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and intensity is lacking. We test on a pantropical scale whether TCs shape the

2. We compiled forest structural features (stem density, basal area, mean canopy

Handling Editor: Emily Lines height and maximum tree size) for plants >10 cm in diameter at breast height from
published forest inventory data (438 plots 0.1 ha, pooled into 250 1 x 1-degree
grid cells) located in dry and humid forests. We computed maps of cyclone fre-
quency and energy released by cyclones per unit area (power dissipation index,
PDI) using a high-resolution historical database of TCs trajectories and intensities.
We then tested the relationship between PDI and forest structural features using
multivariate linear models, controlling for climate (mean annual temperature and
water availability) and human disturbance (human foot print).

3. Forests subject to frequent cyclones (at least one TCs per decade) and high PDI
exhibited higher stem density and basal area, and lower canopy heights. However,
the relationships between PDI and basal area or canopy height were partially
masked by lower water availability and higher human foot print in tropical dry
forests.

4. Synthesis. Our results provide the first evidence that tropical cyclones have a long-
term impact on the structure of tropical and subtropical forests in a globally con-

sistent way. The strong relationship between power dissipation index and stem

density suggests that frequent and intense tropical cyclones reduce canopy cover
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1 | INTRODUCTION

Tropical cyclones (TCs), also referred to as hurricanes in the Atlantic
and Northeast Pacific and typhoons in the Northwest Pacific,
are unavoidable, large-scale disturbances (Everham & Brokaw,
1996; Turner, Baker, Peterson, & Peet, 1998; Turner & Dale, 1998;
Whigham, Dickinson, & Brokaw, 1999). Disturbances are “relatively
discrete events in time that disrupt ecosystem, community, or popu-
lation structure and change resource or substrate availability or the
physical environment” (White & Pickett, 1985). Due to their large
footprints (TCs signatures extend over hundreds of kilometres and
their tracks cover thousands of km, see Chan & Chan, 2015; Knaff,
Longmore, & Molenar, 2014) and high intensity (sustained wind
speeds of up to 300 km/hr), TCs can cause extensive damages to

natural ecosystems and human societies (Costanza et al.,, 2008;

© Dry forest plots

through defoliation and tree mortality, encouraging higher regeneration and turn-
over of biomass. The projected increase in intensity and poleward extension of
tropical cyclones due to anthropogenic climate change may therefore have impor-

tant and lasting impacts on the structure and dynamics of forests in the future.

basal area, canopy height, hurricanes, power dissipation index, stem density, tropical dry
forest, tropical humid forest, typhoons

Lugo, 2008; Yih, Boucher, Vandermeer, & Zamora, 1991). This was
recently highlighted by the devastating impacts of Cyclone Winston
(2016), Hurricane Irma (2017) and Typhoon Haiyan (2013), some of
the most intensive systems ever recorded (Le Page, 2016).

The effects of disturbances on the composition, structure and
functioning of ecosystems depend on the disturbance regime, which
is for TCs mainly characterized by their frequency, size and intensity
(Turner et al., 1998; Whelan, 1995; White & Jentsch, 2001; White &
Pickett, 1985). The disturbance regime exerted by TCs is highly spa-
tially heterogeneous. For example, forests in the Northwest Pacific
and Northwest Atlantic experience frequent, intense and large TCs
while forests in South America and Africa experience few TCs (Chan
& Chan, 2015; Schreck, Knapp, & Kossin, 2014). Therefore, on a
pantropical scale forests may experience TC disturbance regimes

ranging from infrequent TCs to frequent and intense TCs (Figure 1).
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On a landscape scale, the TC impacts vary with topographical ex-
posure and other abiotic and biotic factors (e.g., Basnet, Likens,
Scatena, & Lugo, 1992; Boose, Serrano, & Foster, 2004; Everham
& Brokaw, 1996; Metcalfe, Bradford, & Ford, 2008; Turton, 2008;
Webb, Seamon, & Fa’aumu, 2011). However, in regions where TCs
are frequent, successive TCs with different trajectories and wind di-
rections should in the long term affect the entire landscape (Turner,
Gardner, & O’Neill, 2001).

TCs can considerably impact the structure of forests (Everham &
Brokaw, 1996; Turner, Dale, & Everham, 1997; Whigham et al., 1999).
Visible short- to medium-term effects (Lugo, 2008) include direct
damage to trees, ranging from defoliation to snapped and uprooted
trunks, and have been widely reported (Basnet et al., 1992; Brokaw
& Grear, 1991; Curran, Gersbach, Edwards, & Krockenberger, 2008;
Everham & Brokaw, 1996; Franklin, Drake, McConkey, Tonga, &
Smith, 2004; Metcalfe et al., 2008; Turton, 2008; Zimmerman et al.,
1994). The gaps and defoliation generate space and allow more
light penetration on the forest floor, enhancing regeneration (e.g.,
Bellingham, Tanner, & Healey, 1995; Turner etal., 1998; Uriarte
et al., 2004; Whitmore, 1974).

Because TCs tend to disproportionally affect big trees and
encourage regeneration (Beard etal., 2005; Everham & Brokaw,
1996; Franklin, 2007; Hjerpe, Hedenas, & Elmqvist, 2001; Murphy,
Metcalfe, Bradford, & Ford, 2014; Murphy et al., 2008; Roth, 1992),
forests affected by frequent cyclones would be expected to have
lower canopies and higher stem densities. Comparative regional
studies support these expectations for Madagascar vs. African rain-
forests (De Gouvenain & Silander, 2003), New Caledonia vs. other
Southwest Pacific humid forests (Ibanez et al., 2017), Caribbean vs.
Neotropical dry forests (Quigley & Platt, 2003; Van Bloem, Murphy,
& Lugo, 2007). Furthermore, stem density increased with TC fre-
quency in lowland rainforests of five South Pacific archipelagos
(Keppel et al., 2010), and was higher in Neotropical dry forests that
experienced TCs in the last 25 years compared to regions with no
TCs (Gillespie, Zutta, Early, & Saatchi, 2006). However, a pantropical
test for these invisible, medium- to long-term effects (Lugo, 2008)
on forest structure is still lacking.

The availability of high-resolution historical databases of TCs tra-
jectories and intensities such as the International Best Track Archive
for Climate Stewardship (IBTrACS; Knapp, Kruk, Levinson, Diamond,
& Neumann, 2010) allows to objectively quantify the cyclone regime
at any location (e.g., Schreck et al., 2014). The frequency or the in-
tensity of TCs (i.e., the maximum sustained wind speed) is often used
to estimate the level of disturbance induced by TCs in a given area.
However, it has been suggested that this level of disturbance (or the
destructiveness) is better described by the energy transferred by
TCs to the land surface, as this parameter combines the frequency,
intensity, size and translation speed of TCs (Camargo & Sobel, 2005;
Emanuel, 2005).

In this study, we test on a pantropical scale the long-term, invis-
ible effects (sensu Lugo, 2008) of TCs on the structure of tropical
forests. We test it by analysing the effects of the frequency and in-
tensity of TCs on structural features of forests (stem density, basal

area and canopy height), relative to other climatic variables (mean
annual temperature [MAT] and water availability) and human dis-
turbances (human foot print index) that are known to affect forest
structure (e.g., Klein, Randin, & Korner, 2015; Moles et al., 2009;
Tao, Guo, Li, Wang, & Fang, 2016; Zhang, Nielsen, Mao, Chen, &
Svenning, 2016). We hypothesize that TC are an important distur-
bance that has long-term effects on the structure of tropical forests
and that, therefore, areas exposed to frequent and intense TCs would
exhibit higher stem densities and lower canopy heights. Our findings
are highly relevant to understanding how forecasted changes in the
behaviour of TCs (Christensen et al., 2013; Walsh et al., 2016) may
impact forest ecosystems.

2 | MATERIALS AND METHODS

2.1 | Structural features

We compiled the location, stem density (number of stems per ha),
basal area (the total cross section area in m?/ha, which is a good
proxy of above-ground biomass; e.g., Slik et al., 2010), maximum size
(maximum DBH, diameter at breast height, cm), mean canopy height
(m) and maximum height for plants with stem diameter 210 cm at
~1.3 m above the base (DBH) from published inventories for plots
>0.1 ha in size (Ibanez et al., 2018). Relevant literature was identi-
fied using key word searches in ISI Web of Science (https://webof-
knowledge.com/) and Google Scholar (http://scholar.google.com/).
Our final dataset was derived from 88 scientific papers published
between 1983 and 2017. Montane forest plots (as defined by au-
thors of source data, i.e., “pre-montane,” “lower-montane,” “mon-
tane” and “upper-montane”) were not considered in the analysis
(Aiba and Kitayama, 1999; Clark et al., 2015, Culmsee et al., 2011;
Davidar, Mohandass, & Vijayan, 2007; Noumi, 2013, Rakotomalaza
and Messmer, 1999, Yamada, 1975). We also only considered plots
where authors did not report evidence of recent natural (e.g., TCs)
or anthropogenic disturbances (e.g., removal of trees). When canopy
height was reported with lower and higher bounds (e.g., 20-30 m),

we used the mean value (e.g., 25 m).

2.2 | Cyclones

The frequency and energy released by TCs were computed over
the 1981-2016 period from the IBTrACs database, an exhaus-
tive and global database (https://www.ncdc.noaa.gov/ibtracs/,
see Knapp et al., 2010). We assumed these values, derived from
a 35-year period, to be representative of the relative TC regime
in different regions over the Holocene on a global scale. Although
some geomorphological records in TC-prone regions show cen-
tennial to millennial variations in local TC frequency and intensity
during the Holocene, these variation are pseudo-cyclic and do not
indicate long-term trends (e.g., Burn & Palmer, 2015; Haig, Nott,
& Reichart, 2014; Nott & Forsyth, 2012; Toomey, Donnelly, &
Woodruff, 2013). Instead, global patterns of TCs across different
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regions vary less on a centennial scale but respond more strongly
to major changes in global climate over longer time-scales, such
as the Pliocene glaciations (e.g., Yoo, Galewsky, Camargo, Korty,
& Zamora, 2016).

The IBTrACs database provides information on the position,
maximum sustained wind speed and translation speed (an indicator
of the duration of disturbance impact, as slower moving cyclones
imply longer presence of damaging winds) of each inventoried cy-
clone at 6-hr intervals. We used these data to calculate the average
frequency and energy released by TCs was computed as a proxy of
the level of TC disturbance.

For each grid cell with a spatial resolution of 1° latitude x 1° lon-
gitude (=12,345 km? at the equator, Figure 1), the energy released
by TCs was computed as the power dissipated by friction in the
surface layer (Emanuel, 2005) following Menkes et al. (2016) and
Vincent et al. (2012). At each point, the maximum 10-min sustained
wind speeds at 10 m above the ground (V) was extracted from the
database. Only events reaching V > 17 m/s at some point were con-
sidered, i.e., tropical storms and category one to five TCs according
to the Saffir-Simpson Hurricane Scale (Simpson, 1974). Following
Vincent et al. (2012), the spatial pattern of each TC at each time step
was computed using the Willoughby, Darling, and Rahn (2006) ide-
alized vortex. We then computed the power dissipation index (PDI)
as the integration over the entire lifetime (z) and spatial extent (r;) of
TCs as follows:

7 Iy
PDI =27rJ J alV|3rdr

00
where a (a = Cpp with C, being the surface drag coefficient and p the
surface air density) is considered a constant (see Emanuel, 2005).
The PDI was then integrated over each 1° latitude x 1° longitude grid
cells and averaged to get the average yearly PDI. As expected, TC
frequency and PDI were strongly correlated (see Figure S1.1).

2.3 | Bioclimatic variables

Plots were classified as dry or humid forest plots following authors’
classifications, with tropical dry forests being identified by the com-
mon occurrence of drought-deciduous canopy species. For each plot,
we extracted the corresponding TC frequency and energy released
by TCs (PDI). We also computed the MAT, mean annual precipita-
tion (MAP), annual potential transpiration (PET) and a water avail-
ability index as MAP-PET. MAP and MAT where extracted from the
WorldClim 2.0 database (http://www.worldclim.org/version2, Fick
& Hijmans, 2017) and PET from the CGIAR-CSI database (http://
www.cgiar-csi.org/, Trabucco & Zomer, 2009).

2.4 | Human disturbances

Human activities have had a major impact on forests and may affect
forest structure directly, e.g., by cutting trees for wood (Crowther
et al., 2015; Hansen et al., 2013), or indirectly, e.g., by edge effects

related to fragmentation (Laurance, 1997). To take into account the
effects of these disturbances, we extracted the human foot print
index (HFP, Human Footprint 2009, http://wcshumanfootprint.org/,
Venter et al., 2016), as a proxy of potential human disturbances. This
index measures the cumulative impact of direct pressures on natural
ecosystems from human activities and includes the extent of built
environments, crop land and pasture land, the human population
density, the night-lights and the circulation ways (railways, roads and

navigable waterways).

2.5 | Analysis

All analyses were performed using R.3.3.0 (R Core Team, 2016). All
explanatory variables (except TC frequency and PDI) were extracted
on 10-min (~340 km?) spatial resolution maps. To avoid pseudo-rep-
lication, we averaged structural and climatic features within 1 x 1
degree grid cells (i.e., the spatial resolution of the PDI maps) and for-
est type (dry and humid forests). We used a total of 438 plots (355 in
humid forests, 83 in dry forests) that were pooled into 250 grid cells
(203 in humid forests, 47 in dry forests, Figure 1 and Figure S1.2).
Multicollinearity was <0.5 (Spearman’s rho) for all explanatory vari-
ables (Table S1.1).

We first tested whether structural features differed between
areas experiencing low- (freq. <0.01 TC/year, i.e., less than one TC
per century is expected based on the 35-year IBTrACs dataset), me-
dium- (0.01 = freq. < 0.1 TC/year, i.e., 1-10 TCs per century) or high-
(freq. 20.1 TC/year, i.e., at least one TC per decade) TC frequency.
This was done separately for dry and humid forests (see distribution
of TC frequency Figure 51.1). The significance of the differences was
tested using one-way pairwise Wilcoxon rank sum tests with correc-
tions for multiple testing (Holm’s correction).

We used multivariate linear regressions to test the relative
importance of PDI and other relevant parameters; MAT, water
availability (MAP-PET) and human disturbances (HFP). Response
variables describing the structure of forests were log-transformed
to increase normality (Figure 51.3). Because basal area and maxi-
mum size, and canopy height and maximum height, were highly
linearly correlated for both forest types, we focussed on three rela-
tively independent structural variables: stem density, basal area and
canopy height (Figure S1.4). We used the MuMIn r package (Barton,
2016) and the dredge function to generate different sets of models
representing all possible combinations and subsets of explanatory
variables. We then selected the best models based on the Akaike
information criterion (AAIC <2 from the best models, Bunnefeld &
Phillimore, 2012). Explanatory variables were centred and scaled
before fitting models to allow a fair comparison of their respective

effects.

3 | RESULTS

Across the tropics and in both forest types, forests located in areas

experiencing high TC frequency (>1 per decade) exhibited higher
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stem densities (Figure 2). The stem density in these regions was on
average 798 + 253 stems per ha in dry forests and 888 + 340 stems
per ha in humid forests, compared to 643 + 195 stems per ha and
703 £+ 194 stems per ha, respectively, in regions experiencing less
than one TC per decade. In contrast, basal area did not differ signifi-
cantly between the three cyclone frequency classes (low, medium
and high) for both dry and humid forests. The canopy of humid for-
ests (27 + 8 m) was on average more than twice as high as in dry
forests (12 + 5 m). Humid forests exposed to frequent TCs were also
significantly shorter (20 £ 6 m) than those exposed to low- and me-

dium-TC frequencies (27 + 8 m).

The amount of energy released by TCs (the so-called, PDI) was
positively correlated to stem density and basal area (Table 1). PDI
together with MAT explained 14% of stem density variance, but
had no significant effect basal area (Table 1 and Figure 3). Canopy
height had a significant positive relationship with water availabil-
ity and a significant negative relationship with human foot print.
Water availability was significantly lower (-177.7 + 626.65 mm vs.
700.6 + 1,030.1 mm; Wilcoxon rank test p < 0.001, Figure S1.4) and
the human footprint significantly higher (12.1 £ 9.1 vs. 8.0 £ 6.4;
Wilcoxon rank test p < 0.01, Figure S1.5) in dry forests compared to

humid forests.
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TABLE 1 Best multivariate linear regressions explaining structural features in tropical forests overall and in humid and dry forest

separately

Coefficient estimate and significance Model performance

Forest types Structural features N Model ranks PDI MAT MAP-PET HFP R? AlCc
Both Stem density 245 1 0.10*** -0.08*** 0.14 119.24
2 0.10*** -0.08*** 0.01 0.14 121.24
Basal area 229 1 -0.09*** 0.05 0.06 191.88
2 -0.08** 0.05 192.92
3 -0.08** 0.05 -0.01 0.06 193.44
4 0.01 -0.08** 0.051 -0.05" 0.06 193.77
Canopy height 78 1 0.12* 0.19*** -0.20"** 0.32 93.08
2 -0.06 0.10 0.19*** -0.18** 0.33 94.02
3 -0.091 0.18*** -0.16** 0.30 94.52
Humid Stem density 201 1 0.08** -0.09*** 0.17 74.03
2 0.08** -0.09*** 0.02 0.17 75.50
Basal area 190 1 -0.09*** 0.08 119.41
2 0.04 -0.09*** 0.09 119.63
3 -0.09*** 0.03 0.08 120.68
4 0.04 -0.09*** 0.02 0.09 121.17
Canopy height 51 1 -0.15%** 0.07 0.33 23.42
2 -0.13** 0.06 0.07% 0.36 24.05
8 -0.15%** 0.29 24.10
4 -0.13** 0.06 0.31 24.90
Dry Stem density 44 1 0.13* 0.11 39.65
2 o0.11f 0.13 0.15 40.64
3 0.18 0.07 41.28
Basal area 39 1 0.18f -0.15* 0.17 44.39
2 45.13
3 -0.10 0.07 45.38
4 0.10 0.04 46.32
Canopy height® 27 1 -0.22 0.12 25.62
2 25.79
3 -0.09 0.10 26.10
4 -0.20 -0.08 0.19 26.51

Note. ***p < 0.001, **p < 0.01, *p < 0.05; Tp < 0.1.
20nly the four models with the lowest AlCc are shown.

PDI, power dissipation index; MAT, mean annual temperature; MAP-PET, mean annual precipitations - potential evapotranspiration; HFP, human foot

print.

Within humid forests, which was less affected by human distur-
bance than dry forest, PDI was a significant predictor of stem density
and canopy height (Table 1), explaining alone about 10% and 29%
of total variation in stem density and canopy height respectively
(Figure 3). MAT was the other significant predictor. Together with
PDI it explained 17% and 9% of total variance of stem density and
basal area (Table 1). PDI had positive relationships with stem density,
while MAT had positive relationships with stem density and basal
area. Canopy height tended to increase with water availability which

explained together with PDI 33% of the observed variance. Within

dry forest, PDI was the only significant predictor of stem density,
explaining about 11% of its variance (Figure 3). HFP together with
MAT explained about 17% of the variance in basal area, while none

of the variables was significantly related to canopy height variations.

4 | DISCUSSION

Our results confirm that TCs are important disturbances that have

a long-term, global-scale effects on forest structure, despite being
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relatively uncommon weather events (about 80-90 TCs per year,
see Schreck et al., 2014; Maue, 2011). We show for the first time
that stem density and canopy height are significantly related to the
frequency of and energy released by TCs in a globally consistent
way. Furthermore, our results indicate that these relationships were
most pronounced for stem density and for humid forests, which are
not limited by water availability and are less impacted by human
disturbances (based on lower human foot print) than dry forests.
Therefore, forecasted changes in the intensities, sizes and trajecto-
ries of TCs are likely to have important impacts on the structure of
tropical and subtropical forests (Kossin, Emanuel, & Vecchi, 2014;
Mei, Xie, Primeau, McWilliams, & Pasquero, 2015).

Our results explained a considerable proportion of the variation
in stem density and canopy height in our dataset, suggesting that
TCs are important large-scale disturbances that have long-term im-
pacts on forests structure. Our analysis did not capture edaphic and
topographic variation known to impact forest structure from local to
regional scales, which makes the strong relationship we found be-
tween cyclone and forest structure even more remarkable. Indeed,
soil depth, nutrient availability and topographical position are known
to affect forest structure (e.g., Clark & Clark, 2000; Quesada et al.,
2012; Schut et al., 2014; Slik et al., 2010; Webb, Stanfield, & Jensen,
1999).

The strong, universal relationship between TCs and stem den-

sity documented in this study is not surprising. TCs are disturbances

that reduce the canopy cover of forests (Comita et al., 2009; Grove,
Turton, & Siegenthaler, 2000; Hjerpe et al., 2001; Staben & Evans,
2008) and cause tree mortality (Webb et al., 2011; Zeng et al., 2009;
Zimmerman et al., 1994). This results in increased light availability
for several years in the undergrowth (Bellingham, Tanner, Rich, &
Goodland, 1996; Lin et al., 2011; Luke, McLaren, & Wilson, 2014;
Turton, 1992), creating suitable conditions for regeneration and the
release of saplings (Luke et al., 2014; Nicotra, Chazdon, & lIriarte,
1999; Tanner, Rodriguez-Sanchez, Healey, Holdaway, & Bellingham,
2014). Therefore, frequent cyclones (e.g., one per decade) would be
expected to maintain high light availability and, consequently, regen-
eration. Furthermore, higher mortalities and regeneration reported
from TC-prone forests suggest that such forests may experience
higher turnover and quicker dynamics than forests not or rarely
affected by these disturbances (Swenson et al., 2012; Webb et al.,
2011).

Given that TCs are known to trim forest canopies to lower
heights (Brokaw & Grear, 1991; Lin et al., 2011), the moderate effect
of TCs on canopy height may seem surprising. Our results suggest
that canopy height first depends on hydraulic limitation and then
by mechanical pruning by intense TC winds, as canopy height of dry
forest (with MAP-PET being on average -177.7 + 626.7 mm) was
less than half that of humid forest (with MAP-PET being on average
700.6 £ 1,030.1 mm). This is in the line with recent global analyses

showing canopy height to increase with water availability (Klein
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et al., 2015; Zhang et al., 2016) and the hydraulic limitation hypothe-
sis (Ryan, Phillips, & Bond, 2006; Ryan & Yoder, 1997).

In humid forests, frequent TC disturbances may result in a greater
investment in horizontal over vertical growth, as suggested by the
negative relationship between the energy released by TCs with can-
opy height and its weaker, positive relationship with basal area. This
deduction is supported by recent studies comparing height-diameter
tree allometries across the tropics, which have shown that areas ex-
posed to frequent strong winds, such as New Caledonia (Blanchard
et al.,, 2016) or Dominica (Thomas, Martin, & Mycroft, 2015), have
lower growth in height relative to diameter. These changes in tree
allometry could result from repeated pruning of crown tips by TCs
(Brokaw & Grear, 1991) or from evolutionary adaptations to TCs,
which have been suggested to explain differential responses of neo-
tropical palms (Areacaeae) to TCs (Griffith, Noblick, Dowe, Husby, &
Calonje, 2008). The latter would imply TCs to have important evolu-
tionary influences. Alternatively lower canopy heights may be due to
resprouting, which is commonly observed in trees surviving TC dam-
ages (Bellingham, Tanner, & Healey, 1994; Scanlon, Petit, Tuiwawa, &
Naikatini, 2018; Van Bloem et al., 2007; Zimmerman et al., 1994) and
produces multistemmed trees that tend to be lower in height than sin-
gle-stemmed trees (Givnish, 1984; Kruger, Midgley, & Cowling, 1997).

The expected changes in the frequency, intensity or geograph-
ical distribution of TCs due to anthropogenic climate change are
therefore likely to impact the structure and dynamics of affected
forests. While the influence of global warming on TCs remains un-
certain (Walsh et al., 2016), there is an emerging consensus that TCs
will increase in intensity (Christensen et al., 2013; Kang & Elsner,
2015; Mei et al., 2015), attain unprecedented sizes and intensities
(Lin & Emanuel, 2016; Mei et al., 2015), and expand their trajecto-
ries poleward (Kossin et al., 2014). Our findings suggest that more
intense TCs may alter tropical forest structure (density, height and
basal area) and dynamics (higher turnover). Similar changes can be
expected in forests at higher latitudes experiencing TCs for the first
time. Furthermore, forests subjected to more intense cyclones may
experience changes in species composition (Keppel etal., 2010;
Webb et al., 2011) and increased vulnerability to drought and other
threats, such as fire and invasion by weeds (Beard et al., 2005;
Franklin, 2007; Hjerpe et al., 2001; Murphy et al., 2008).

The significant, negative relationship of human foot print with
forest canopy height and basal area highlights that factors other
than TC are impacting forest structure. This relationship could
be the result of selective tree removal by humans or edge ef-
fects related to fragmentation (Laurance, Delamonica, Laurance,
Vasconcelos, & Lovejoy, 2000; Lindenmayer, Laurance, & Franklin,
2012). While these potential causes are purely speculative, it is
well documented that forests are being degraded and destroyed
at alarming rates (Crowther et al., 2015; Hansen et al., 2013). A
direct anthropogenic influence on forest structure (and hence dy-
namics) is further supported by the effects of the human foot print
being stronger in tropical dry forests, which is known to be ex-
tremely disturbed and fragmented (Gillespie et al., 2014; Janzen,
1988; Miles et al., 2006).

5 | CONCLUSIONS

We provide the first evidence that the visible, short-term damages
caused by TCs have less obvious, long-term effects on the structure
of forests on a pantropical scale. The consistent finding of an increased
stem density in regions experiencing a stronger TC disturbance regime
suggests that TCs alter the structure of forests in a globally consistent
manner. Furthermore, our results suggest that, within humid forests,
TCs may have a stronger effect on canopy height than water avail-
ability. This implies that the predicted higher intensities and higher
latitudes of cyclone impact in future will result in major and predictable

changes in forest structure and, hence, global carbon stocks.
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