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Highlight (30 words): The grapevine outwardly rectifying K
+
 channel VvK5.1, which 

displays classical Shaker SKOR-like current properties, has acquired many physiological 

roles through its unexpected tissue expression. 

 

 

 

Abstract 

 

Grapevine (Vitis vinifera L.), one of the most important fruit crops, is a model plant for 

studying the physiology of fleshy fruits. Here, we report on the characterization of a new 

grapevine Shaker-type K
+
 channel, VvK5.1. Phylogenetic analysis revealed that VvK5.1 

belongs to the SKOR-like subfamily. Our functional characterization of VvK5.1 in Xenopus 

oocytes confirms that it is an outwardly rectifying K
+
 channel that displays strict K

+
 

selectivity. Gene expression level analyses by RT-qPCR showed that the VvK5.1 expression 

was detected in berries, roots, and flowers. In contrast to its Arabidopsis thaliana counterpart 

that is involved in K
+
 secretion in the root pericycle, allowing root-to-shoot K

+
 translocation, 

VvK5.1 expression territory is strongly enlarged. We showed by in situ hybridization that 

VvK5.1 is expressed in the phloem and perivascular cells of berries and in flower pistil. In the 

root, in addition to be expressed in the root pericycle like AtSKOR, a strong expression of 

VvK5.1 is detected in small cells facing the xylem that are involved in lateral root formation. 

This fine and selective expression pattern of VvK5.1 at early stage of lateral root primordia 

supports a suggested role for outward channel as switch on cell division initiation. 

 

Keywords: flowers, phloem, potassium Shaker channel, new tissue location sites, new 

physiological properties, root-to-shoot translocation, root lateral primordium. 
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Introduction  

 

Potassium (K
+
) plays an important role in many plant physiological processes. This ion is the 

most abundant cation in the cytosol, with a concentration ranging between 100-200 mM 

(Ache et al., 2001; Wada et al., 2008). K
+
 ions are involved in basic functions such as the 

neutralization of non-diffusible negative charges, the control of cell membrane polarization, 

electrical signalling, and osmoregulation (Dreyer et al., 2014; Sharma et al., 2013; Véry et al., 

2014). Indeed, K
+
 is involved in many integrated functions at the whole-plant level such as 

cellular expansion/elongation and division (Sano et al., 2007, 2009), the control of guard cell 

turgor allowing stomatal movements (Hosy et al., 2003; Lebaudy et al., 2008b), maintenance 

of cytosolic pH homeostasis, and the setting of the membrane potential (Maathuis, 2009; 

Marschner, 2012). In plants, the first molecular actors involved in K
+
 translocation and 

distribution are the Shaker K
+
 channels. These channels, expressed at the cell plasma 

membrane, dominate the membrane K
+
 conductance in most cell types and are implied in the 

control of long-distance K
+
 transport (Sharma et al., 2013; Véry et al., 2014). More precisely, 

K
+
 Shaker channels are involved in a number of physiological functions that require sustained 

large-scale K
+
 fluxes. Furthermore, they drive the inwardly or outwardly rectifying K

+
 fluxes 

of the plasma membrane according to the membrane potential, allowing the inward or 

outward K
+
 translocation of the cell (Sharma et al., 2013). For instance, in Arabidopsis 

thaliana roots, the inward Shaker channel AKT1 and the outward channel SKOR are involved 

in K
+
 uptake from the soil (Lagarde et al., 1996; Hirsch et al., 1998; Xu et al., 2006) and the 

secretion of K
+
 into the xylem sap, allowing K

+
 translocation to the shoots (Gaymard et al., 

1998). 

Shaker K
+
 channels are multimeric proteins formed by the assembly of four Shaker gene 

products, known as subunits (Dreyer et al., 1997; Dreyer et al., 2004). Within this tetrameric 

structure, the four subunits can either be provided by a single Shaker gene (e.g. a homomeric 

Shaker channel), or by different Shaker genes (e.g. a heterometric Shaker channel) (Lebaudy 

et al., 2008a, 2010). Each subunit has a hydrophobic core comprising six transmembrane 

domains, including a pore domain between the fifth and sixth transmembrane domains as well 

as a voltage sensor domain (the S4 transmembrane domain) (Zimmermann and Sentenac, 

1999). The N- and C-terminal regions are cytoplasmic. The large C-terminal region begins 

just after the end of the sixth transmembrane domain (S6) and successively contains a C-

linker domain, a cyclic nucleotide-binding domain (CNBD), an ankyrin domain, and a KHA 
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domain (Ehrhardt et al., 1997; Sharma et al., 2013; Nieves-Cordones et al., 2014; Véry et al., 

2014). 

In grapevine, K
+
 plays an essential role in the initiation and control of the massive fluxes that 

are necessary to berry loading during its maturation (Cuéllar et al., 2013; Nieves-Cordones et 

al., 2019, Zhu et al., 2019). Moreover, in the context of environmental changes, K
+
 ion 

accumulation increases during grape ripening, leading to an excessive neutralization of 

organic acids (Cuéllar et al., 2010; 2013; Rogiers et al., 2017; Nieves-Cordones et al., 2019). 

This results in grape berries with low acidity at harvest, yielding wines with poor organoleptic 

properties and low potential aging. This is a major concern for grape production, although 

information on the molecular determinants that control berry K
+
 accumulation during its 

ripening, as well as acidity in grape berry, is still fragmentary. This lack of information 

hinders wine producers from making sustainable choices to help face future challenges.  

Here, we report on the characterization of the grapevine Shaker K
+
 channel VvK5.1. Based on 

our phylogenetic analysis, we show that this Shaker belongs to the SKOR subgroup of the 

Shaker channel family. Furthermore, the electrophysiology analysis reveals that the VvK5.1 

channel displays classical slowly activating outward K
+
 currents upon depolarizing voltage 

pulses. In grapevine, VvK5.1 is mainly expressed in three organs: the flowers, the grape berry 

phloem, and the roots. In the flowers, there is a strong expression of this channel in the 

stigmas and in the transmitting tract. In the grape berry phloem, the expression of VvK5.1 

continuously increases after post-veraison and during grape ripening. In the roots, VvK5.1 

expression is detected in the pericycle parenchyma cells, which is reminiscent of the role that 

the A. thaliana SKOR channel plays in secreting K
+
 into the xylem sap. We also detected an 

intense expression of VvK5.1 in the lateral root primordium. Finally, the roles played by the 

VvK5.1 channel in these three organs are discussed. 

  

Materials and methods 

 

Plant material  

Four-year-old grapevines (Vitis vinifera cv. Cabernet Sauvignon) were potted in 70-l plant 

containers and grown in field conditions. Plant watering was carried out by a controlled drip-

irrigation system. The plant water status was checked by measuring leaf water potential (Ψ) at 

dawn (Cuellar et al., 2010), which remained close to -0.2 MPa throughout grape maturation. 

All organs were collected at fruit set with the exception of berry samples, which were 

harvested at different stages of grape ripening. For VvK5.1 root expression analysis, root 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz341/5536684 by C

IR
AD

 user on 12 Septem
ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

 5 

samples were harvested from two-month-old rooted canes grown in “perlite”. All collected 

samples were immediately frozen in liquid nitrogen, crushed, and used for RNA extraction. 

Cloning of the VvK5.1 cDNA subunit 

First-strand cDNAs were generated from total RNA extracted from ripe berries using 

SuperScript III RT polymerase (Invitrogen 18080-051). Full-length VvK5.1 Shaker subunit 

cDNA (2466 bp) was then amplified using VvK5.1-V2-F1 and VvK5.1-V2-R1 specific 

primers (Supporting Information Table S1) prior to cloning into the pDONR207 entry vector 

using a gateway strategy (Invitrogen).  

 

Functional characterization of VvK5.1  

VvK5.1 cRNAs produced using the mMessage mMachine T7 ultra transcription Kit 

(Invitrogen) were injected (15 ng in 14 nL) using a microinjector (Nanoliter2010, WPI, 

https://www.wpiinc.com) into Xenopus laevis oocytes. As a control, the same volume (14 nL) 

of water was injected. After injections, oocytes were kept at 20°C in ND96 solution (pH 7.4; 

96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, 2.5 mM sodium 

pyruvate, and 50 µg mL
-1

 of gentamicin). Membrane currents were recorded 2-4 days after 

injections with a two-microelectrode voltage-clamp amplifier (GeneClamp 500B; Axon 

Instruments, http://www.moleculardevices.com) and a Digidata 1322A interface (Axon 

Instruments), using pipettes filled with 3 M KCl. Recordings were visualized and saved on a 

pClampex 10 (Axon Instruments: Molecular Devices Corp., Sunnyvale, CA, USA). During 

recordings, oocytes were maintained in percolating solutions of 100 (K100), 50 (K50), 10 

(K10), 1 (K1) or 0.1 (K0.1) mM potassium gluconate supplemented respectively with 0, 50, 

90, 99 or 99.9 mM sodium gluconate. Each of these solutions contained 1 mM CaCl2, 2 mM 

MgCl2, 31 mM sorbitol and 5 mM HEPES (pH 6.5 and 7.4) or 5 mM MES (pH 5.0 and 5.5). 

Furthermore, either 10mM TEA (tetraethyl ammonium) or 10mM Ba
2+

 was added to the K10 

solution at pH 7.4 in order to test channel inhibition. Two voltage-clamp protocols were 

applied with 8-s voltage pulses, one from -110 mV to +40 mV and the other from -100 mV to 

+ 50 mV (in -15 mV steps for each protocol). Each step started with a holding potential of -40 

mV, then a 250-ms pulse at -100 mV was conducted before the different voltage steps. After 

each pulse of 4.5 s, the voltage returned to -100mV for 2 s before returning to the holding 

potential. 

Analyses were performed with the pClampfit 10 software program (Axon Instruments: 

Molecular Devices Corp., Sunnyvale, CA, USA). Current-voltage (I/V) curves were obtained 
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by plotting the steady-state currents at the end of the activating voltage pulses against the 

corresponding applied membrane potentials. 

 

 

Total RNA extraction and real-time quantitative PCR (RT-qPCR) analysis 

Total RNA was extracted from grapevine samples using the Spectrum plant total RNA kit 

(Sigma Aldrich) and quantified with the Quant-iT Ribogreen RNA reagent (Invitrogen). After 

DNAse I treatment (Invitrogen), first-strand cDNAs were synthesized with SuperScript III 

reverse transcriptase (Invitrogen) and used as a template for the quantitative RT-PCR 

experiments. All steps were carried out according to the manufacturer’s instructions. RT-

QPCR analyses were performed on the Lightcycler480 system using TB Green Premix Ex 

Taq (TAKARA) with 20 ng of total RNA in 10 µl. Reactions were performed in triplicate 

using two independent biological samples. All amplification plots were analysed with 

Lightcycler480 software, using a threshold of 0.25 to obtain CT (Cycle threshold) values. The 

VvK5.1 expression level was then normalized using the corresponding CT values of the 

control housekeeping gene VvEf1-alpha (Terrier et al., 2005; Nieves-Cordones et al., 2019). 

Standard curves were obtained by successive dilution with known quantities of VvK5.1 and 

VvEf1-alpha cDNA amplicons. Specific primers for amplifying VvK5.1 (VvK5.1-V2-qP-3'-F1 

and VvK5.1-V2-qP-3'-R1, Table S1) and VvEf1-alpha (EF1-F/EF1-R; Cuéllar et al., 2010) 

were designed using the PRIMER3 website (http://primer3.ut.ee/) and are provided in Table 

S1.  

 

Tissue localization of VvK5.1 mRNA by in situ hybridization  

Fresh grapevine organs (flowers, roots and ripe berries) from plants grown in well-irrigated 

conditions were harvested, fixed in 4% paraformaldehyde solution (Bio-Rad), dehydrated, 

embedded in paraffin, and cut into 11-µm-thick sections. VvK5.1 RNA sense and antisense 

probes were synthetized using the specific VvK5.1 primers (T7P-VvK5.1-V2-up/VvK5.1-V2-

down and VvK5.1-V2-up/T7P-VvK5.1-V2-down, Table S1) and labelled with UTP-

digoxigenin during the transcription step (MAXIscript T7 transcription kit; Invitrogen). An 

18S ribosomal RNA probe was used as positive control. Samples were hybridized overnight 

with VvK5.1 RNA probes and then incubated for 1 hour with an anti-digoxigenin antibody 

conjugated to alkaline phosphatase (1/500 dilution; Roche, http://www.roche.com). 

Hybridization signals were revealed using the vector blue kit III (Vector Laboratories, 
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http://www.vectorlabs.com; positive signal is blue). In situ hybridization experiments were 

independently repeated twice. 

The DAPI (4’, 6-diamidino-2-phenylindole, Sigma-Aldrich) nuclear counterstain was used to 

visualize the cell nucleus. DAPI (0.001% in 1X PBS) was applied onto hybridized tissues for 

10 minutes in the dark. Slides were then observed with an Eclipse Ni-E microscope at the 4X, 

10X and 20X objective magnifications (Nikon, 

https://www.microscope.healthcare.nikon.com) and images were taken with a Nikon DS-Ri2 

camera using the NIS elements software. In situ hybridization pictures were taken in white 

light or DIC (differential interference contrast) mode. For fluorescent pictures, DAPI was 

excited at 350 nm in order to recover the emitted signal between 450 and 490 nm (blue). 

 

Localization of VvK5.1 activity in planta 

A 1.4-kb region upstream of the VvK5.1 gene (XP_010660282.1) ATG codon was amplified 

through two successive PCR runs using VvK5.1-prom-Fw1/VvK5.1-prom-Rv1 and VvK5.1-

prom-Fw2/VvK5.1-prom-Rv2 primers (Table S1), and inserted into the pGWB3 destination 

gateway vector (Nakagawa et al., 2007) containing the β-glucuronidase gene. A. thaliana 

plants (Col ecotype) were transformed using the floral dip method (Clough and Bent, 1998). 

Transformants were selected on hygromycin, and homozygotes were recovered in the next 

generation. Beta-glucuronidase activity was detected according to Lagarde et al. (1996), and 

slides were observed using an Eclipse Ni-E microscope (NIKON 

https://www.microscope.healthcare.nikon.com). 

 

Results 

 

Molecular cloning of VvK5.1 cDNA 

A 2466 bp cDNA was cloned by RT-PCR from the total RNA of post-veraison Vitis vinifera 

(cv. Cabernet Sauvignon) using the VvK5.1-V2-F1/VvK5.1-V2-R1 specific primers 

(Supporting Information Table S1). The deduced VvK5.1 polypeptide contains 821 amino 

acids and shares similarity with other plant Shaker potassium channels. The hydrophobicity 

profile predicts that VvK5.1 displays the typical structural regions of a Shaker subunit with 

six membrane-spanning domains (S1–S6) flanked by N- and C-terminal cytosolic sequences 

of variable lengths. The N-terminal domain is very short in contrast to the large C-terminal 

sequence that successively contains a C-linker domain, a cyclic nucleotide-binding domain 

(CNBD), an ankyrin domain, and a KHA domain (Ehrhardt et al., 1997; Sharma et al., 2013; 
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Nieves-Cordones et al., 2014). The six-transmembrane domain includes a well-defined pore 

region between the fifth and sixth transmembrane segments, which contains the hallmark 

TxxTxGYGD of highly K
+
-selective channels. Identification of the closest relatives of the 

grapevine VvK5.1 channel by phylogenetic analysis revealed that VvK5.1 is highly similar to 

the SKOR channels already characterized in several dicotyledonous plants (Fig. 1). These 

channels belong to the outwardly-rectifying K
+
 channel subgroup of the Shaker family. The 

VvK5.1 sequence displays 76.5%, 75.2%, 71.6%, and 66.5% amino acid sequence identities 

(ASI) throughout its entire protein length with CmSKOR1 from melon (Cucumis melo), 

CusSKOR1 from cucumber (Cucumis sativa), A. thaliana AtSKOR, and AtGORK, 

respectively.  

 

The grapevine channel VvK5.1 mediates outwardly rectifying K
+
 currents in Xenopus 

laevis oocytes 

Heterologous expression of the VvK5.1 channel in X. laevis oocytes induced outwardly 

rectifying currents upon depolarizing voltage pulses (Fig. 2), which were never observed in 

control oocytes injected with water. These time-dependent slowly activating currents showed 

sigmoidal activation kinetics (Fig. 2A). Current amplitudes increased with lower external K
+
 

levels according to the driving force for K
+
 efflux. Current-voltage curves (Fig. 2B) plotted 

from the steady state currents at the end of the voltage pulses from -110 to +40 mV, as shown 

in Figure 2A, revealed strict outward rectification of these K
+
-dependent currents. The 

activation potential displays a shift depending on external K
+
 concentration allowing, at lower 

K
+
 concentrations, an efflux of K

+
 at more hyperpolarized potentials. Further analyses of 

reversal potentials (Erev) when plotting tail currents from -110 mV to +40 mV after activation 

of the channel at +30 mV showed a shift towards more hyperpolarized potentials when the 

external K
+
 concentration was decreased. This shift of around -56 mV corresponds to the 

predicted Nernst potential of K
+
 for a 10-fold change in the K

+
 gradient (Fig. 2B, insert B1), 

proving the K
+
 selectivity of the channel.  

Further analyses of the dependence of the VvK5.1 channel on external K
+
 revealed a decrease 

in the maximal currents at depolarized potentials when K
+
 decreases below 10 mM (Fig. 2C).  

At concentrations of 1 or 0.1 mM K
+
, current amplitudes at positive potentials decreased even 

though the channel was activated at more hyperpolarized potentials, suggesting an allosteric 

regulation (Fig. 2C1). This kind of regulation has already been observed for other voltage-

gated channels, such as the A. thaliana SKOR channel (Gaymard et al., 1998). Dependence of 

the VvK5.1 current amplitudes on external pH was tested at four different pH values at 10 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz341/5536684 by C

IR
AD

 user on 12 Septem
ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

 9 

mM K
+
 (Fig. 3A). No significant differences were observed in solutions adjusted to pH 7.4 or 

to pH 6.5. However, further acidification of the external solution to pH 5.5 or pH 5.0 reduced 

the VvK5.1 current, suggesting the regulation of channel permeation by protons. This pH 

dependence has also been observed for the A. thaliana outward rectifier GORK and SKOR 

(Ache et al., 2000; Lacombe et al., 2000) and is contrary to the pH dependence of plant 

inward rectifiers such as KAT1 (Brüggemann et al., 1999) or VvK1.2 (Cuéllar et al., 2013). 

Finally, pharmacological properties of the VvK5.1 channel were tested by external perfusion 

with the known K
+
 channel blockers, BaCl and TEA (Fig. 3B). In both cases, the current 

amplitudes were largely inhibited, and maximal currents were respectively reduced by 40% 

(10 mM BaCl, n=11) and 75% (10 mM TEA, n=5). Altogether, our functional 

characterization of the grapevine channel VvK5.1 in oocytes demonstrates typical properties 

of plant outwardly rectifying voltage-gated K
+
 channels. 

 

VvK5.1 expression patterns 

The spatial expression patterns of the VvK5.1 gene were investigated by RT-qPCR on total 

RNA extracted from roots, stems, leaves, tendrils, and stalks (all at fruit set), and from 

flowers and berries during their development. Unexpectedly, our results showed that VvK5.1 

transcripts are mainly expressed in three organs: the roots, the flowers, and the berries, with 

expression levels ranging between 450-550 copies/ng of total RNA (Fig. 4A). During grape 

berry development, VvK5.1 expression remains consistently very low until the berry post-

veraison period (Fig. 4B). From this stage onward, the accumulation of Vv5.1 transcripts is 

strongly accelerated, increasing by up to fivefold at ripeness. 

In order to identify the exact localization of VvK5.1 expression at the tissue level, in situ 

hybridization experiments were performed on flowers, ripe berries, and roots (Figs. 5-7). In 

flowers, VvK5.1 signals were detected in the transmitting tract and in the stigmas (Fig. 5B,-

C,-E,-F), while in the ovule, the signal was detected in the nucellus (Fig. 5E-F).  

In ripe berries, strong VvK5.1 expression was located in the phloem of the central and 

peripheral vascular bundles (Fig. 6B,-C,-E,-H). It is worth noting that this VvK5.1 expression 

was observed throughout the sieve tube system, which is composed of companion cells and 

enucleated sieve tubes (Fig. 6H-K). In addition, in situ hybridization results showed that the 

VvK5.1 gene is expressed in the epicarp cells (Fig. 6F).  

In roots, VvK5.1 expression was detected in the vascular cylinder (Fig. 7B-C). In situ 

hybridization signals were found in the root pericycle and to a lesser extent in the phloem. In 

the pericycle, we observed heterogenous VvK5.1 signals distributed between two different cell 
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types: large parenchyma cells (LPC) and small cells (SC) of the pericycle.  The SC were 

always located near the xylem pole (Fig. 7), as revealed by cell nucleus labelling with DAPI. 

In this zone, the high number of observed nuclei indicates the presence of numerous cells. 

However, previous research has shown that the lateral root primordia arise from localized cell 

divisions into a pericycle zone located in the proximity of the xylem (Casero et al., 1989; 

Dubrovsky et al., 2000; Hochholdinger and Zimmermann, 2008), and so the strong 

expression of VvK5.1 in this zone suggests that this Shaker could be involved in primordia 

formation. To examine this hypothesis, we analysed the tissue-specific activity of the VvK5.1 

promoter by histochemical analysis of GUS staining (blue) in transgenic plants of A. thaliana 

expressing a VvK5.1 promoter::GUS fusion construct. As shown in Figure 8, GUS expression 

(blue colour) is observed in A. thaliana root cells beginning at the 2-cell stage (Fig. 8B). 

Subsequently, further oriented divisions followed by cell enlargement give rise to an 

organized organ, the root primordium, which develops its own root apex and root cap, and 

grows through the parent root cortex to emerge at the root surface as a lateral root (Fig. 8C-

G). This experiment confirms the involvement of the outward Shaker channel VvK5.1 in the 

lateral root formation. To date, no involvement of any outward K
+
 channels in lateral root 

primordia formation has been described.  

 

Discussion 

 

Two outward Shaker K
+
 channels have been identified and extensively characterized in the 

plant model A. thaliana (Gaymard et al., 1998; Hosy et al., 2003). The first one, GORK, 

encodes the major voltage-gated outwardly rectifying K
+
 channel of the guard cell membrane, 

which mediates guard cell K
+
 release, allowing stomatal closure (Ache et al., 2000; Pilot et 

al., 2001; Szyroki et al., 2001; Hosy et al., 2003; Lebaudy et al., 2008b). The GORK channel 

is also expressed in the root hairs, where it could play a role in physiological processes that 

involve K
+
 efflux from the roots (Demidchik, 2014). Furthermore, its expression has been 

reported in the phloem, and its role in the electrical propagation of action potentials has 

recently been deciphered (Cuin et al., 2018). In contrast, the second A. thaliana K
+
 channel, 

SKOR, is mainly expressed in the root pericycle and xylem parenchyma cells, and is involved 

in K
+
 secretion into the xylem sap (Gaymard et al., 1998; Long-Tang et al., 2017; Nguyen et 

al., 2017). The grapevine channel VvK5.1 belongs to the SKOR-like Shaker channel group 

(Fig. 1). Although the closest VvK5.1 relative is the CmSKOR1 melon channel (Cucumis 

melo, with 76.5% ASI), which is primarily expressed in the root pericycle and is essentially 
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involved in the translocation of K
+
 from the root to the shoot like its A. thaliana counterpart 

SKOR (Long-Tang et al., 2017), the wide-ranging expression profile of the VvK5.1 gene 

(which is highly linked to the channel’s functional properties) strongly indicates that VvK5.1 

could be involved in different processes. 

 

 

 

The VvK5.1 channel in flowers 

In contrast to the ancestral wild grapevine Vitis vinifera subsp. sylvestris, which is a dioecious 

plant, the cultivated grapevine (Vitis vinifera) used for wine and grape productions have 

hermaphroditic flowers. The main method of pollination in these domesticated vines is self-

fertilization. However, in an inflorescence, the percentage of ovaries yielding fruit is strongly 

variable, and is affected by different factors including environmental changes such as light, 

temperature, and water stress (Lecourieux et al., 2017; Fabian et al., 2019), but also vineyard 

management and grape variety features (Dry et al., 2010). Indeed, low fruit set can limit crop 

yield, resulting in losses to grape and wine production. In grapevine, as for all flowering 

plants, the fertilization process begins with pollen hydration, once the pollen has landed on 

the stigma. This hydration stage is a key step, since pollen grains need to absorb water for 

germination. Germination is then initiated at the surface of the stigmatic papilla cells, and the 

pollen produces a pollen tube that grows in the intercellular space through the style, where it 

enters into the transmitting track and delivers the two sperm cells to the ovule for the typical 

double fertilization of plants (Dresselhaus and Franklin-Tong, 2013; Doucet et al., 2016). The 

pistil is the site of pistil-pollen interaction and the cooperative processes that regulate pollen 

hydration, germination, pollen tube growth, and thereby fertilization. Potassium ions are 

required at each step (Campanoni and Blatt, 2007; Michard et al., 2009). Here, we 

demonstrated that the Shaker channel VvK5.1 is only expressed in the stigma and 

transmitting track, and not in pollen grains (Fig. 5, Fig. S1). Therefore, the channel is likely 

involved in the dialogue between pistil and pollen. VvK5.1 is a voltage-gated outwardly 

rectifying K
+
 channel activated under membrane depolarization that drives K

+
 secretion into 

the intercellular space. We propose that this K
+
 efflux could trigger water secretion from 

stigmatic papilla cells for use in pollen hydration, thus enabling germination. Subsequently, 

the pollen tube will grow down through the style. Pollen tube development is known to be 

very fast and highly polarized, with pronounced oscillations in growth rate (Zheng et al., 

2018). This extensive growth by the pollen tube requires the influx of water and solutes into 
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the cell before accumulating in the expanding vacuole. To sustain this growth rate, there are 

efficient ion transport systems at the pollen plasma membrane that have been identified and 

extensively studied. Among these systems, the inward K
+
 Shaker channel SPIK (Mouline et 

al., 2002; Zhao et al., 2013) is specifically expressed in pollen as well as pollen tubes, and its 

disruption results in impaired pollen tube growth (Mouline et al., 2002). The tandem-pore K
+
 

channel AtTPK4 is also involved in this process (Becker et al., 2004), and the cation/proton 

exchangers CHX21 and CHX23 have been shown to be essential for pollen tube guidance 

toward the ovule (Lu et al., 2011). Another study using the loss of function triple mutant 

chx17chx18chx19 in A. thaliana revealed a mutant pollen altered at different levels including 

pollen tube growth, which is probably affected by the absence of AtCHX19 (Padmanaban et 

al., 2017). In contrast, information on K
+
 transport systems expressed in the pistil remain 

fragmentary. The growth of the pollen tube is dependent on K
+ 

availability, and when the K
+
 

concentration is too low (preventing K
+
 influx into the cell), a total absence of tube growth is 

observed (Mouline et al., 2002). By relying on its functional features, the outward K
+
 VvK5.1 

channel (which is expressed in the transmitting track cells) drives K
+
 efflux and is likely 

involved in the secretion of K
+
 into the intercellular space of these cells. Thus, driving K

+
 

secretion in the apoplast should make K
+
 more available, enabling the necessary K

+
 influx 

into the pollen tube for its development. 

 

Involvement of the VvK5.1 channel in the berry phloem 

Veraison is a key step in berry development, occurring at the onset of ripening. During this 

stage, long-distance transport from the xylem and phloem vasculatures towards the berries is 

profoundly restructured. The xylem becomes non-functional (Keller et al., 2006; Chatelet et 

al., 2008a, 2008b; Choat et al., 2009; Knipfer et al., 2015) and berry loading is fed by a 

directional flow of water, sugar and nutrients driven by massive K
+
 fluxes from the phloem. 

Since VvK5.1 expression precisely arrives in the berry starting at veraison and continues to 

increase throughout the grape ripening period (Fig. 4B), it is tempting to assume that this 

channel takes part in the necessary reorganization of the transport mechanisms for berry 

loading. The fact that this VvK5.1 expression is strictly located in the berry phloem and the 

perivascular cells supports this idea (Fig. 6). 

In flowering plants, the phloem pipe is comprised of files of sieve elements and companion 

cells. During phloem development, the nuclei and vacuoles in the sieve elements are 

degraded, leading to enucleated phloem sieve tubes that have lost their capacity for 

transcription. The enucleated sieve tubes then become dependent on an association with the 
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neighbouring nucleated companion cells in order to allow the plasma membrane of these 

sieve elements to remain functional. In the berry phloem, we identified VvK5.1 expression in 

both the enucleated phloem sieve tubes and the companion cells (Fig. 6H-L). This suggests 

that the VvK5.1 mRNAs identified within the sieve tube were probably delivered through the 

sieve plate pores via an associated companion cell, and do not belong to the large population 

of mRNAs that serve as mobile systemic signalling agents.  

At veraison, K
+
 transport in the berry switches from the symplastic to the apoplastic mode 

(Zhang et al., 2006), meaning that ions, water and solutes must cross plasma membranes at 

least twice before accumulating within the flesh cell vacuoles. Due to this, we and others have 

invested in the identification and characterization of K
+
 transport systems involved in grape 

berry loading during its maturation. Indeed, the weakly rectifying K
+
 Shaker channel VvK3.1, 

expressed in the berry phloem, is involved in the massive K
+
 efflux from the phloem cell 

cytosol to the berry apoplast (Nieves-Cordones et al., 2019). By switching to its non-

rectifying mode, VvK3.1 drives the K
+ 

efflux that allows K
+
 ions to move down their 

transmembrane concentration gradient. This is a major challenge for grapevine, as the fruit is 

energetically limited due to stomata disappearance after veraison (Blanke et al., 1999), and 

the additional energy stored in the transmembrane K
+
 gradient known as the K

+
 battery, also 

allows sucrose retrieval under energy-limited conditions (Gajdanowicz et al., 2011; Dreyer et 

al., 2017; Nieves-Cordones et al., 2019). At the same time, the inwardly rectifying K
+
 channel 

VvK1.2, which is localized in the plasma membranes of perivascular and flesh cells and is 

strongly activated by its interactions with specific VvCIPK/VvCBL pairs (Cuéllar et al., 

2013), drives the rapid absorption of K
+
 into these cells to keep the apoplastic K

+
 

concentration at low levels (0.1-1 mM) (Ache et al., 2001; Nieves-Cordones et al., 2019). 

Thus, the phloem stream flux towards the sink should be triggered but also retained as long as 

the transmembrane gradient of K
+
 is maintained at the phloem plasma membrane. The 

VvK5.1 Shaker channel is an outward rectifying channel that is voltage-dependent and only 

open under membrane depolarization. However, during berry loading, massive K
+
 fluxes 

hyperpolarize the plasma membrane potential, which explains why the outward channel 

VvK5.1 is probably not involved in the phloem unloading. In contrast, this channel is both 

K
+
-selective and K

+
-sensing, similar to the GORK and SKOR channels in A. thaliana 

(Gaymard et al., 1998; Ache et al., 2000, Johansson et al., 2006). According to the behaviour 

of outward K
+
 channels, the VvK5.1 current amplitude decreases when external K

+
 

concentrations increase (Fig. 2B), except at the 0.1-1 mM external K
+
 concentration range. At 

these concentrations, which correspond to the expected apoplastic concentrations during 
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phloem unloading, the current amplitudes decrease even though the channel is activated at 

more hyperpolarized potentials, strongly indicating an allosteric regulation. As shown in 

Figure 2C, at external concentrations of 0.1 or 1 mM K
+
, activation of the VvK5.1 channel 

occurs at a voltage of ca. -65 mV, whereas when the external K
+
 concentration is on the order 

of 100 mM, the channel opening takes place at a positive voltage. In this context, in which a 

low apoplastic K
+
 concentration is maintained in the berry by storage of K

+
 in the flesh cells, 

we propose that the VvK5.1 channel should intervene in the repolarization of the plasma 

membrane. In plants as in animals, this repolarization is proposed to be induced by K
+
 (Cuin 

et al., 2018). Recently, Cuin et al. (2018) expanded the role of the outward Shaker channels in 

A. thaliana by studying the involvement of voltage-gated ion channels in the propagation of 

action potentials. By directly recording action potentials from the midvein of Arabidopsis 

leaves, the authors demonstrated that the outward rectifying channel GORK is involved in the 

control of the membrane potential via the repolarization phase. A similar role can be observed 

for the VvK5.1 channel at the sites of phloem unloading, in which the voltage is driven back 

to its resting potential. There may be an identical role for VvK5.1 in the perivascular cells that 

does not exclude its involvement in K
+
 secretion into flesh cell apoplasts before being stored 

in the vacuoles of these cells. 

 

A dual role for VvK5.1 in the root 

The third organ in which VvK5.1 is significantly expressed is the root. In this organ, VvK5.1 

expression is mainly detected in the pericycle, which is clearly composed of two cell types 

(Fig. 7): the large parenchyma cells (LPC), and many small cells (SC) of the pericycle. The 

expression of VvK5.1 in the LPC is reminiscent of that of the SKOR channel in the 

Arabidopsis root pericycle and xylem parenchyma, and clearly indicates that the VvK5.1 

channel should be involved in K
+
 secretion in the xylem sap, thus playing a major role in K

+
 

translocation from the root to the shoot as previously described for SKOR-like channels 

(Gaymard et al., 1998; Long-Tang et al., 2017; Nguyen et al., 2017). On the other hand, it is 

worth noting that the intense signal detected in the SC does not match any known localization 

of SKOR expression, or any other outward Shaker channel. These SC are precisely located in 

the protoxylem pole pericycle, and the large number of cells as revealed by the nucleus 

number detected in this zone is indicative of an intense cell division process. Previous reports 

have established that the lateral roots are formed from pericycle cells located near the xylem 

pole (Casero et al., 1989; Dubrovsky et al., 2000; Hochholdinger and Zimmermann, 2008). 

These cells begin a coordinated program of cell division and differentiation in order to 
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produce a root primordium. The SC, designated as lateral root founder cells, undergo this cell 

division program with three successive phases. During the first phase, a single-cell layered 

primordium containing about 10 cells is produced. In the second phase, the most central cells 

undergo cell division leading to a two-cell layered primordium. In the third phase of lateral 

root formation, the central cells undergo several rounds of division that give rise to a 

primordium with an ellipsoid shape. This primordium grows through the different cell layers 

of the main root before emerging from the root surface. This process is perfectly illustrated in 

Figure 8, where the different steps of lateral root formation are shown in the A. thaliana root 

expressing the GUS (ß-glucuronidase) reporter gene under the control of the VvK5.1 

promoter. This confirms the involvement of the VvK5.1 channel in establishing the lateral 

roots that shape the root architecture. Potassium, the most abundant inorganic cation in plants, 

is also essential to their existence. Specifically, it is involved in various physiological 

processes, including osmotically driven functions such as cell movement, regulation of 

stomatal aperture, cell expansion in growing tissues, and long-distance phloem transport. K
+
 

channels also play a central role in plant growth and development, by driving K
+
 fluxes into 

or out of the cells. In particular, their roles in cell division and cell elongation/expansion have 

been investigated using tobacco BY-2 protoplast cultures (Sano et al., 2007, 2009), 

demonstrating that the activation of the outward channel could be used as a switch to induce 

cell division. In parallel, these studies revealed that K
+
 uptake and the increase in cell K

+
 

content is necessary for cell elongation in relation to cytoplasmic pH regulation. In the 

context of these studies, we propose here that the K
+
 efflux driven by the VvK5.1 channel 

could allow the commencement and maintenance of the cell division program that enables 

lateral root primordium formation. 

 

Even though the functional properties of VvK5.1 are reminiscent of those of classical outward 

K
+
 Shaker channels, our results demonstrate overall that this channel has acquired a unique 

expression profile of its own. Some of our observed tissue-specific VvK5.1 expression 

patterns are to be expected, including in the large parenchyma cells of the pericycle, whereas 

other patterns are completely novel, such as the VvK5.1 expression in the lateral root 

primordium. It is tempting to assume that these particular tissue-specific expressions confer 

VvK5.1 with new properties that are perfectly adapted to the needs of grapevine. 

Nevertheless, the physiological relevance of these evolutionary differences indicates that this 

biological diversity must be further investigated, since these differences are likely to have 

important roles in plant physiological functions. 
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Fig 1. The phylogenetic relationships of VvK5.1. An unrooted phylogenetic tree was 

constructed with 16 polypeptide Shaker K
+
 channel sequences belonging to the outwardly 

rectifying potassium channel subfamily. VvK5.1 (XP_010660282.1) is the grapevine Shaker 

channel. Other sequenced species close to VvK5.1 are AtSKOR (At3g02850) and AtGORK 

(At5g37500) from Arabidopsis thaliana; SlSKOR1 (XP_004240037.1) and SlSKOR2 

(XP_004250206.1) from tomato (Solanum lycopersicum); CcSKOR1 (XP_006421368.1) and 

CcSKOR2 (XP_006427880.1) from clementine (Citrus clementina); CisSKOR1 

(XP_006464550.1) and CisSKOR2 (XP_015389397.1) from orange tree (Citrus sinensis); 

CmSKOR1 (XP_008460504.1) from melon (Cucumis melo); CusSKOR1 (XP_004140369.2) 

from cucumber (Cucumis sativa); MnSKOR1 (XP_010108959.1) from blackberry (Morus 

notabilis); MdSKOR1 (XP_008343075.1) and MdSKOR2 (XP_008381509.1) from apple 

(Malus domestica); and PtSKOR1 (XP_006372521.1) and PtSKOR2 (XP_002305894.2) from 

poplar (Populus trichocarpa). Bootstrap values are reported next to the nodes of the tree. 

Branch length is proportional to the evolutionary distance between the outward rectifying 

potassium channels of different dicotyledon species. 

 

Fig 2. Functional characterization of the grapevine channel VvK5.1 by heterologous 

expression in Xenopus laevis oocytes. (A) Representative current traces in response to 

voltage-clamp pulses from -110 mV to +40 mV that depend on varying external K
+
 

concentrations at pH 7.4 as indicated. Time-dependent outwardly rectifying currents are 

activated upon depolarization. (B) Current-voltage curves for mean currents mediated by 

VvK5.1 that depend on K
+
 concentrations; n=10 ± SE. Note the shift in the activation 

potential at the reduced external K
+
. (B1) VvK5.1 reversal potentials (Erev) were determined 

from tail current analysis, indicating a shift in dependence on external K
+
 concentrations as 

shown; n=10 ± SE. The line in the insert corresponds to the predicted Nernst potentials of K
+
. 

Tail currents were analysed at voltage pulses ranging from -110 to +40 mV, following 

activation of the channel at +30 mV. (C) Current-voltage curves for mean currents mediated 

by VvK5.1 that depend on K
+
 concentrations; n=8 ± SE. (C1) The maximal currents at +50 

mV decreased between 10 and 0.1 mM K
+
, despite the increase in driving force. 

 

Fig 3. Functional properties of the grapevine channel VvK5.1 when expressed in Xenopus 

laevis oocytes. (A) Dependence of VvK5.1-normalized mean currents upon external pH in 10 

mM K
+
; n=8 ± SE. Normalization was conducted by setting the currents at +50 mV in the 

standard solution (pH 6.5) to 100%. The current is reduced upon acidification of the external 
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bath solution. (B) Inhibition of VvK5.1-mediated normalized currents by 10 mM BaCl (n=11 

± SD) or TEA (n=5 ± SD) in an external solution of 10 mM K
+
 at pH 7.4. Inhibition is shown 

as the percentage of control currents (n=16). 

 

Fig 4. VvK5.1 transcript levels in grapevine organs and during berry development. RT-qPCR 

was performed on first-strand cDNAs synthesized from total RNAs of different organs. (A) 

VvK5.1 transcript levels in roots from rooted canes, or in vegetative organs (stems, leaves, 

tendrils and stalks) collected at fruit set (15 days after flowering), flowers or in berries at 3 

different developmental stages (fruit set, veraison, and ripeness). Vegetative organs, flowers 

and berries were collected from grapevines grown in open field conditions under standard 

irrigation. (B) VvK5.1 transcript levels of berries collected at different developmental stages 

in field conditions. The fruit set, veraison, and ripening phases are indicated. Note that 

VvK5.1 expression suddenly and strongly increased in grape berries at veraison. The mean 

values and SE of two biological replicates are presented.  

 

Fig 5. In situ localization of VvK5.1 transcripts in flowers. Longitudinal sections of flowers 

were hybridized with a VvK5.1 RNA sense probe as negative control (left column: A, D) or 

antisense probe (two right columns: B, C, E, F). Sections hybridized with the sense probe did 

not show any signal. Sections hybridized with the VvK5.1 antisense probe showed positive 

blue signals in the stigmas, the transmitting track (B and C), and the ovule (E, F). In the 

ovule, blue signal was observed in the nucellus (F). Nu, nucellus; O, ovary; Ov, ovule; S, 

stigmas; St, style; Tt, transmitting track. 

 

Fig. 6. In situ localization of VvK5.1 transcripts in berries during ripeness. Longitudinal and 

equatorial sections were hybridized with the VvK5.1 RNA sense probe as negative control 

(left column: A, D, G, J) or VvK5.1 RNA antisense probe (right column: B, C, E, F, H, I, K, 

L). Sections probed with sense probes did not show any significant signal. Sections 

hybridized with RNA antisense probe showed positive blue signals in ripening berries. 

Intense blue signals were specifically found in the phloem (B, C, E), perivascular cells (B, C, 

E), and to a lesser extent in the epicarp cells (F). DAPI staining was performed after in situ 

hybridization of a longitudinal section revealed a vascular bundle (H), in order to identify 

companion cells via their nucleus and to distinguish them from enucleated phloem sieve 

tubes. The section stained with DAPI was observed by fluorescence microscopy to localize 

cell nuclei (I), and by DIC microscopy to visualize the cell walls (K). A zoomed composite 
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picture (L) merging H, I and K was constructed using Image J to help localize phloem 

companion cells (CC) and enucleated sieve tubes (ST). As an example, the locations of two 

similar companion cells (CC) are indicated by double arrows in H, I, K and L. Note that these 

two cells display a positive blue signal after in situ hybridization (H and L).  

CC, companion cells; CVB, central vascular bundle; Ep, epicarp; VB, vascular bundle; Mes, 

mesocarp; Ph, phloem; PVC, perivascular cells; ST, sieve tubes; Xy, xylem. 

 

Fig. 7. In situ localization of VvK5.1 transcripts in roots of rooted canes. Equatorial sections 

were hybridized with VvK5.1 RNA sense probe as negative control (left column: A, D, G) or 

with VvK5.1 RNA sense probe (two right columns: B, C, E, F, H, I). Sections hybridized with 

VvK5.1 sense probe did not show any blue staining at the different magnifications (A, D, G). 

In contrast, positive signals were observed in the stele with VvK5.1 RNA antisense probe (B, 

C, E, H). The blue signals were located in the phloem in the small (SC) and large parenchyma 

cells (LPC) of the pericycle (C, E, H). A weaker signal was also detectable in the phloem. 

Panels E and H were observed by fluorescence microscopy after DAPI staining to visualize 

nuclei and the different cell density of the pericycle (F, I). Rh, rhizodermis; C, cortex; En, 

endoderm; P, Pericycle; PM, medullary parenchyma; Xy, xylem; Ph, phloem; SC, small cells; 

LPC, Large parenchyma cells.  

 

Fig. 8. Lateral Root primordium-specific activity of the VvK5.1 promoter 

Tissue-specific activity of the VvK5.1 promoter was investigated by histochemical analysis of 

GUS staining (blue colour) in transgenic Arabidopsis seedlings expressing GUS under control 

of the VvK5.1 promoter region. This activity was observed in 6-day (A) and 10-day 

(B,C,D,E,F and G) old seedlings grown in vitro in a growth chamber (16 h-light photoperiod, 

140 μM photons.m
−2

.s
−1

, 21°C and 70% humidity during both light and darkness) on half-

strength Murashige and Skoog (MS/2) medium, supplemented with hygromycin (25 mg.L
−1

). 

(A) A full view of the whole plantlet. Lateral primordia locations are indicated by arrows. (B-

G) A coordinated cell division program produces the root primordium, shown from the 2-cell 

stage (B) to the stage where the lateral root primordium emerges at the root surface (G). Note 

that in each stage of the cell division program, an intense blue colour is present within the 

most central cells of the primordium, which are known to undergo further cell divisions. In 

the stages where the primordium emerges at the root surface (F and G), the most intense blue 

colour is located within the root apex and the root cap. 
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