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Abstract
1.	 Tropical	cyclones	(TCs)	are	large‐scale	disturbances	that	regularly	impact	tropical	
forests.	Although	 long‐term	 impacts	of	TCs	on	forest	structure	have	been	pro-
posed,	a	global	test	of	the	relationship	between	forest	structure	and	TC	frequency	
and	 intensity	 is	 lacking.	We	test	on	a	pantropical	 scale	whether	TCs	shape	 the	
structure	of	tropical	and	subtropical	forests	in	the	long	term.

2.	 We	compiled	 forest	 structural	 features	 (stem	density,	basal	 area,	mean	canopy	
height	and	maximum	tree	size)	for	plants	≥10	cm	in	diameter	at	breast	height	from	
published	forest	inventory	data	(438	plots	≥0.1	ha,	pooled	into	250	1	×	1‐degree	
grid	cells)	 located	in	dry	and	humid	forests.	We	computed	maps	of	cyclone	fre-
quency	and	energy	released	by	cyclones	per	unit	area	(power	dissipation	index,	
PDI)	using	a	high‐resolution	historical	database	of	TCs	trajectories	and	intensities.	
We	then	tested	the	relationship	between	PDI	and	forest	structural	features	using	
multivariate	linear	models,	controlling	for	climate	(mean	annual	temperature	and	
water	availability)	and	human	disturbance	(human	foot	print).

3.	 Forests	subject	to	frequent	cyclones	(at	least	one	TCs	per	decade)	and	high	PDI	
exhibited	higher	stem	density	and	basal	area,	and	lower	canopy	heights.	However,	
the	 relationships	 between	 PDI	 and	 basal	 area	 or	 canopy	 height	 were	 partially	
masked	by	 lower	water	 availability	 and	higher	human	 foot	print	 in	 tropical	 dry	
forests.

4. Synthesis.	Our	results	provide	the	first	evidence	that	tropical	cyclones	have	a	long‐
term	impact	on	the	structure	of	tropical	and	subtropical	forests	in	a	globally	con-
sistent	way.	The	strong	relationship	between	power	dissipation	 index	and	stem	
density	suggests	that	frequent	and	intense	tropical	cyclones	reduce	canopy	cover	
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1  | INTRODUC TION

Tropical	cyclones	(TCs),	also	referred	to	as	hurricanes	in	the	Atlantic	
and	 Northeast	 Pacific	 and	 typhoons	 in	 the	 Northwest	 Pacific,	
are	 unavoidable,	 large‐scale	 disturbances	 (Everham	 &	 Brokaw,	
1996;	Turner,	Baker,	Peterson,	&	Peet,	1998;	Turner	&	Dale,	1998;	
Whigham,	Dickinson,	&	Brokaw,	1999).	Disturbances	are	“relatively	
discrete	events	in	time	that	disrupt	ecosystem,	community,	or	popu-
lation	structure	and	change	resource	or	substrate	availability	or	the	
physical	 environment”	 (White	&	Pickett,	 1985).	Due	 to	 their	 large	
footprints	(TCs	signatures	extend	over	hundreds	of	kilometres	and	
their	tracks	cover	thousands	of	km,	see	Chan	&	Chan,	2015;	Knaff,	
Longmore,	 &	 Molenar,	 2014)	 and	 high	 intensity	 (sustained	 wind	
speeds	of	 up	 to	300	km/hr),	 TCs	 can	 cause	 extensive	damages	 to	
natural	 ecosystems	 and	 human	 societies	 (Costanza	 et	al.,	 2008;	

Lugo,	2008;	Yih,	Boucher,	Vandermeer,	&	Zamora,	1991).	This	was	
recently	highlighted	by	the	devastating	impacts	of	Cyclone	Winston	
(2016),	Hurricane	Irma	(2017)	and	Typhoon	Haiyan	(2013),	some	of	
the	most	intensive	systems	ever	recorded	(Le	Page,	2016).

The	effects	of	disturbances	on	 the	composition,	 structure	and	
functioning	of	ecosystems	depend	on	the	disturbance	regime,	which	
is	for	TCs	mainly	characterized	by	their	frequency,	size	and	intensity	
(Turner	et	al.,	1998;	Whelan,	1995;	White	&	Jentsch,	2001;	White	&	
Pickett,	1985).	The	disturbance	regime	exerted	by	TCs	is	highly	spa-
tially	heterogeneous.	For	example,	forests	in	the	Northwest	Pacific	
and	Northwest	Atlantic	experience	frequent,	intense	and	large	TCs	
while	forests	in	South	America	and	Africa	experience	few	TCs	(Chan	
&	 Chan,	 2015;	 Schreck,	 Knapp,	 &	 Kossin,	 2014).	 Therefore,	 on	 a	
pantropical	 scale	 forests	 may	 experience	 TC	 disturbance	 regimes	
ranging	from	infrequent	TCs	to	frequent	and	intense	TCs	(Figure	1).	

through	defoliation	and	tree	mortality,	encouraging	higher	regeneration	and	turn-
over	of	biomass.	The	projected	 increase	 in	 intensity	and	poleward	extension	of	
tropical	cyclones	due	to	anthropogenic	climate	change	may	therefore	have	impor-
tant	and	lasting	impacts	on	the	structure	and	dynamics	of	forests	in	the	future.

K E Y W O R D S

basal	area,	canopy	height,	hurricanes,	power	dissipation	index,	stem	density,	tropical	dry	
forest,	tropical	humid	forest,	typhoons

F I G U R E  1  Global	distribution	of	the	
frequency	and	energy	released	(power	
dissipation	index)	by	tropical	cyclones,	
and	locations	of	forest	structure	
datasets	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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On	a	 landscape	scale,	 the	TC	 impacts	vary	with	 topographical	ex-
posure	 and	 other	 abiotic	 and	 biotic	 factors	 (e.g.,	 Basnet,	 Likens,	
Scatena,	 &	 Lugo,	 1992;	 Boose,	 Serrano,	 &	 Foster,	 2004;	 Everham	
&	Brokaw,	1996;	Metcalfe,	Bradford,	&	Ford,	2008;	Turton,	2008;	
Webb,	Seamon,	&	Fa’aumu,	2011).	However,	 in	regions	where	TCs	
are	frequent,	successive	TCs	with	different	trajectories	and	wind	di-
rections	should	in	the	long	term	affect	the	entire	landscape	(Turner,	
Gardner,	&	O’Neill,	2001).

TCs	can	considerably	impact	the	structure	of	forests	(Everham	&	
Brokaw,	1996;	Turner,	Dale,	&	Everham,	1997;	Whigham	et	al.,	1999).	
Visible	 short‐	 to	medium‐term	 effects	 (Lugo,	 2008)	 include	 direct	
damage	to	trees,	ranging	from	defoliation	to	snapped	and	uprooted	
trunks,	and	have	been	widely	reported	(Basnet	et	al.,	1992;	Brokaw	
&	Grear,	1991;	Curran,	Gersbach,	Edwards,	&	Krockenberger,	2008;	
Everham	 &	 Brokaw,	 1996;	 Franklin,	 Drake,	 McConkey,	 Tonga,	 &	
Smith,	2004;	Metcalfe	et	al.,	2008;	Turton,	2008;	Zimmerman	et	al.,	
1994).	 The	 gaps	 and	 defoliation	 generate	 space	 and	 allow	 more	
light	penetration	on	 the	 forest	 floor,	 enhancing	 regeneration	 (e.g.,	
Bellingham,	 Tanner,	 &	 Healey,	 1995;	 Turner	 et	al.,	 1998;	 Uriarte	
et	al.,	2004;	Whitmore,	1974).

Because	 TCs	 tend	 to	 disproportionally	 affect	 big	 trees	 and	
encourage	 regeneration	 (Beard	 et	al.,	 2005;	 Everham	 &	 Brokaw,	
1996;	Franklin,	2007;	Hjerpe,	Hedenas,	&	Elmqvist,	2001;	Murphy,	
Metcalfe,	Bradford,	&	Ford,	2014;	Murphy	et	al.,	2008;	Roth,	1992),	
forests	 affected	by	 frequent	 cyclones	would	be	expected	 to	have	
lower	 canopies	 and	 higher	 stem	 densities.	 Comparative	 regional	
studies	support	these	expectations	for	Madagascar	vs.	African	rain-
forests	 (De	Gouvenain	&	Silander,	2003),	New	Caledonia	vs.	other	
Southwest	Pacific	humid	forests	(Ibanez	et	al.,	2017),	Caribbean	vs.	
Neotropical	dry	forests	(Quigley	&	Platt,	2003;	Van	Bloem,	Murphy,	
&	 Lugo,	 2007).	 Furthermore,	 stem	 density	 increased	with	 TC	 fre-
quency	 in	 lowland	 rainforests	 of	 five	 South	 Pacific	 archipelagos	
(Keppel	et	al.,	2010),	and	was	higher	in	Neotropical	dry	forests	that	
experienced	TCs	 in	 the	 last	25	years	compared	to	 regions	with	no	
TCs	(Gillespie,	Zutta,	Early,	&	Saatchi,	2006).	However,	a	pantropical	
test	for	these	 invisible,	medium‐	to	 long‐term	effects	 (Lugo,	2008)	
on	forest	structure	is	still	lacking.

The	availability	of	high‐resolution	historical	databases	of	TCs	tra-
jectories	and	intensities	such	as	the	International	Best	Track	Archive	
for	Climate	Stewardship	(IBTrACS;	Knapp,	Kruk,	Levinson,	Diamond,	
&	Neumann,	2010)	allows	to	objectively	quantify	the	cyclone	regime	
at	any	location	(e.g.,	Schreck	et	al.,	2014).	The	frequency	or	the	in-
tensity	of	TCs	(i.e.,	the	maximum	sustained	wind	speed)	is	often	used	
to	estimate	the	level	of	disturbance	induced	by	TCs	in	a	given	area.	
However,	it	has	been	suggested	that	this	level	of	disturbance	(or	the	
destructiveness)	 is	 better	 described	 by	 the	 energy	 transferred	 by	
TCs	to	the	land	surface,	as	this	parameter	combines	the	frequency,	
intensity,	size	and	translation	speed	of	TCs	(Camargo	&	Sobel,	2005;	
Emanuel,	2005).

In	this	study,	we	test	on	a	pantropical	scale	the	long‐term,	invis-
ible	effects	 (sensu	Lugo,	2008)	of	TCs	on	the	structure	of	tropical	
forests.	We	test	it	by	analysing	the	effects	of	the	frequency	and	in-
tensity	of	TCs	on	structural	features	of	forests	(stem	density,	basal	

area	and	canopy	height),	 relative	 to	other	climatic	variables	 (mean	
annual	 temperature	 [MAT]	 and	water	 availability)	 and	 human	 dis-
turbances	(human	foot	print	index)	that	are	known	to	affect	forest	
structure	 (e.g.,	 Klein,	 Randin,	 &	 Körner,	 2015;	Moles	 et	al.,	 2009;	
Tao,	 Guo,	 Li,	Wang,	 &	 Fang,	 2016;	 Zhang,	 Nielsen,	Mao,	 Chen,	 &	
Svenning,	2016).	We	hypothesize	 that	TC	are	an	 important	distur-
bance	that	has	long‐term	effects	on	the	structure	of	tropical	forests	
and	that,	therefore,	areas	exposed	to	frequent	and	intense	TCs	would	
exhibit	higher	stem	densities	and	lower	canopy	heights.	Our	findings	
are	highly	relevant	to	understanding	how	forecasted	changes	in	the	
behaviour	of	TCs	(Christensen	et	al.,	2013;	Walsh	et	al.,	2016)	may	
impact	forest	ecosystems.

2  | MATERIAL S AND METHODS

2.1 | Structural features

We	compiled	the	 location,	stem	density	 (number	of	stems	per	ha),	
basal	 area	 (the	 total	 cross	 section	 area	 in	m2/ha,	which	 is	 a	 good	
proxy	of	above‐ground	biomass;	e.g.,	Slik	et	al.,	2010),	maximum	size	
(maximum	DBH,	diameter	at	breast	height,	cm),	mean	canopy	height	
(m)	 and	maximum	height	 for	 plants	with	 stem	diameter	≥10	cm	at	
~1.3	m	above	 the	base	 (DBH)	 from	published	 inventories	 for	plots	
≥0.1	ha	 in	 size	 (Ibanez	et	al.,	2018).	Relevant	 literature	was	 identi-
fied	using	key	word	searches	in	ISI	Web	of	Science	(https://webof-
knowledge.com/)	 and	Google	 Scholar	 (http://scholar.google.com/).	
Our	 final	 dataset	was	derived	 from	88	 scientific	 papers	published	
between	1983	and	2017.	Montane	 forest	plots	 (as	defined	by	 au-
thors	 of	 source	 data,	 i.e.,	 “pre‐montane,”	 “lower‐montane,”	 “mon-
tane”	 and	 “upper‐montane”)	 were	 not	 considered	 in	 the	 analysis	
(Aiba	and	Kitayama,	1999;	Clark	et	al.,	2015,	Culmsee	et	al.,	2011;	
Davidar,	Mohandass,	&	Vijayan,	2007;	Noumi,	2013,	Rakotomalaza	
and	Messmer,	1999,	Yamada,	1975).	We	also	only	considered	plots	
where	authors	did	not	report	evidence	of	recent	natural	(e.g.,	TCs)	
or	anthropogenic	disturbances	(e.g.,	removal	of	trees).	When	canopy	
height	was	reported	with	lower	and	higher	bounds	(e.g.,	20–30	m),	
we	used	the	mean	value	(e.g.,	25	m).

2.2 | Cyclones

The	frequency	and	energy	released	by	TCs	were	computed	over	
the	 1981–2016	 period	 from	 the	 IBTrACs	 database,	 an	 exhaus-
tive	 and	 global	 database	 (https://www.ncdc.noaa.gov/ibtracs/,	
see	Knapp	et	al.,	2010).	We	assumed	 these	values,	derived	 from	
a	35‐year	period,	 to	be	 representative	of	 the	 relative	TC	 regime	
in	different	regions	over	the	Holocene	on	a	global	scale.	Although	
some	 geomorphological	 records	 in	 TC‐prone	 regions	 show	 cen-
tennial	to	millennial	variations	in	local	TC	frequency	and	intensity	
during	the	Holocene,	these	variation	are	pseudo‐cyclic	and	do	not	
indicate	 long‐term	trends	 (e.g.,	Burn	&	Palmer,	2015;	Haig,	Nott,	
&	 Reichart,	 2014;	 Nott	 &	 Forsyth,	 2012;	 Toomey,	 Donnelly,	 &	
Woodruff,	2013).	Instead,	global	patterns	of	TCs	across	different	
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regions	vary	less	on	a	centennial	scale	but	respond	more	strongly	
to	major	 changes	 in	 global	 climate	over	 longer	 time‐scales,	 such	
as	 the	Pliocene	glaciations	 (e.g.,	Yoo,	Galewsky,	Camargo,	Korty,	
&	Zamora,	2016).

The	 IBTrACs	 database	 provides	 information	 on	 the	 position,	
maximum	sustained	wind	speed	and	translation	speed	(an	indicator	
of	 the	 duration	 of	 disturbance	 impact,	 as	 slower	moving	 cyclones	
imply	 longer	presence	of	damaging	winds)	of	each	 inventoried	cy-
clone	at	6‐hr	intervals.	We	used	these	data	to	calculate	the	average	
frequency	and	energy	released	by	TCs	was	computed	as	a	proxy	of	
the	level	of	TC	disturbance.

For	each	grid	cell	with	a	spatial	resolution	of	1°	latitude	×	1°	lon-
gitude	 (≈12,345	km2	 at	 the	equator,	Figure	1),	 the	energy	 released	
by	 TCs	 was	 computed	 as	 the	 power	 dissipated	 by	 friction	 in	 the	
surface	 layer	 (Emanuel,	 2005)	 following	Menkes	 et	al.	 (2016)	 and	
Vincent	et	al.	(2012).	At	each	point,	the	maximum	10‐min	sustained	
wind	speeds	at	10	m	above	the	ground	(V)	was	extracted	from	the	
database.	Only	events	reaching	V	>	17	m/s	at	some	point	were	con-
sidered,	i.e.,	tropical	storms	and	category	one	to	five	TCs	according	
to	 the	 Saffir–Simpson	Hurricane	 Scale	 (Simpson,	 1974).	 Following	
Vincent	et	al.	(2012),	the	spatial	pattern	of	each	TC	at	each	time	step	
was	computed	using	the	Willoughby,	Darling,	and	Rahn	(2006)	ide-
alized	vortex.	We	then	computed	the	power	dissipation	index	(PDI)	
as	the	integration	over	the	entire	lifetime	(τ)	and	spatial	extent	(r0)	of	
TCs	as	follows:

where	α	(α = CDρ	with	CD	being	the	surface	drag	coefficient	and	ρ	the	
surface	 air	 density)	 is	 considered	 a	 constant	 (see	Emanuel,	 2005).	
The	PDI	was	then	integrated	over	each	1°	latitude	×	1°	longitude	grid	
cells	and	averaged	to	get	the	average	yearly	PDI.	As	expected,	TC	
frequency	and	PDI	were	strongly	correlated	(see	Figure	S1.1).

2.3 | Bioclimatic variables

Plots	were	classified	as	dry	or	humid	forest	plots	following	authors’	
classifications,	with	tropical	dry	forests	being	identified	by	the	com-
mon	occurrence	of	drought‐deciduous	canopy	species.	For	each	plot,	
we	extracted	the	corresponding	TC	frequency	and	energy	released	
by	TCs	 (PDI).	We	also	computed	 the	MAT,	mean	annual	precipita-
tion	 (MAP),	annual	potential	 transpiration	 (PET)	and	a	water	avail-
ability	index	as	MAP‐PET.	MAP	and	MAT	where	extracted	from	the	
WorldClim	 2.0	 database	 (http://www.worldclim.org/version2,	 Fick	
&	 Hijmans,	 2017)	 and	 PET	 from	 the	 CGIAR‐CSI	 database	 (http://
www.cgiar‐csi.org/,	Trabucco	&	Zomer,	2009).

2.4 | Human disturbances

Human	activities	have	had	a	major	impact	on	forests	and	may	affect	
forest	structure	directly,	e.g.,	by	cutting	trees	for	wood	 (Crowther	
et	al.,	2015;	Hansen	et	al.,	2013),	or	indirectly,	e.g.,	by	edge	effects	

related	to	fragmentation	(Laurance,	1997).	To	take	into	account	the	
effects	 of	 these	 disturbances,	we	 extracted	 the	 human	 foot	 print	
index	(HFP,	Human	Footprint	2009,	http://wcshumanfootprint.org/,	
Venter	et	al.,	2016),	as	a	proxy	of	potential	human	disturbances.	This	
index	measures	the	cumulative	impact	of	direct	pressures	on	natural	
ecosystems	from	human	activities	and	 includes	the	extent	of	built	
environments,	 crop	 land	 and	 pasture	 land,	 the	 human	 population	
density,	the	night‐lights	and	the	circulation	ways	(railways,	roads	and	
navigable	waterways).

2.5 | Analysis

All	analyses	were	performed	using	R.3.3.0	(R	Core	Team,	2016).	All	
explanatory	variables	(except	TC	frequency	and	PDI)	were	extracted	
on	10‐min	(~340	km2)	spatial	resolution	maps.	To	avoid	pseudo‐rep-
lication,	we	 averaged	 structural	 and	 climatic	 features	within	 1	×	1	
degree	grid	cells	(i.e.,	the	spatial	resolution	of	the	PDI	maps)	and	for-
est	type	(dry	and	humid	forests).	We	used	a	total	of	438	plots	(355	in	
humid	forests,	83	in	dry	forests)	that	were	pooled	into	250	grid	cells	
(203	 in	humid	forests,	47	 in	dry	forests,	Figure	1	and	Figure	S1.2).	
Multicollinearity	was	<0.5	(Spearman’s	rho)	for	all	explanatory	vari-
ables	(Table	S1.1).

We	 first	 tested	 whether	 structural	 features	 differed	 between	
areas	experiencing	low‐	(freq.	<0.01	TC/year,	i.e.,	 less	than	one	TC	
per	century	is	expected	based	on	the	35‐year	IBTrACs	dataset),	me-
dium‐	(0.01	≥	freq.	<	0.1	TC/year,	i.e.,	1–10	TCs	per	century)	or	high‐	
(freq.	≥0.1	TC/year,	 i.e.,	at	 least	one	TC	per	decade)	TC	frequency.	
This	was	done	separately	for	dry	and	humid	forests	(see	distribution	
of	TC	frequency	Figure	S1.1).	The	significance	of	the	differences	was	
tested	using	one‐way	pairwise	Wilcoxon	rank	sum	tests	with	correc-
tions	for	multiple	testing	(Holm’s	correction).

We	 used	 multivariate	 linear	 regressions	 to	 test	 the	 relative	
importance	 of	 PDI	 and	 other	 relevant	 parameters;	 MAT,	 water	
availability	 (MAP‐PET)	 and	 human	 disturbances	 (HFP).	 Response	
variables	describing	the	structure	of	forests	were	log‐transformed	
to	 increase	 normality	 (Figure	S1.3).	 Because	 basal	 area	 and	maxi-
mum	 size,	 and	 canopy	 height	 and	 maximum	 height,	 were	 highly	
linearly	correlated	for	both	forest	types,	we	focussed	on	three	rela-
tively	independent	structural	variables:	stem	density,	basal	area	and	
canopy	height	(Figure	S1.4).	We	used	the	MuMIn r	package	(Bartoń,	
2016)	and	the	dredge	function	to	generate	different	sets	of	models	
representing	all	possible	combinations	and	subsets	of	explanatory	
variables.	We	then	selected	 the	best	models	based	on	 the	Akaike	
information	criterion	(ΔAIC	<2	from	the	best	models,	Bunnefeld	&	
Phillimore,	 2012).	 Explanatory	 variables	 were	 centred	 and	 scaled	
before	fitting	models	to	allow	a	fair	comparison	of	their	respective	
effects.

3  | RESULTS

Across	the	tropics	and	in	both	forest	types,	forests	located	in	areas	
experiencing	 high	 TC	 frequency	 (>1	 per	 decade)	 exhibited	 higher	
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stem	densities	(Figure	2).	The	stem	density	in	these	regions	was	on	
average	798	±	253	stems	per	ha	in	dry	forests	and	888	±	340	stems	
per	ha	 in	humid	forests,	compared	to	643	±	195	stems	per	ha	and	
703	±	194	 stems	 per	 ha,	 respectively,	 in	 regions	 experiencing	 less	
than	one	TC	per	decade.	In	contrast,	basal	area	did	not	differ	signifi-
cantly	between	 the	 three	cyclone	 frequency	classes	 (low,	medium	
and	high)	for	both	dry	and	humid	forests.	The	canopy	of	humid	for-
ests	 (27	±	8	m)	was	 on	 average	more	 than	 twice	 as	 high	 as	 in	 dry	
forests	(12	±	5	m).	Humid	forests	exposed	to	frequent	TCs	were	also	
significantly	shorter	(20	±	6	m)	than	those	exposed	to	low‐	and	me-
dium‐TC	frequencies	(27	±	8	m).

The	amount	of	energy	released	by	TCs	(the	so‐called,	PDI)	was	
positively	 correlated	 to	 stem	density	 and	basal	 area	 (Table	1).	 PDI	
together	 with	 MAT	 explained	 14%	 of	 stem	 density	 variance,	 but	
had	no	significant	effect	basal	area	 (Table	1	and	Figure	3).	Canopy	
height	 had	 a	 significant	 positive	 relationship	 with	 water	 availabil-
ity	 and	 a	 significant	 negative	 relationship	 with	 human	 foot	 print.	
Water	 availability	 was	 significantly	 lower	 (−177.7	±	626.65	mm	 vs.	
700.6	±	1,030.1	mm;	Wilcoxon	rank	test	p	<	0.001,	Figure	S1.4)	and	
the	 human	 footprint	 significantly	 higher	 (12.1	±	9.1	 vs.	 8.0	±	6.4;	
Wilcoxon	rank	test	p	<	0.01,	Figure	S1.5)	in	dry	forests	compared	to	
humid	forests.

F I G U R E  2  Comparison	of	structural	
features	in	dry	and	humid	forests	with	
different	tropical	cyclone	(TC)	frequencies	
(<0.01	=	low	frequency,	less	than	one	
TC	per	century,	0.01–0.1	=	medium	
frequency,	at	least	one	TC	per	century	and	
>0.1	=	high	frequency,	at	least	one	TC	per	
decade).	Letters	above	groups	indicate	
significant	differences,	i.e.,	forest	classes	
sharing	a	letter	are	not	significantly	
different	(p	>	0.05)	using	a	pairwise	
Wilcoxon	rank	sum	test
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Within	humid	forests,	which	was	less	affected	by	human	distur-
bance	than	dry	forest,	PDI	was	a	significant	predictor	of	stem	density	
and	canopy	height	 (Table	1),	 explaining	alone	about	10%	and	29%	
of	 total	 variation	 in	 stem	 density	 and	 canopy	 height	 respectively	
(Figure	3).	MAT	was	 the	other	 significant	 predictor.	 Together	with	
PDI	it	explained	17%	and	9%	of	total	variance	of	stem	density	and	
basal	area	(Table	1).	PDI	had	positive	relationships	with	stem	density,	
while	MAT	had	positive	 relationships	with	 stem	density	 and	basal	
area.	Canopy	height	tended	to	increase	with	water	availability	which	
explained	together	with	PDI	33%	of	the	observed	variance.	Within	

dry	 forest,	PDI	was	 the	only	 significant	predictor	of	 stem	density,	
explaining	about	11%	of	 its	variance	 (Figure	3).	HFP	together	with	
MAT	explained	about	17%	of	the	variance	in	basal	area,	while	none	
of	the	variables	was	significantly	related	to	canopy	height	variations.

4  | DISCUSSION

Our	results	confirm	that	TCs	are	important	disturbances	that	have	
a	 long‐term,	global‐scale	effects	on	forest	structure,	despite	being	

TA B L E  1  Best	multivariate	linear	regressions	explaining	structural	features	in	tropical	forests	overall	and	in	humid	and	dry	forest	
separately

Forest types Structural features N Model ranks

Coefficient estimate and significance Model performance

PDI MAT MAP-PET HFP R2 AICc

Both Stem	density 245 1 0.10*** −0.08*** 0.14 119.24

2 0.10*** −0.08*** 0.01 0.14 121.24

Basal	area 229 1 −0.09*** 0.05† 0.06 191.88

2 −0.08** 0.05 192.92

3 −0.08** 0.05 −0.01 0.06 193.44

4 0.01 −0.08** 0.05† −0.05† 0.06 193.77

Canopy	height 78 1 0.12* 0.19*** −0.20*** 0.32 93.08

2 −0.06 0.10 0.19*** −0.18** 0.33 94.02

3 −0.09† 0.18*** −0.16** 0.30 94.52

Humid Stem	density 201 1 0.08** −0.09*** 0.17 74.03

2 0.08** −0.09*** 0.02 0.17 75.50

Basal	area 190 1 −0.09*** 0.08 119.41

2 0.04 −0.09*** 0.09 119.63

3 −0.09*** 0.03 0.08 120.68

4 0.04 −0.09*** 0.02 0.09 121.17

Canopy	height 51 1 −0.15*** 0.07† 0.33 23.42

2 −0.13** 0.06 0.07† 0.36 24.05

3 −0.15*** 0.29 24.10

4 −0.13** 0.06 0.31 24.90

Dry Stem	density 44 1 0.13* 0.11 39.65

2 0.11† 0.13 0.15 40.64

3 0.18 0.07 41.28

Basal	area 39 1 0.18† −0.15* 0.17 44.39

2 45.13

3 −0.10 0.07 45.38

4 0.10 0.04 46.32

Canopy	heighta 27 1 −0.22 0.12 25.62

2 25.79

3 −0.09 0.10 26.10

4 −0.20 −0.08 0.19 26.51

Note. ***p	<	0.001,	**p	<	0.01,	*p	<	0.05;	†p	<	0.1.
aOnly	the	four	models	with	the	lowest	AICc	are	shown.
PDI,	power	dissipation	index;	MAT,	mean	annual	temperature;	MAP‐PET,	mean	annual	precipitations	–	potential	evapotranspiration;	HFP,	human	foot	
print.
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relatively	 uncommon	weather	 events	 (about	 80–90	 TCs	 per	 year,	
see	Schreck	et	al.,	 2014;	Maue,	2011).	We	show	 for	 the	 first	 time	
that	stem	density	and	canopy	height	are	significantly	related	to	the	
frequency	 of	 and	 energy	 released	 by	 TCs	 in	 a	 globally	 consistent	
way.	Furthermore,	our	results	indicate	that	these	relationships	were	
most	pronounced	for	stem	density	and	for	humid	forests,	which	are	
not	 limited	 by	 water	 availability	 and	 are	 less	 impacted	 by	 human	
disturbances	 (based	 on	 lower	 human	 foot	 print)	 than	 dry	 forests.	
Therefore,	forecasted	changes	in	the	intensities,	sizes	and	trajecto-
ries	of	TCs	are	likely	to	have	important	impacts	on	the	structure	of	
tropical	 and	 subtropical	 forests	 (Kossin,	 Emanuel,	&	Vecchi,	 2014;	
Mei,	Xie,	Primeau,	McWilliams,	&	Pasquero,	2015).

Our	results	explained	a	considerable	proportion	of	the	variation	
in	 stem	density	 and	canopy	height	 in	our	dataset,	 suggesting	 that	
TCs	are	important	large‐scale	disturbances	that	have	long‐term	im-
pacts	on	forests	structure.	Our	analysis	did	not	capture	edaphic	and	
topographic	variation	known	to	impact	forest	structure	from	local	to	
regional	scales,	which	makes	the	strong	relationship	we	found	be-
tween	cyclone	and	forest	structure	even	more	remarkable.	Indeed,	
soil	depth,	nutrient	availability	and	topographical	position	are	known	
to	affect	forest	structure	(e.g.,	Clark	&	Clark,	2000;	Quesada	et	al.,	
2012;	Schut	et	al.,	2014;	Slik	et	al.,	2010;	Webb,	Stanfield,	&	Jensen,	
1999).

The	strong,	universal	 relationship	between	TCs	and	stem	den-
sity	documented	in	this	study	is	not	surprising.	TCs	are	disturbances	

that	reduce	the	canopy	cover	of	forests	(Comita	et	al.,	2009;	Grove,	
Turton,	&	Siegenthaler,	2000;	Hjerpe	et	al.,	2001;	Staben	&	Evans,	
2008)	and	cause	tree	mortality	(Webb	et	al.,	2011;	Zeng	et	al.,	2009;	
Zimmerman	et	al.,	 1994).	This	 results	 in	 increased	 light	 availability	
for	 several	 years	 in	 the	 undergrowth	 (Bellingham,	 Tanner,	 Rich,	&	
Goodland,	 1996;	 Lin	 et	al.,	 2011;	 Luke,	McLaren,	&	Wilson,	 2014;	
Turton,	1992),	creating	suitable	conditions	for	regeneration	and	the	
release	 of	 saplings	 (Luke	 et	al.,	 2014;	 Nicotra,	 Chazdon,	 &	 Iriarte,	
1999;	Tanner,	Rodriguez‐Sanchez,	Healey,	Holdaway,	&	Bellingham,	
2014).	Therefore,	frequent	cyclones	(e.g.,	one	per	decade)	would	be	
expected	to	maintain	high	light	availability	and,	consequently,	regen-
eration.	Furthermore,	higher	mortalities	and	regeneration	reported	
from	 TC‐prone	 forests	 suggest	 that	 such	 forests	 may	 experience	
higher	 turnover	 and	 quicker	 dynamics	 than	 forests	 not	 or	 rarely	
affected	by	 these	disturbances	 (Swenson	et	al.,	2012;	Webb	et	al.,	
2011).

Given	 that	 TCs	 are	 known	 to	 trim	 forest	 canopies	 to	 lower	
heights	(Brokaw	&	Grear,	1991;	Lin	et	al.,	2011),	the	moderate	effect	
of	TCs	on	canopy	height	may	seem	surprising.	Our	results	suggest	
that	 canopy	 height	 first	 depends	 on	 hydraulic	 limitation	 and	 then	
by	mechanical	pruning	by	intense	TC	winds,	as	canopy	height	of	dry	
forest	 (with	 MAP‐PET	 being	 on	 average	 −177.7	±	626.7	mm)	 was	
less	than	half	that	of	humid	forest	(with	MAP‐PET	being	on	average	
700.6	±	1,030.1	mm).	This	is	in	the	line	with	recent	global	analyses	
showing	 canopy	 height	 to	 increase	 with	 water	 availability	 (Klein	

F I G U R E  3  Relationships	between	
the	energy	released	by	tropical	cyclones	
(power	dissipation	index),	stem	density	
and	canopy	height	(on	log	scales).	
Thick	lines	represent	significant	linear	
relationships	(***p	<	0.001,	*p	<	0.05)
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et	al.,	2015;	Zhang	et	al.,	2016)	and	the	hydraulic	limitation	hypothe-
sis	(Ryan,	Phillips,	&	Bond,	2006;	Ryan	&	Yoder,	1997).

In	humid	forests,	frequent	TC	disturbances	may	result	in	a	greater	
investment	 in	 horizontal	 over	 vertical	 growth,	 as	 suggested	 by	 the	
negative	relationship	between	the	energy	released	by	TCs	with	can-
opy	height	and	its	weaker,	positive	relationship	with	basal	area.	This	
deduction	is	supported	by	recent	studies	comparing	height‐diameter	
tree	allometries	across	the	tropics,	which	have	shown	that	areas	ex-
posed	to	frequent	strong	winds,	such	as	New	Caledonia	 (Blanchard	
et	al.,	 2016)	 or	Dominica	 (Thomas,	Martin,	 &	Mycroft,	 2015),	 have	
lower	 growth	 in	 height	 relative	 to	 diameter.	 These	 changes	 in	 tree	
allometry	 could	 result	 from	 repeated	pruning	of	 crown	 tips	by	TCs	
(Brokaw	 &	 Grear,	 1991)	 or	 from	 evolutionary	 adaptations	 to	 TCs,	
which	have	been	suggested	to	explain	differential	responses	of	neo-
tropical	palms	(Areacaeae)	to	TCs	(Griffith,	Noblick,	Dowe,	Husby,	&	
Calonje,	2008).	The	latter	would	imply	TCs	to	have	important	evolu-
tionary	influences.	Alternatively	lower	canopy	heights	may	be	due	to	
resprouting,	which	is	commonly	observed	in	trees	surviving	TC	dam-
ages	(Bellingham,	Tanner,	&	Healey,	1994;	Scanlon,	Petit,	Tuiwawa,	&	
Naikatini,	2018;	Van	Bloem	et	al.,	2007;	Zimmerman	et	al.,	1994)	and	
produces	multistemmed	trees	that	tend	to	be	lower	in	height	than	sin-
gle‐stemmed	trees	(Givnish,	1984;	Kruger,	Midgley,	&	Cowling,	1997).

The	expected	changes	in	the	frequency,	 intensity	or	geograph-
ical	 distribution	 of	 TCs	 due	 to	 anthropogenic	 climate	 change	 are	
therefore	 likely	 to	 impact	 the	 structure	 and	 dynamics	 of	 affected	
forests.	While	the	influence	of	global	warming	on	TCs	remains	un-
certain	(Walsh	et	al.,	2016),	there	is	an	emerging	consensus	that	TCs	
will	 increase	 in	 intensity	 (Christensen	 et	al.,	 2013;	 Kang	 &	 Elsner,	
2015;	Mei	et	al.,	2015),	 attain	unprecedented	 sizes	and	 intensities	
(Lin	&	Emanuel,	2016;	Mei	et	al.,	2015),	and	expand	their	trajecto-
ries	poleward	 (Kossin	et	al.,	2014).	Our	 findings	suggest	 that	more	
intense	TCs	may	alter	tropical	forest	structure	(density,	height	and	
basal	area)	and	dynamics	 (higher	turnover).	Similar	changes	can	be	
expected	in	forests	at	higher	latitudes	experiencing	TCs	for	the	first	
time.	Furthermore,	forests	subjected	to	more	intense	cyclones	may	
experience	 changes	 in	 species	 composition	 (Keppel	 et	al.,	 2010;	
Webb	et	al.,	2011)	and	increased	vulnerability	to	drought	and	other	
threats,	 such	 as	 fire	 and	 invasion	 by	 weeds	 (Beard	 et	al.,	 2005;	
Franklin,	2007;	Hjerpe	et	al.,	2001;	Murphy	et	al.,	2008).

The	significant,	negative	relationship	of	human	foot	print	with	
forest	canopy	height	and	basal	area	highlights	that	factors	other	
than	 TC	 are	 impacting	 forest	 structure.	 This	 relationship	 could	
be	 the	 result	 of	 selective	 tree	 removal	 by	 humans	 or	 edge	 ef-
fects	 related	 to	 fragmentation	 (Laurance,	Delamonica,	Laurance,	
Vasconcelos,	&	Lovejoy,	2000;	Lindenmayer,	Laurance,	&	Franklin,	
2012).	While	 these	 potential	 causes	 are	 purely	 speculative,	 it	 is	
well	documented	that	 forests	are	being	degraded	and	destroyed	
at	 alarming	 rates	 (Crowther	 et	al.,	 2015;	Hansen	 et	al.,	 2013).	 A	
direct	anthropogenic	influence	on	forest	structure	(and	hence	dy-
namics)	is	further	supported	by	the	effects	of	the	human	foot	print	
being	 stronger	 in	 tropical	 dry	 forests,	which	 is	 known	 to	 be	 ex-
tremely	disturbed	and	fragmented	 (Gillespie	et	al.,	2014;	Janzen,	
1988;	Miles	et	al.,	2006).

5  | CONCLUSIONS

We	 provide	 the	 first	 evidence	 that	 the	 visible,	 short‐term	 damages	
caused	by	TCs	have	 less	obvious,	 long‐term	effects	on	the	structure	
of	forests	on	a	pantropical	scale.	The	consistent	finding	of	an	increased	
stem	density	in	regions	experiencing	a	stronger	TC	disturbance	regime	
suggests	that	TCs	alter	the	structure	of	forests	in	a	globally	consistent	
manner.	Furthermore,	our	results	suggest	that,	within	humid	forests,	
TCs	may	 have	 a	 stronger	 effect	 on	 canopy	 height	 than	water	 avail-
ability.	 This	 implies	 that	 the	 predicted	 higher	 intensities	 and	 higher	
latitudes	of	cyclone	impact	in	future	will	result	in	major	and	predictable	
changes	in	forest	structure	and,	hence,	global	carbon	stocks.
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