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Abstract 14 

 Tsetse flies are vectors of parasites that cause diseases responsible for significant 15 

economic losses and health issues in sub-Saharan Africa, including sleeping sickness in 16 

humans and nagana in domestic animals. Efficient vector control campaigns require good 17 

knowledge of the demographic parameters of the targeted populations. In the last decade, 18 

population genetics emerged as a convenient way to measure population densities and 19 

dispersal in tsetse flies. Here by revealing a strong negative density-dependent dispersal 20 

in two dimensions, we suggest that control campaigns might unleash dispersal from 21 

untreated areas. If confirmed by direct measurement of dispersal before and after control 22 

campaigns, area wide and/or sequential treatments of neighboring sites will be necessary 23 

to prevent this issue. 24 
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Tsetse fly control and population genetics tools 26 

 Flies of the genus Glossina are the vectors of trypanosomes, parasites responsible 27 

for diseases that lead to a significant disease burden and economic losses in sub-Saharan 28 

Africa. In humans, tsetse flies transmit trypanosomiasis, also known as sleeping sickness” 29 

which is usually mortal if the patient is not treated [1]. In animals, particularly cattle, it 30 

causes nagana, a disease known to cause considerable economic losses in sub-Saharan 31 

Africa [2, 3]. Vector control has become a recognized key component in the management 32 

of these plagues [3-5]. Nevertheless, to optimize control campaigns, good knowledge of 33 

the biology of the target populations is needed, in particular their density and dispersal 34 

ability [6]. Lack of such knowledge has indeed been implicated in the failure of some 35 

elimination campaigns due to the raid reinvasion of treated populations by local flies or by 36 

flies from neighboring sites [7]. Population genetics (see Glossary) offers useful tools [8] 37 

in particular for tsetse flies [3]. 38 

 Considerable work has been undertaken in recent years to study the population 39 

biology of different species of tsetse flies in a range of different countries with varying 40 

success in terms of population density and dispersal estimates (e.g. see [4, 7, 9-12]). 41 

 The best way to accurately estimate dispersal of a given population is isolation by 42 

distance. Isolation by distance is a common feature of population structure in which the 43 

genetic relatedness (or genetic distance) between individuals or subpopulations (see Box 44 

1) is a decreasing function of the geographic distance separating them (the shorter the 45 

distance between them, the more similar they are). When such genetic distances are 46 

known, an isolation by distance model can be built and its significance tested (Box 2). If it 47 

is significant and if effective population density De can be estimated, then dispersal δ 48 

can be extracted from the model (Box 2). 49 

 In the last decade, several data sets have provided the opportunity for such 50 

inferences for different tsetse fly species in different countries in Africa: Glossina palpalis 51 
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gambiensis along the northern reaches [13] and the southern reaches of the Mouhoun 52 

River [14] in Burkina-Faso (in one dimension=1D, see Box 2); G. palpalis palpalis in 53 

Cameroon (two dimensions=2D, see Box 2) [11, 15]; G. palpalis gambiensis and G. 54 

tachinoides in Southern Burkina Faso (2D) across river basins [9]; G. tachinoides in Ghana 55 

(2D) [7]; G. fuscipes fuscipes from Uganda [12, 16], in Tanzania and Kenya [17] (2D); G. 56 

pallidipes from Kenya Nguruman escarpment and Ruma [18] and from the Serengeti Park 57 

Reserve in Tanzania (2D) [10]. This offered the opportunity to check if any relationship 58 

existed between these different inferences of population density and dispersal. The 59 

objective of the present paper is to discuss the evidence that tsetse dispersal may be 60 

density dependent. 61 

 62 

Regression between dispersal and effective population density 63 

 The detailed protocol for using or reanalyzing available data and computing the 64 

necessary parameters are given in the supplementary file S1. Positive density 65 

dependence dispersal occurs when dispersal increases with density, as expected if 66 

individuals leave to escape overcrowding. Negative density dependent dispersal happens 67 

when crowded populations can no longer accept any immigrants. To investigate evidence 68 

for density-dependent dispersal in tsetse, we computed effective population densities as 69 

the ratio of effective population size (Ne) to the average surface area occupied by a 70 

population (Box 2). For the sake of homogeneity across studies, Ne was estimated using 71 

linkage disequilibrium methods [19-22] and the surface area occupied by a 72 

subpopulation corresponds to the surface of subsamples when available or the disc 73 

defined by the minimum distance between the closest subsamples taken as the diameter 74 

of a population (Box 2). Like for dispersal, we extracted slope estimates and 95% 75 

bootstrap confidence intervals over loci (95%CI) (when available) to compute dispersal 76 

(δ) as explained in Box 2. Because the relationship is exponential, we log transformed 77 
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both geographic and genetic distances to perform the regression. We kept only data with 78 

2D population structure regressions [7, 9-11]. For some studies [12, 15-18], we needed to 79 

re-compute several statistics, as explained in detail in supplementary file S1. Only two 80 

studies where 1D dispersal inferences were available along the Mouhoun River in Burkina 81 

Faso [13, 14] were not included. According to Watts et al. [23], high mutation rates have a 82 

stronger effect on the accuracy of the method in linear habitats than in two-dimensional 83 

habitats and this may affect analyses of riparian systems. The fact that the metric in 1D is 84 

in m and in 2D in m² also makes comparisons difficult. Additionally, we wanted to check 85 

that the relationship was not due to a systematic bias in De and δ estimates by using 86 

independent estimates of De and census densities (see below). Ne can strongly depend on 87 

the reproductive system, on fluctuations in population sizes and/or generation overlap. 88 

This last point should be minimized if samples taken at intervals of not more than two 89 

months are used, as we recommend (Supplementary File S1). We also expect that Ne is 90 

strongly correlated with the census size of the population, otherwise all population genetics 91 

studies of tsetse flies would need to be called into question. Finally, a census of flies 92 

captured during the studies, when available, was also analysed and, likewise, was seen to 93 

be correlated with the real census of the corresponding tsetse populations [24]. 94 

 The results of the regressions are presented in Figure 1, in 1a with effective 95 

population densities (De), and in 1b with census population densities (Dc). An exponential, 96 

tight and negative relationship can be seen between population density and dispersal. The 97 

regression explains most of the variance (R²≈0.85 for De; R²≈0.86 for Dc). Spearman's 98 

rank correlation testing with Rcmdr package [25, 26] for R [27] gave significant p-values 99 

(0.0056 and 0.0167 for De and Dc respectively). 100 

 101 

Possible causes for negative density dependent dispersal 102 
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 Negative density dependence appears to be much less frequent than positive 103 

density dependence (the intuitively expected sign of correlation), in particular in insects 104 

[28, 29]. "The occurrence of negative density dependent dispersal is in agreement with the 105 

‘‘social fence’’ and related hypotheses which have been proposed in particular for small 106 

mammal populations, where movements are increasingly inhibited by aggression at high 107 

densities" [30]. Negative density dependence can result from Allee effects or because 108 

other factors, such as predation, interact with density to negatively influence dispersal [28]. 109 

In the case of insects, if there is a trade-off between wing development and reproductive 110 

capacity, dispersal may also be promoted by harsh local conditions, which can be 111 

correlated with low levels of population density, especially when dispersal is costly [31]. 112 

 There are nevertheless several reported cases of negative density dependent 113 

dispersal. Experimental studies on insects have shown that juvenile hormone titer, which is 114 

influenced by the diet at earlier stages, can influence wing size and hence dispersal 115 

capacities [31]. Negative density dependence has also been reported in the northern pine 116 

processionary moth Thaumetopoea pinivora [29]. 117 

 118 

Dispersal is strongly density dependent in tsetse flies 119 

 Negative density dependent dispersal in tsetse populations has been known for 120 

some time (Box 3) but its intensity has not been measured to date. The exponential 121 

negative density dependence of dispersal observed in the present study raises several 122 

questions. The phenomenon implies that competition for space is very harsh and probably 123 

occurs mainly during feeding on the host (Box 3). When densities are high, all the sites are 124 

crowded and both hosts and local tsetse are accustomed to each other (Box 3). Naïve 125 

immigrants from remote sites are characterized by low feeding success, thus increasing 126 

their mortality. When population densities are low, densities may vary in both space and 127 

time, which renders immigration much easier and allows long-range immigration. In an 128 
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empty spot with no other tsetse competitors and naïve hosts, even exhausted immigrants 129 

from remote sites can safely settle. This pattern could also reflect favorable host densities. 130 

When densities of favorable hosts are low, tsetse flies need to keep moving to find a 131 

suitable blood meal. 132 

 Since control campaigns aim at considerably reducing tsetse densities, they may 133 

unleash dispersal and relatively rapid reinvasion of treated zones from neighboring or even 134 

remote sites, as may have occurred in Ghana [7] and certainly occurred in Ivory Coast 135 

[32]. Reinvasion of flies in areas depleted as a result of vector control has been well 136 

documented for quite some time and emphasizes the role played by fly movement in the 137 

development of control strategies [33]. Some evidence suggests strong density-138 

dependence associated with this phenomenon: the bigger the decrease in the population, 139 

the higher the potential for reinvasion in a continuous tsetse belt [33]. These authors also 140 

report that Hargrove’s models use density-dependent mortality, but not dispersal [34]. This 141 

limitation has already been reported and actually concerns all existing models [35]. 142 

Density-dependent dispersal was only recently incorporated in a tsetse population 143 

dynamics model, based on a sigmoidal density-dependent dispersal rate adapted for 144 

individuals competing for access to resources [36]. Such immigrations are dangerous for 145 

two reasons: i) because they can severely jeopardize the sustained success of control 146 

campaigns; ii) these new immigrants can bring with them pathogenic agents or more 147 

virulent strains that were not present before the campaign and were unable to invade the 148 

zone because of competition for space; and iii) these immigrants may replace the local 149 

population and adapt to local pathogens differently and exhibit new vectorial capacities 150 

compared to the former population. What is more, negative density-dependent dispersal 151 

may partially explain some observed failures. As underlined by Rogers and Randolph [32]: 152 

“Control programmes must recognize that the efficacy of population suppression may well 153 

be reduced at the low levels of density that need to be maintained in order to reduce the 154 
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rates of disease transmission, because at these low levels, tsetse may show entirely 155 

unexpected demographic vigor, due to the absence of normal density dependent 156 

constraints”. If suitable host density is the only force driving the observed pattern, then 157 

control campaigns would not be expected to have any impact on dispersal.  158 

 159 

Concluding Remarks 160 

 More data on isolation by distance slopes and effective population density estimates 161 

are needed to confirm the exact relationship found so far. One-dimensional isolation (along 162 

river courses) is particularly rare up to now. Most species we studied belong to the palpalis 163 

subgenus and one species (G. pallidipes) to the morsitans subgenus. The trends 164 

highlighted here probably apply to all tsetse flies but more studies are needed to 165 

generalize the trends we found to the whole genus. Studies should also focus on areas 166 

where tsetse control has been implemented. Considering that our results strongly support 167 

negative density-dependent dispersal, it will be crucial to evaluate the strength of the 168 

phenomenon using direct methods like mark-release-recapture in the field before and after 169 

control, for instance, combined with population genetics analyses. Alternatively, the 170 

prediction that neighboring flies will recolonize the treated area after the campaign ends 171 

can easily be assessed with sampling and genotyping before and after a control campaign 172 

in the treated area and its surroundings. If confirmed, and if one wants to avoid reinvasions 173 

and their associated issues (see Outstanding Questions), it will be even more important to 174 

find a way to isolate zones after treatment [4] and to sequentially treat neighboring areas 175 

harboring tsetse flies. Finally, several published results could not be included in the 176 

present review because of data unavailability. Data availability is now mandatory in several 177 

journals but we think this should be generalized. 178 

 179 
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Glossary 314 

Allee effect: A phenomenon where the individual fitness (survival and/or reproduction) is 315 

positively correlated with population size or density. 316 

Alleles: The different states of a locus or a gene (e.g. the three alleles of the ABO system 317 

for blood groups). 318 

Bootstrap: A randomization procedure where an item series (e.g. loci) are resampled with 319 

replacement (the same item can be resampled several times) until the number of 320 

items present in the raw data is reached. At each resampling, a statistic is 321 

measured (e.g. genetic distance, see Box 1). The procedure is repeated a great 322 

number of times (e.g. 5000), which produces a distribution of possible values for the 323 

statistic. Excluding the 2.5% smallest and the 2.5% biggest values of the bootstrap 324 

distribution provides the 95% bootstrap confidence interval of the statistic. 325 

Correlation coefficient: A measure of the covariation between two variables. 326 

Effective population density: The ratio of effective population size to the surface area 327 

occupied by a given population.  328 

Effective population size: Quantifies the rate at which a population loses its genetic 329 

diversity. Indeed, the reciprocal of the effective size (1/Ne) gives the long-term 330 

probability that two randomly sampled genes in the population are replicates (or 331 

descend) from a single gene in the parental generation. It can be roughly defined as 332 

the number of adults in a population that will leave a genetic signature to the next 333 

generation. It is generally smaller than the census size Nc, except when 334 

coalescence is delayed due to a particular system of mating (negative assortative 335 

mating) or in very small dioecious populations. In any case, Ne and Nc must be 336 

strongly positively correlated in most, if not all, situations. 337 

Immigration rate: The proportion of individuals in a subpopulation that come from other 338 

subpopulations of the total population. 339 
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Inbreeding: A concept describing how alleles, individuals or subpopulations can be 340 

related. Formally, it corresponds to the probability to randomly draw two identical 341 

alleles that are identical by descent, i.e. that come from a common ancestor. 342 

Linkage disequilibrium: A measure of the statistical correlation between alleles at two or 343 

more loci. If in equilibrium, then the occurrence of alleles at two loci is simply equal 344 

to the product of corresponding allele frequencies in the population for the two loci. 345 

The main forces influencing linkage disequilibrium are reproductive systems, 346 

selection and genetic drift. It can be used to measure effective population size 347 

(small populations generate and maintain higher linkage disequilibria than bigger 348 

ones). 349 

Locus: A specific segment of the genome, not necessarily a coding sequence (gene). 350 

Neighborhood: The number of individuals connected through migration in an isolation by 351 

distance framework.  352 

Parametric test: Statistical tests using population parameters (average and variance). If 353 

the constraints to apply such tests (e.g. normality of data, homogeneity of 354 

variances) are not met, non-parametric tests must be applied instead (e.g. rank 355 

tests or Mantel tests). 356 

Population genetics: The study of the distribution of genetic variation in space and time 357 

and its evolution with random genetic drift, selection, mutation, migration etc. 358 

Regression: A mathematical model explaining the relationship between a response 359 

variable and one (or several) explanatory variable(s). 360 

Riparian: A riparian system describes the interface between land and a river or stream. 361 

Slope: The parameter of a regression that describes how many units ordinates go up or 362 

down for each unit increase in the abscissa. 363 

  364 
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Box 1: Measuring genetic distances 365 

 Several genetic distances exist that are used in isolation by distance procedures 366 

(see [37] for a more complete overview). The most popular, Wright's FST [38] is not a real 367 

genetic distance but a measure of the effect of subdivision on inbreeding. The parametric 368 

definition of this parameter is (e.g. [8]): 369 

��� = �� − ��1 − ��  370 

where QS is the probability of identity between two alleles from two individuals of the same 371 

subpopulation and QT is the probability of identity between two alleles from two 372 

subpopulations of the total population. Its value varies between 0 (no subdivision) and 1 373 

(all subsamples fixed for one or the other allele present, i.e. absolute subdivision). It is 374 

mainly influenced by subpopulation sizes and immigration rate (or dispersal). This 375 

parameter is estimated with Weir and Cockerham's unbiased estimator θ [39]. For isolation 376 

by distance situations, it has been shown that the use of FST_R=θ/(1-θ) is more useful 377 

because it is linearly related to geographic distances without losing its relation to other 378 

demographic parameters [40]. An equivalent measure between individuals ar, and it's 379 

unbiased estimator â, was also designed by Rousset [41] as: 380 

�	 = �
 − �	1 − �
  381 

where Qw is the probability of identity of two genes within an individual and Qr is the 382 

probability of identity of genes at (geographical) distance r. Another statistic ê can be used 383 

in case of very important neighborhood (see [23] for more details). 384 

 In other instances it may be more appropriate to use another genetic distance, e.g. 385 

Cavalli-Sforza and Edward's chord distance [42]. DCSE is more appropriate for tree 386 

topology design [43] and more powerful in some cases of isolation by distance testing [37]: 387 

��� = 2��� �2 �� ���������
��� �	

���  388 
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where r is the number of loci, j the locus name (from 1 to r), i the allele name (from 1 to 389 

mj), mj the number of alleles at locus j, xij and yij are the frequencies of allele i at locus j for 390 

subpopulations x and y, respectively. 391 

 392 

  393 
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Box 2: Measuring and testing isolation by distance and parameter inferences 394 

 Isolation by distance is measured through a regression of geographic distances 395 

(explanatory variable) DGeo between individuals or subsamples and corresponding genetic 396 

distances (response variable) DGenet. Inferences follow particular models of regression, 397 

depending on whether the population structure occurs in one dimension (1D) or in two 398 

dimensions (2D) [23, 40, 41]. 1D structures correspond to shores, ecotones or river 399 

courses, as it is the case for Glossina palpalis gambiensis along forest galleries in 400 

savannas. 2D structures are more common, or at least more often reported. Three 401 

dimension models (dense forests or water columns for aquatic organisms) remain poorly 402 

explored. In 1D, the model is DGenet=a+b×DGeo, where a is the intercept, b the slope of the 403 

regression and DGenet stands for FST_R (for between subpopulations distances), â or ê 404 

(between individuals). In 2D, the model is DGenet=a+b×ln(DGeo), where ln(DGeo) is the 405 

natural logarithm of DGeo. The slope b is linked to the effective population density De and 406 

the average squared axial parent-offspring distance ����� with a neighborhood estimated as 407 

Nb=4� × �����=1/b in 1D and Nb=4�� × �����=1/b in 2D [40]. 408 

 The average surface (S) occupied by a subpopulation can be computed as the 409 

surface area occupied by the different traps used in a given survey site. If only one trap is 410 

available per site, the distance between the two closest sites (Dmin) can be taken as the 411 

raw proxy of the distance between the centers of two neighboring subpopulations and 412 

hence as their diameter: S=π×(Dmin/2)². If the average effective population size Ne is 413 

computed with appropriate algorithms ( e.g. see [20, 44-46]), then De=Ne/S, and a rough 414 

proxy of parent-offspring average distance (dispersal) can be computed as [37]: 415 

" ≈ 2 × � 14�%�  416 

 In 2D, immigrants from neighboring subpopulations at each generation can be 417 

estimated as Nem=1/2πb [40]. 418 
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 For isolation by distance between individuals, â should be used instead of ê when 419 

Nb<10000 in 1D or when Nb<50 in 2D [23]. 420 

 Significance testing cannot be undertaken with a parametric test since distance 421 

measures are autocorrelated (paired comparisons). The significance of the slope can be 422 

tested by a bootstrap over loci based 95% confidence interval (95%CI). If 0 is not included 423 

in 95%CI, then the slope is significantly above 0. Otherwise, a correlation coefficient 424 

(e.g. Pearson) is computed between the two distance matrices and cells of one of those 425 

permuted a great number of times (Mantel test [47]). The p-value of the test is the 426 

proportion of time the randomized correlation was as big as or bigger than the observed 427 

one. If the 95%CI is not above 0, the Mantel test may be more powerful if the genetic 428 

distance used is DCSE, at least for highly variable markers like microsatellite loci [37]. 429 

 430 

  431 
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Box 3: Tsetse fly atypical reproduction and density dependence 432 

 Female tsetse flies do not lay eggs but larviposit a single mature larva (3rd instar, 433 

L3) in humid soil one at a time. The larva develops feeding from the uterine glands of the 434 

mother (adenotrophic viviparity). After larviposition, the larva quickly burrows into the soil 435 

surface for pupation. It was shown in G. morsitans that a larviposition pheromone is 436 

deposited to attract other females to the same site, leading to a strong aggregation of 437 

pupae [48]. The adult emerges 20–80 days later. Thus, in nature, each female produces 438 

no more than 3–5 offspring during its total life. Lifespan is around 3 months for females, 2 439 

months for males. As a result, the intrinsic rate of tsetse population growth is theoretically 440 

low. Both females and males feed on vertebrate blood and are therefore both vectors. 441 

Learning capacities of tsetse flies may increase their hunting efficiency with age and 442 

encourage those returning to their first host [49]. 443 

 Evidence for negative density dependence in tsetse flies has been reported in 444 

several studies. Interactions between flies and the irritation of the host animal are 445 

responsible for a decreased proportion of fed G. morsitans morsitans as the numbers of 446 

tsetse flies arriving increase, and frequently disturbed spots might encourage tsetse flies to 447 

leave without feeding, simultaneously increasing dispersal and associated mortality and 448 

decreasing local density [32, 50]. Host irritation and tsetse learning are important 449 

parameters driving the survival and dispersal of tsetse flies.  450 

 In dense tsetse populations, the populations are self-sustained and are 451 

considerably reduced after insecticidal spray, but are recolonized from neighboring sites, 452 

which takes several months to complete [51]. Alternatively, low-density sites are naturally 453 

sustained by immigrants from neighboring sites and insecticidal treatments do not have as 454 

much impact on the total population [32, 51, 52]. 455 

  456 
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Figure 1: Strong negative density-dependent dispersal in tsetse fly populations. The 457 

graph shows the relationship between effective population densities De (individuals 458 

per km) and dispersal (δ, in km) (a) or between census population densities 459 

(densities of captured flies) (b) across different two-dimensional isolation by 460 

distance studies of different tsetse fly species in different African countries. The 461 

straight line corresponds to the power regression indicated in the graph with its 462 

determination coefficient R² and corresponding Spearman's coefficient (ρ) and 463 

associated p-value. Dashes indicate bootstrap over loci 95% confidence intervals. 464 

The same symbols indicate the same species. Scales were log-transformed for both 465 

axes. 466 
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