Integrating isolated trees improves the agricultural performance assessment of smallholder farming systems at landscape scale in the Senegalese peanut basin

louise.leroux@cirad.fr
https://louise.leroux.igeo.fr/
« Make our planet treed again » (Montpellier Declaration, World Agroforestry Congress, 2019)
Agroforestry parklands in face of SDG’s

SUSTAINABILITY EQUITY RESILIENCE
An increasing scientific interest in understanding effects of parklands on soil and crop productivity

Cumulative number of publications: trees vs soil fertility and crop yields in West Africa

Félix et al., Agron Sustain Dev, 2018
Background & objectives

An increasing scientific interest in understanding effects of parklands on soil and crop productivity

Cumulative number of publications: trees vs soil fertility and crop yields in West Africa

Félix et al., Agron Sustain Dev, 2018

SUPPORTING SERVICES
Ex. Increasing of SOC

PROVISIONING SERVICES
Ex. Increasing of cereal yields under F.albida

REGULATING SERVICES
Ex. Microclimate modification
Background & objectives

An increasing scientific interest in understanding effects of parklands on soil and crop productivity

Cumulative number of publications: trees vs soil fertility and crop yields in West Africa

Félix et al., Agron Sustain Dev, 2018

SUPPORTING SERVICES
Ex. Increasing of SOC

PROVISIONING SERVICES
Ex. Increasing of cereal yields under F.albida

REGULATING SERVICES
Ex. Microclimate modification

... But still some challenges

1 – Most of studies are conducted at tree scale

2 – Limited knowledge on the impacts of parklands pattern (composition / structuring) on agricultural performance of farming system at landscape scale

3 – Models (crop process-based or statistical) accounting for trees in agricultural landscape remain scarce
Background & objectives
Background & objectives

At landscape scale:

1 - To evidence the contribution of parklands structuring on the agricultural performance of smallholder farming systems

2 - To estimate crop yields and its spatial heterogeneity

The « old » peanut basin: the Senegalese breadbasket

A agricultural landscape dominated by rainfed crops ...

CLIMATE

- Sudanian climate
- Annual rainfall: 500-650 mm
- Rainy season: July to Oct.

FARMING SYSTEM

- Agriculture dominated by:
 - Millet (on-farm consumption)
 - Groundnut (cash crop)
 - Livestock
- Low input

Ndao et al., 2019
A agricultural landscape dominated by rainfed crops ...

Climate
* Sudanian climate
* Annual rainfall: 500-650 mm
* Rainy season: July to Oct.

Farming system
* Agriculture dominated by:
 - Millet (on-farm consumption)
 - Groundnut (cash crop)
 - Livestock
* Low input

* Leguminous nitrogen-fixing specie
* ‘reverse phenology’
* ‘fertility hotspot’ at tree level
* And various other tree species

Ndao et al., 2019
At the nexus of remote sensing, landscape ecology and statistical modelling

Data

- **Agronomical Survey**
 - Millet – 50 fields
 - 4 classes of landscape
 - 2 cropping seasons

Methods and Outputs

1. Agricultural practices
2. Tree inventory
3. Yield components
At the nexus of remote sensing, landscape ecology and statistical modelling

Data

- Agronomical survey [Millet – 50 fields]
 - 4 classes of landscape
 - 2 cropping seasons

Methods and Outputs

- Linear Mixed model
- 1-TREE effect
METHODS AND OUTPUTS

DATA

AGRONOMICAL SURVEY
- [Millet – 50 fields]
- [4 classes of landscape]
- [2 cropping seasons]

1. Agricultural practices
2. Tree inventory
3. Yield components

MULTI-SOURCES REMOTE SENSING

2017
- Sentinel 2B
- RapidEye
- Planet 2A

2018
- Sentinel 2B
- RapidEye
- Planet 2A

1. Parkland structuring proxies
 * Nbs of trees
 * Woody cover
 * Tree density

2. Vegetation productivity proxies
 * Phenological metrics
 * Vegetation indices
 * Water stress index
 * Nutrient stress index

Linear Mixed model

1-Tree effect

At the nexus of remote sensing, landscape ecology and statistical modelling

Data

Agromonical Survey
- Millet – 50 fields
- 4 classes of landscape
- 2 cropping seasons

1. Agricultural practices
2. Tree inventory
3. Yield components

Multi-Sources Remote Sensing

2017
- Sentinel 2B
- RapidEye
- Planet 2A

2018
- Sentinel 2B
- RapidEye
- Planet 2A

1. Parkland structuring proxies
 - Nbs of trees
 - Woody cover
 - Tree density

2. Vegetation productivity proxies
 - Phenological metrics
 - Vegetation indices
 - Water stress index
 - Nutrient stress index

Methods and Outputs

- Linear Mixed model
 - 1 - Tree effect

- Linear Regression model
 - 2 - Millet yield estimates
 - *Plot level

WITH TREE → *WITHOUT TREE*

At the nexus of remote sensing, landscape ecology and statistical modelling

DATA

AGRONOMICAL SURVEY
- Millet – 50 fields
- 4 classes of landscape
- 2 cropping seasons

1. Agricultural practices
2. Tree inventory
3. Yield components

MULTI-SOURCES REMOTE SENSING

1. Parkland structuring proxies
 *Nbs of trees
 *Woody cover
 *Tree density
2. Vegetation productivity proxies
 *Phenological metrics
 *Vegetation indices
 *Water stress index
 *Nutrient stress index

METHODS AND OUTPUTS

1. Tree effect
 - Linear Mixed model

2. Millet yield estimates
 - Linear Regression model
 - With tree
 - Without tree
 - Gradient Boosting Regression tree model

3. Analysis of yields heterogeneity
 - Soil information
 *Texture
 *Soil Org Carbon/Soil Org Nitrogen
Results ~ from a ground perspective

Trees effect at landscape scale based on ground observations

Type II Anova with Kenward-Roger ddf approximation for small sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type II F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree density</td>
<td>47.50</td>
<td><0.001</td>
</tr>
<tr>
<td>F.Albida density</td>
<td>3.01</td>
<td>0.09</td>
</tr>
<tr>
<td>F.Albida proportion</td>
<td>12.36</td>
<td><0.001</td>
</tr>
<tr>
<td>Tree species richness</td>
<td>31.78</td>
<td><0.001</td>
</tr>
<tr>
<td>kgN.ha⁻¹</td>
<td>12.69</td>
<td><0.001</td>
</tr>
<tr>
<td>Landscape classe</td>
<td>28.47</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Significant effects of parkland on millet yields
Results ~ from a ground perspective

Trees effect at landscape scale based on ground observations

Type II Anova with Kenward-Roger ddf approximation for small sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type II F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree density</td>
<td>47.50</td>
<td><0.001</td>
</tr>
<tr>
<td>F.Albida density</td>
<td>3.01</td>
<td>0.09</td>
</tr>
<tr>
<td>F.Albida proportion</td>
<td>12.36</td>
<td><0.001</td>
</tr>
<tr>
<td>Tree species richness</td>
<td>31.78</td>
<td><0.001</td>
</tr>
<tr>
<td>kgN.ha⁻¹</td>
<td>12.69</td>
<td><0.001</td>
</tr>
<tr>
<td>Landscape classe</td>
<td>28.47</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Landscape class</th>
<th>Tree species richness</th>
<th>F.albida proportion</th>
<th>Millet grain yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class.1</td>
<td>2.5</td>
<td>18</td>
<td>629</td>
</tr>
<tr>
<td>Class.4</td>
<td>4</td>
<td>4</td>
<td>911</td>
</tr>
<tr>
<td>Class.2</td>
<td>5.6</td>
<td>21</td>
<td>827</td>
</tr>
<tr>
<td>Class.3</td>
<td>1.7</td>
<td>60</td>
<td>1334</td>
</tr>
<tr>
<td>p-value</td>
<td>0.02</td>
<td>0.11</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Significant effects of parkland on millet yields

*The well-known ‘fertility hotspot’ of *F.albiba* can be mitigated at landscape scale by the tree species richness and proportion of *F.albida* within fields*
Results ~ from a plot perspective

From satellite information to yield estimates accounting for tree effects

1. Sensitivity to vegetation productivity proxy and tree information

*Integrating parklands structuring information improves millet yield model
*Best model: GDVI x Nb of trees ($R^2 = 0.70$ & $RRMSE = 0.28$)
From satellite information to yield estimates accounting for tree effects

1~Sensitivity to vegetation productivity proxy and tree information

2~Sensitivity to phenological development for GDVI

*Integrating parklands structuring information improves millet yield model
*Best model: GDVI x Nb of trees ($R^2 = 0.70$ & RRMSE = 0.28)
*Panicle initiation phase to mid of the grain filling phase are more sensitive periods
Results ~ from a landscape perspective

Millet yield heterogeneity analysis at landscape scale

*Median millet yield estimates = 730 kg/ha with high variability (coef.var = 61%)
*High spatial heterogeneity, with a clear spatial pattern

* Comparison with the 95th percentile
* 95th.p > 1912 kg/ha
What are drivers of spatial heterogeneity pattern?

Variable importance for the Gradient Boosting Tree

$R^2 = 0.77^{***}$

Yield heterogeneity drivers: soil fertility, parklands structuring & crop health

Parkland structuring information and soil fertility as drivers of spatial heterogeneity
What are drivers of spatial heterogeneity pattern?

Variable Importance for the Gradient Boosting Tree

- Total Organic Nitrogen
- Landscape Woody Cover
- Plot Woody Cover
- Nutrient Stress
- Soil Organic Content
- Crop Cover Heterogeneity
- Water Stress
- Landscape Number of Trees
- Soil Texture

Partial Variable Dependence Plot

Influence of woody cover in surrounding landscape

*Parkland structuring information and soil fertility as drivers of spatial heterogeneity

* Woody cover in field surrounding landscape decreases the YH till a certain level
Take home messages
Findings:

- Using parklands structuring information improves the agricultural performance assessment.
- The apparent benefits of individual trees on crop yield can be challenged at landscape scale with the parklands composition/structuring.
Take home messages

Findings:
- Using parklands structuring information improves the agricultural performance assessment.
- The apparent benefits of individual trees on crop yield can be challenged at landscape scale with the parklands composition/structuring.

What is new?
- To scaling up crop yields estimates in parklands using cutting edge multisources remote sensing images.
- To consider the landscape scale to explore & improve our understanding on the implication of trees on crop productivity.
Findings:
- Using parklands structuring information improves the agricultural performance assessment
- The apparent benefits of individual trees on crop yield can be challenged at landscape scale with the parklands composition/structuring

What is new?
- To scaling up crop yields estimates in parklands using cutting edge multisources remote sensing images
- To consider the landscape scale to explore & improve our understanding on the implication of trees on crop productivity

Next steps?
- To analyze the intra-field variability
- To map tree species to strenghthen the analysis of parklands impacts at landscape scale
- To combine with socio-economic information to consider tradeoffs and synergies between goods & services
THANKS FOR YOUR ATTENTION

QUESTIONS-REMARKS: louise.leroux@cirad.fr - https://louise.leroux.igeo.fr/

Integrating isolated trees improves the agricultural performance assessment of smallholder farming systems at landscape scale in the Senegalese peanut basin
Results ~ from a landscape perspective

Millet yield heterogeneity analysis at landscape scale

*Median estimated millet yield for 2018 = 730 kg/ha with high variability (coef.var = 61%)