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I 

The use of enzymes in organic chemistry has become a vast 

multidisciplinary field; its merits in terms of practical applications or 

fundamental approaches have become increasingly clear over the years. 

Biochemists have long known how to describe biological reactions 

based on in vitro reactions carried out under near-natural conditions, but 

although orthodox biochemistry is of fundamental importance for 

understanding biological environments, we cannot ignore non-conformists 

who have opened up the way for bio-organic chemistry and, especially for 

what concerns us most, those who are developing lipid biotechnology which, 

in practical terms, means providing industrialists with effective and ingenious 

bioprocesses. 

The basic concept developed by unconventional chemists or 

biochemists is based on the fact that, in theory, there is nothing to prevent 

our considering enzymes as simple catalysts that are appropriate for 

numerous reactions that may seem somewhat exotic to traditional 

biochemists but are perfectly routine for bio-organic chemists. Such 

catalysts can offer numerous advantages, particularly specificity, 

regioselectivity, enantioselectivity, and the ability to catalyse inverse 

reactions of reference biological reactions and to catalyse reactions between 

molecules that are different from reference molecules. 
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In this article, "enzyme" signifies enzymes in their sui generis state and 

those attached to artificial or natural supports; by natural supports we mean 

the cells themselves, devitalized or not, growing or not, and dried plant latex 

powders, such as those from Garica papaya (papain) and from Hevea 

brasiliensis, bromelain from ananas sativus, lipases from defatted castor 

beans, or from pepper corns, or soybean lipoxygenase, or almond 

betaglucosidase, etc. 

Although we cannot lay claim here to an exhaustive review of all 

aspects of lipid biotechnology, we shall endeavour to cover the basics of 

what is being done nowadays or what may be done in the future, with, 

wherever possible, concrete examples involving lauric oils at all levels of 

major industrial operations: oil milling, refining, processing and by-product 

valorization. 

OIL MILLING 

The profession has always endeavoured to bring about the best 

conditions for oil extraction from seeds and pulps. Mechanical processes 

alone do not result in total extraction and the process is very often completed 

with hexane, especially when seeds are involved. For several years, 

attempts have been made to determine why oil was systematically left in 

seeds and pulps. It is now known that despite thermomechanical treatment 

of oil-bearing tissues, not all the cells burst; heat treatment, such as 

sterilization in the case of palm oil, is designed, alongside lipase 

denaturation, to sterilize and detach palm kernels from the shells and help in 

dislocating the lignocellulosic and pectic structure that maintains the 

cohesion between oil-bearing cells; pressure is then applied to burst the 

weakened cells and expel the oil. 

Many researchers then imagined that, starting from the premise that 

both the structure ensuring cohesion between cells and the cell walls 

themselves could be digested enzymatically, assisting conventional 
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extraction with an enzyme or a combination of appropriate enzymes should 

help to improve the extraction rate significantly. 

Studies have now been going on for many years with cellulases, 

hemicellulases, pectinases, proteases and amylases, etc. 

We would quote for example the work by LANZANI et al. (1) on 

rapeseed, sunflower and groundnut, FULLBROOK (2) on rapeseed and 

soybean, CINTRA et al. (3) on coconut oil, BUENROSTRO and LOPEZ­

MANGUIA (4) on avocado, BOUVIER and ENTRESSANGLES (5) on palm 

oil, and lastly a great deal of work on olive, mostly by Italian and Spanish 

teams, notably LEONE et al. (6) and MARTINEZ-SUAREZ (7). 

Enzyme-assisted extraction could come into its own if it were 

integrated into processes derived from a profound rethink of conventional oil 

mill processes; such a rethink is now prompted by various socio-economic 

parameters. 

• Improving quality (risk of aflatoxin and polycyclic aromatic hydrocarbons 

in coconut products). 

• Reducing production costs, for example by producing virgin coconut oil, 

which has a typical pleasing aroma and does not need refining. This 

gives a flavour oil, such as the walnut and olive oils produced by the 

European Union, or the red and virgin palm oils from West Africa 

(smallholder processes) or the red palm oil produced by UNITATA in 

Malaysia as a new health food rich in carotenes, tocopherols and 

tocotrienols. 

• Environmental conservation and reducing the risks involved in the use 

of solvents such as hexane; many technologists are now thinking about 

abandoning traditional pressing and hexane extraction. 
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The products obtained would be of higher quality and cheaper to 

refine, and by-products such as presscake would be more satisfactory for 

animal and human consumption. 

BHATTACHARYYA (8) is working in this field to obtain rice bran oil; 

also worth mentioning is the work by CHRISTENSEN (9) for rapeseed oil 

obtained without pressing or hexane extraction, but by fine grinding, resulting 

in a type of emulsion, followed by enzymatic treatment, then separation by 

centrifugation and drying; he has obtained 380 kg of oil, 450 kg of meal and 

170 kg of molasses from 1 , 000 kg of seeds. 

Lastly, as regards lauric oils in particular, we would mention the work 

by BERTRAND (10) on assisted extraction of coconut oil. This researcher 

has demonstrated that macerating the finely ground meat of ripe coconuts 

triggers the expression of an endogenous mannanase that destroys the 

mannan rich hemicellulosic tissue, thereby enabling oil extraction from the 

weakened oil-bearing cells. 

The optimum conditions developed in the laboratory are as follows: 

- maceration time: 1 to 2 hours, 

- temperature: 30 to 50°C, 

- pH: 5, 

- water:meat ratio = 3 weight for weight, 

- energetic stirring. 

Observations under the electron microscope clearly revealed the 

effectiveness of the system (figures 1 and 2). 

Figures 3, 4 and 5 show the structure of the cells, which are tubular 

with pentagonal or hexagonal cross-sections. Aleurone grains (storage 

proteins) can be seen dispersed in the aqueous phase and the oil globules. 
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a) Cross section before maceration 

b) Longitudinal section before maceration 

Figure 1: Scanning electron microscope image of coconut meat. 
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a) Cross section after maceration 

b) Longitudinal section after maceration 

Figure 2: Scanning electron microscope image of coconut meat 



Figure 3: Light microscope image of a cross section of ripe coconut meat 
after double staining (x 160). 



Figure 4: Light microscope image of a longitudinal section of ripe 
coconut meat after double staining (x 63). 



Figure 5: Magnified image of an aleurone grain showing proteic 
crystallite and globular proteins (x 500). 
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Pressure applied directly to grated coconut meat with a laboratory 

press gives an extraction rate of 40°/o of the total oil; after maceration the 

figure increases to 60°/o. These results suggest that colloidal grinding and 

maceration should result in high oil yields by simple processing in a three­

phase centrifuge. This would be a new version of the wet process. 

The result would be virgin coconut oil, an edible meal and a sugar­

laden aqueous phase with many potential uses. 

Unfortunately, it has not been possible to advance to a pilot stage in 

the field, for lack of resources and an interested industrial partner. 

French industrialists are apparently prepared to get involved, since 

flavour-rich coconut products could tempt European Union consumers. 

GIRAD could play a major role in a wide-ranging operation to design suitable 

processes that give products with high nutritional and sensorial quality. 

Enzyme-assisted extraction should not be seen as a pretext for setting 

the wet process against the dry process, they should be considered 

complementary, but it has to be admitted that operations upstream of the dry 

process very often leave much to be desired and need to be considerably 

improved to overcome, once and for all, those formidable pollutants 

aflatoxins and polycyclic aromatic hydrocarbons, whose total elimination by 

refining has to be guaranteed. 

REFINING 

Let us now look at what bioprocesses offer in terms of refining; 

remember first of all that chemical refining involves four traditional stages: 

- mucilage removal or degumming, based on the principle of 

phospholipid elimination by water. 

- neutralization, to remove free fatty acids using soda. 

- bleaching with earth and/or plant or animal black. 

- deodorization by steam treatment. 
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Bioprocesses can be useful at various levels in refining. 

For degumming, phospholipids can be hydrolysed enzymatically with a 

phospholipase (11 ). 

For neutralization, partial glycerides can be re-esterified by free fatty 

acids using a lipase in a non-aqueous medium. 

In some cases, it is even possible to undertake bleaching if the colour 

is caused by chlorophyll, which can be hydrolysed with a chlorophyllase, 

releasing the coloured, water-soluble chlorophyllide fragment and the 

colourless, fat-soluble phytol fragment. This process is being tested on 

rapeseed oils, which are often rich in chlorophyllous pigments (12). 

For lauric oils, which have a low phospholipid content and no 

chlorophyllous pigments, only enzymatic deacidification can be considered in 

the event of hyperacidity; i.e. for free fatty acid contents of over 5°/o. 

Even today, crude copra oils with more than 5o/o acidity are 

unfortunately still frequent, due to poor copra preparation and storage 

conditions. 

Physical refining is then virtually impossible; with chemical refining, 

losses are considerable and naturally higher than initial acidity. With palm 

kernel oils, high acidity batches are rarer, but they are not rare in Africa, 

which is why the laboratory has looked particularly closely at this question 

(13, 14, 15, 16); for example, we processed a batch of palm kernel oil with 

8% acidity using an industrial lipase fixed to a support: lipozyme 

manufactured by NOVO INDUSTRI A/S. 

An oil with 1.5°/o acidity was obtained after 15 hours' contact with 

stirring, under the conditions shown in figure 6. The oil was filtered to 

separate off the catalyst and could be refined without any difficulty, either 

chemically or physically. 



Pressure: 20 mm Hg 

Lipozyme amount: 5.5°/o 

Temperature: 60
°
C 

Water activity: aw
= 0.43 

Time: 15 h 

Figure 6: 

Optimal conditions of neutralization 

with lipozyme IM20. 
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It would be worth testing lipozyme substitution with dried and ground 

Garica papaya latex (crude papain), which can easily be prepared at the 

lauric oil production site, to reduce production costs. It should be noted that 

in such a case, using bioprocesses could also induce papaya development, 

thereby generating new activities. 

PROCESSING 

a - lnteresterification 

One potentially very advantageous operation, given its many 

applications, is interesterification. 

This operation is very common; it modifies the rheological properties of 

a given fat or oil, or blends. The process is used to obtain particular 

properties (softness, plasticity, hardness, spreadability straight from the 

fridge, etc.) for use in pastries, breads, ice creams, soft margarines, 

margarines, vanaspatis, ghees, etc. 

It is often carried out by a chemical reaction at a temperature of around 

100°c with a basic catalyst such as sodium methylate; in principle, the 

reaction is very rapid and complete in 30 minutes. It is essential that the 

reaction take place on refined substrates, otherwise the catalyst is rapidly 

poisoned by the impurities. 

Chemical interesterification is characterized by totally random 

redistribution of fatty acids on the three positions of the glycerol. 

1-3 regioselective interesterification (1-3 RI) catalysed by a 1-3 

regioselective lipase limits random distribution to positions 1 and 3 without 

affecting position 2. 

This technique, which has been extensively studied in the laboratory, 

has already been described in numerous publications (17, 18, 19, 20). 
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The bioprocess offers many advantages over the chemical process. 

1- The composition of fatty acids in position 2 remains unchanged, and 

this position in the plant kingdom is usually rich in monounsaturated 

and polyunsaturated fatty acids (essential fatty acids); it is therefore of 

nutritional interest to keep them in this position, since the 2-

monoglycerides derived from pancreatic digestion are the main 

conveyors of fatty acids through the wall of the intestines. 

2- The formation of triglycerides with a high melting point generally seen 

in the chemical process is avoided or considerably reduced in the 

case of 1-3 RI. 

3- As enzymatic reactions are slower, reaction kinetics are more 

effectively controlled. The reaction can be halted at any intermediate 

stage before total reaction, providing users with a wide range of 

products with different rheological properties. 

4- Whilst chemical reactions require refined or anhydrous substrates, this 

is no longer necessary with 1-3 RI. 

5- 1-3 RI requires relatively low temperatures: 35 to 60°C. Gains should 

therefore be made in quality. 

6- Working on unrefined or only slightly refined substrates at a relatively 

low temperature makes for substantial energy savings. 

In our studies on lauric oils, we tested 1-3 RI on two initial formulations: 

70:30 palm oil:coconut oil 

and 30:70 palm stearin:palm kernel oil. 
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1-3 RI was carried out with lipozyme as the catalyst, for reaction times 

ranging from 30 minutes to 4% hours. Figures 7 and 8 show how the solid 

content varied according to the temperature as the reaction proceeded. The 

following results were seen: 

• The interesterified products had a much lower solid content than the 

mixture prior to the reaction. 

• The solid content of the interesterified products varied depending on the 

time spent in the reactor; it dropped steadily in line with the reaction time. 

• At 37°C the solid content of the interesterified products fluctuated 

between O and 2°10; in particular, it was nil after one hour's reaction for the 

product from the 70:30 palm oil:coconut oil mixture. For the product from 

the 30:70 palm stearin:palm kernel oil mixture, the solid content fell to 3 

to 2°10 in 30 minutes and reached 0.4% after 4% hours' reaction. 

A comparison can be made with a hard margarine fat base and a soft 

margarine base. The solid contents were compared at 20, 30 and 37°C; the 

product from the 70:30 palm oil:coconut oil mixture after 4 hours reaction, 

could be likened to a soft margarine. 

The 30:70 palm stearin:palm kernel oil mixture gave a hard margarine 

base after 4% hours' reaction. 

It is therefore easy to see the merits of this bioprocess, which could 

also be carried out with papain as the catalyst. A joint study with BIOTECH 

(University of Los Banos - Philippines) is under way; it is hoped that a cocoa 

butter equivalent can be obtained with this process, by reacting coconut oil 

with pili (Canarium ovatum) oil using papain as the catalyst. 
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Figure 8: 1-3 Regioselective interesterification (1-3 RI) of palmstearin 
and palmkernel oil (30/70) 
SFC curves as a function of reaction time. 
Co1nparison to a firm pastry margarine (----). 
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b - Medium chain triglycerides (MCT) 

Coconut oils can contain up to 20°/o short chain fatty acids; the 

TAC x BAO variety being studied by the PCA in Manila contains 0.7% C6, 

11.5o/o C8 and 8.5°/o C10. 

MCT are medical specialities used in neonatal units for the nutrition of 

premature babies, and in geriatrics. 

MCT are obtained by a chemical process involving hydrolysis of the 

coconut oil, separation of the C6 to C10 fraction by distillation, re-esterification 

with the glycerol and, lastly, purification. 

There are plans to test a bioprocess with the Chemistry Faculty of the 

University Los Barios, using papain again. 

c - Presscake enrichment 

A joint study has been undertaken by INRA, ORSTOM, CIRAD and 

the Mexico City Independent University, consisting in enriching copra 

presscake with proteins and probiotics (21 ) .  

Of a hundred or so strains of filamentous fungi selected, a dozen were 

capable of giving presscake with a protein content of around 35°/o. 

The Penicillum italicum strain is economically advantageous, since for 

a tonne of dry matter containing 20 to 25°/o proteins, the culture of this fungus 

produces 830 kg of a product containing 34°/o proteins in terms of dry weight. 

Moreover, the product was found to have a greater probiotic effect than 

a commercial probiotic widely used in cattle feeds. 

In the case of presscake contaminated by aflatoxin and polycyclic 

aromatic hydrocarbons, it would obviously be ideal if the microorganism 

could destroy these two dangerous pollutants 

Depending on the strains chosen, feeds can be prepared for cattle, 

sheep or poultry. 
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Contacts made with BIOTECH at the University of Los Barios have 

revealed skills in this field. Now seems to be the right time to implement a 

joint study in the true environment. Palm kernel cake can probably be 

enriched in the same way. 

CONCLUSION 

The few examples given in this account show that considerable 

technological progress can be made in the !auric oils field, in terms of 

product quality, elaboration of new products, and lower production costs. 

Bioprocesses are too often considered to be over-sophisticated 

techniques and more costly than traditional processes. 

In fact, the availability of very crude plant materials, papain being an 

excellent example, means that lauric oil producing countries have new 

technologies within their reach that could develop or strengthen other 

production activities at the same time, such as papaya cultivation with 

papain, or pineapple with bromelain, etc. 

In this way, the economies of the sectors involved would receive a 

boost. 
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