGY OF Aedes Mosquitoes in Yellow Fever and Dengue Co-Endemic Areas in Côte d’Ivoire

Julien B. Zahouli1, Benjamin G. Koudou1, Pie Müller2, David Malone3, Yao Tano4, Jürg Utzinger5

1Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte D’Ivoire, 2Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 3Swiss Tropical and Public Health Institute, Basel, Switzerland, 4Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 5Université Nangui-Abrogoua, Abidjan, Côte d’Ivoire

Aedes mosquito-borne arboviruses have increasingly occurred in rural and urban settings of Africa. We explored the effect of urbanization on Aedes ecology along a rural-to-urban gradient in yellow fever (YF) and dengue (DEN) co-endemic areas in Côte d’Ivoire. Aedes eggs, larvae and adults were sampled using ovitraps, larval surveys and human-baited double-net traps in rural, suburban and urban areas from January 2013 to December 2014. Aedes breeding sites were characterized, and species identified. A total of 51,439 specimens of Aedes mosquitoes belonging to 20 species (Ae. aegypti, Ae. africanus, Ae. albopictus, Ae. angustus, Ae. apicoargentatus, Ae. argenteopunctatus, Ae. denguephilus, Ae. fraseri, Ae. furcifer, Ae. harrisoni, Ae. ili, Ae. longipalpis, Ae. luteocephalus, Ae. metallicus, Ae. opok, Ae. palpalis, Ae. stokesi, Ae. unilineatus, Ae. usambara and Ae. vittatus) were sampled. The highest Aedes species richness was found in rural (18 species), followed by suburban (7 species) and urban (3 species) areas. Conversely, Aedes showed higher abundance in urban (n = 51,439; 50.7%) compared to suburban (32.6%) and rural (16.7%) areas. Aedes-positive breeding sites were more abundant in urban (2,136/3,374; 63.3%) than suburban (1,428/3,069; 46.5%) and rural (738/2,423; 30.5%) areas. Breeding sites were mainly industrial (i.e., tires, cans and water receptacles), traditional (i.e., clay-pots) and natural (i.e., tree holes and fruit husks) containers in urban, suburban and rural areas, respectively. Ae. aegypti, Ae. denguephilus, and Ae. vittatus bit humans in rural (4.48 bites/person/day), while Ae. aegypti infected 99.7% of bites in urban (15.73 bites/person/day) areas. Ae. aegypti was the dominant species and displayed bimodal daily feeding cycles in all areas, with stronger magnitude in urban areas. In Côte d’Ivoire, urbanization shifts Aedes ecology by restricting of wild Aedes species in rural and favoring Ae. aegypti in urban areas. Data suggested that while Aedes wild species act as bridge vectors of YF and DEN viruses in rural, Ae. aegypti raises the risk of inter-human transmission of arboviral diseases in urban areas.

149

SPATIAL RISK OF URBAN EXPOSURE TO ANOPHELES AND Aedes MOSQUITO BITES IN AFRICA USING SALIVARY ANTIBODY-BASED BIOMARKERS

Andre Barembaye Sagna1, Daouda Kassie1, Agnès Courvray1, Emmanuel Hermann1, Gilles Riveau2, Gérard Salem3, Florence Fournet1, Franck Remoué1

1Institut de Recherche pour le Développement, Montpellier, France, 2ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France, 3Institut Pasteur de Lille, Lille, France, 4Institut de Recherche pour le Développement, Paris, France

Urban settings often present low densities of mosquito vectors which do not allow to accurately assess the risk of arthropod-borne diseases based on entomological parameters. This study aims to evaluate the spatial risk of both malaria and arbovirus transmission in a northern urban area of Senegal, West-Africa, using antibody-based biomarkers of human exposure to Anopheles and Aedes mosquito bites. A cross-sectional study was undertaken between August and September 2014 (rainy season) in four urban districts (UDs) of the city of Saint-Louis, Senegal: Leona (LEO), Ndoloffène (NDI), Guet Ndar (GND) and Pikine Sor Diagne (PSD). In each UD, dry blood spots were performed in 809 children aged 6-59 months and ELISA method was used to evaluate IgG antibody (Ab) responses to both gSG6-P1 (Anopheles) and Nterm-34kDa (Aedes) peptides of respective mosquito saliva. The median of IgG response levels to both gSG6-P1 and Nterm-34kDa salivary peptide varied significantly according to UDs and were lower in LEO compared to PSD, GND and NDI (p<0.0001). Heat maps of IgG responses to both salivary peptides indicated variations in the spatial distribution of the intensity of Ab responses inside UDs. There were no hot spots of malaria transmission risk (areas with children presenting a high IgG intensity) in LEO. Hot spots of malaria were mainly located in the northern part of NDI and GND, and in the southern part of PSD. As for the risk of arbovirus transmission, there were no hot spots in LEO and PSD. Hot spots of arbovirus transmission risk were located in some patch in the north of NDI and were dispersed throughout the UD of GND. Our results demonstrate that hot spots of both malaria and arbovirus transmission risk actually exist in northern parts of NDI and GND. This highlights that a targeted fight against mosquitoes in these hot spots could be effective against all mosquito-borne diseases. Antibody-based biomarkers could then help national control programs to target and prioritize vector control strategies in areas with common risk of malaria and arbovirus transmission.

150

LARVAL ENVIRONMENT INFLUENCES MICROBIOTA OF CONTAINER DWELLING MOSQUITOES

Elijah Juma1

1University of Illinois at Urbana-Champaign, Urbana, IL, United States

Mosquitoes host a community of microbiota that influence their growth, survival and susceptibility to pathogens. These microbiota are known to vary markedly between individuals but our understanding of the factors that influence this variation is still limited. The aim of this study was to determine how the larval environment influences the microbiome of two container-dwelling mosquito species, Aedes triseriatus and Ae. japonicus. Larvae of the two mosquito species were sampled from tire and tree-hole habitats at South Farms and Trelease Woods study sites in Champaign, Illinois, and their microbiome characterized through MiSeq sequencing of the 16S rRNA gene. Approximately 66% of bacterial operational taxonomic units (OTUs) were shared between mosquito larvae and water samples from the larval environment. Dysgonomonas and an unclassified genus from family Comamonadaceae were the dominant bacterial taxa in Ae. triseriatus larvae and water samples respectively, but no clear dominance of any bacterial taxa was observed in Ae. japonicus larvae. Overall, there was significantly higher number of OTUs observed and predicted in mosquito larval samples compared to water samples. Bacterial OTU richness was significantly higher in Ae. japonicus tire samples from both study sites compared to Ae. triseriatus tire and tree-hole samples from South Farms or water samples from South Farms. NMDS plots based on Bray-Curtis distances revealed a clear separation of Ae. japonicus, Ae. triseriatus and water samples indicating that the bacterial communities differed by sample type. The findings of this study reveal that Ae. japonicus and Ae. triseriatus harbor distinct bacterial communities some of which are likely acquired from the larval environment.