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ABSTRACT 17 

Coffee leaf rust is a polycyclic disease that causes severe epidemics impacting yield over 18 

several years. For this reason, since the 1960s, more than 20 models have been developed to 19 

predict different indicators of the disease's development and help manage it. In existing models, 20 

standardized periods of influence of the meteorological predictors of the disease are determined a 21 

priori, based on strong assumptions. However, the appearance of a symptom or sign can be 22 

influenced by complex combinations of meteorological variables acting at different times and for 23 
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different durations. In our study, we monitored a total of 5400 coffee leaves during a year and a 24 

half, in different agroforestry systems, in order to detect the onset dates of the disease symptoms, 25 

such as lesion emergence, and signs, such as sporulation and infectious area increase. In these 26 

agroforestry systems, we also recorded microclimate. We statistically identified the complex 27 

combinations of microclimatic variables responsible for changes in lesion status to construct 28 

three models predicting lesion emergence probability, lesion sporulation probability and growth 29 

of its infectious area. Our method allowed the identification of different microclimatic variables 30 

that fit well with the knowledge about the coffee leaf rust biology. Minimum air temperature 31 

from 20 to 18 days before a lesion emergence explained the status change from healthy to 32 

emergence of visible lesion, possibly because the short germination phase is stimulated by low 33 

temperatures. We also found a unimodal effect of rainfall over a period of 10 days, 33 days 34 

before lesion emergence, with a maximum at 10 mm. Below this threshold, uredospore dispersal 35 

is efficient, increasing the lesion appearance probability; above this threshold, wash-off effects on 36 

uredospores probably occurs, decreasing the probability of lesion emergence. In addition, we 37 

identified microclimatic variables whose influence on coffee leaf rust had not been described 38 

before. These variables are likely to be involved in the internal development phases of the disease 39 

in the coffee leaves: (1) unimodal effects of maximum air temperature in different periods on 40 

sporulation and infectious area growth (2) positive and unimodal effects of rainfall in different 41 

periods on sporulation and (3) a negative effect of leaf thermal amplitude in different periods on 42 

lesion emergence, sporulation and infectious area growth. Although these models do not provide 43 

predictors of the level of disease attack, such as incidence, they provide valuable information for 44 

warning systems and for mechanistic model development. These models could also be used to 45 

forecast risks of infection, sporulation and infectious area growth and help optimize treatment 46 

recommendations. 47 
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1. Introduction 52 

The anticipation of disease outbreaks requires knowledge of the drivers that trigger them. This 53 

knowledge can then be used to develop decision-support tools to assist farmers and thus reduce 54 

risks (Krause and Massie, 1975). Forecasting the risk of an epidemic is even more important if 55 

this epidemic leads to economic and social crises due to multiyear repercussions, as in the case of 56 

perennial crops (Cerda et al., 2017) and if producers are highly vulnerable. This was the case in 57 

Central America in 2012 when a severe epidemic of coffee leaf rust caused the loss of about 20% 58 

of Arabica coffee production and resulted in the declaration of a state of emergency in three 59 

countries in the region (Avelino et al., 2015). In response to this crisis, immediate measures for 60 

damage assessment, plantation rehabilitation and stakeholder training were implemented in 2013 61 

as part of a regional project led by the Instituto Interamericano de Cooperación para la 62 

Agricultura (IICA) and Programa Cooperativo Regional para el Desarrollo Tecnológico y 63 

Modernización de la Caficultura (PROMECAFE) in collaboration with coffee-related institutes in 64 

the region. This project was financially supported by the European Union from 2017 through the 65 

Central American Program for the Integral Management of Coffee Rust (PROCAGICA), having 66 

among its objectives the development of an early warning system for the region based on 67 

surveillance and coffee leaf rust forecasting. Despite the influence of economic and social factors 68 

on plant disease outbreaks (Almeida, 2018), meteorological anomalies were considered as one of 69 

the main triggering factors of the 2012 coffee leaf rust epidemic (Avelino et al., 2015). However, 70 
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predicting disease development remains a challenge, even when focusing on meteorological 71 

variables (Cunniffe et al., 2015), and different modeling approaches can be used to develop 72 

predictive models. These approaches are often grouped into three categories: statistical models, 73 

mechanistic models and machine learning models (Siettos and Russo, 2013). The choice of an 74 

approach depends on the purpose of the model, the knowledge available on the disease and 75 

disease detection difficulties.  76 

Statistical models depend on database analysis to describe the relationships between 77 

environmental conditions and the development of the disease characterized by symptoms, visible 78 

disease effects on the plant such as a chlorosis, and signs, physical evidence of the pathogen such 79 

as spores. These models thus have a domain of definition and are not easily generalizable. 80 

Mechanistic models have an explanatory purpose since they use equations describing the 81 

different stages of the disease's development (de Wolf and Isard, 2007). These models are 82 

therefore generalizable but require a significant amount of knowledge on the biology of the 83 

pathogen and substantial work for parameterization purposes. Finally, machine learning models 84 

make it possible to take a larger number of variables and their combinations into account for 85 

prediction but must be developed based on a learning process with a very large database. Most 86 

machine learning algorithms are considered as so-called "black box" systems, too complex to 87 

provide a biological explanation of the effects of predictors (Rudin 2019) and often limiting the 88 

user's ability to understand the results obtained (Krause and Massie, 1975).  89 

Another important difference between the mechanistic approach and the other approaches for 90 

developing weather-based models is that statistical models and machine learning models require 91 

assumptions on the periods of action of these meteorological variables. In the field, monitoring 92 

the development of plant diseases is based on the observation of symptoms and signs and the 93 

calculation of indicators such as incidence and severity, which depend on both the development 94 
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of the disease and its host (Ferrandino, 2008). These variables are the result of several phases of 95 

the pathogen's development cycle. For example, for a coffee rust lesion to appear on a leaf, the 96 

fungus has to complete uredospore dispersal, deposition on the upper surface of the leaf, 97 

migration to the under surface, germination, germinative tube growth, apressorium formation to 98 

enter the leaf via a stomata and tissue colonization. Since these phases have varying durations 99 

and occur at different times, the influencing meteorological variables should affect disease at 100 

different times and during varying durations. This is even truer when considering disease 101 

descriptors such as incidence and severity that include the host plant dynamic, itself under the 102 

influence of meteorological variables.  103 

In the case of coffee leaf rust, the first proposed models were multiple linear regressions 104 

between the average of minimum and maximum temperatures over incubation times (Kushalappa 105 

and Martins, 1980) or disease latency (Kushalappa and Martins, 1980; Santacreo et al., 1983; 106 

Tronconi et al., 1995). Because these experiments were based on inoculations, it might be logical 107 

not to consider variables such as rain or humidity driving uredospore dispersal, deposition and 108 

germination phases. These equations were simple but different from one site to another, 109 

indicating that they were not generalizable. These equations also considered linear effects of 110 

temperature, while controlled studies had already shown several unimodal effects of temperature 111 

on disease development (Kushalappa et al., 1983; Nutman et al., 1963). Subsequently, the models 112 

built incorporated a wide range of meteorological variables, sometimes comparing the influence 113 

of several periods (Alfonsi et al., 1974; Kushalappa, 1981; Pinto et al., 2002) but not carrying out 114 

a complete exploration of all the possible periods (Table 1). However, these studies had revealed 115 

the importance of choosing the periods of influence of meteorological variables. In addition, 116 

variables characterizing the host and quantifying the inoculum stock were considered as a way 117 

for model improvement. Further, to improve the models, incidence curves were linearized in 118 
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order to estimate the apparent infection rate of coffee leaf rust and then study the influence of 119 

weather conditions on this rate (Pedro, 1983). In those years, the most advanced model was built 120 

by Kushalappa et al. (1983, 1984). These authors developed a semi-mechanistic model in which 121 

the necessary conditions for the development of monocyclic processes were quantified and 122 

summarized in a single synthetic variable to explain the growth rate of the disease. The final 123 

modeling step was still a regression with unimodal effects of the dependent synthetic variable on 124 

the growth rate. The models developed produced recommendations regarding the appropriate 125 

dates of fungicide sprays (Kushalappa et al., 1986). The implementation of this modeling 126 

approach in Mexico led to different models from those obtained in Brazil, indicating once again 127 

their instability (Holguín, 1987).  128 

Since 1991, most studies have focused on predicting the incidence of the disease or the 129 

infection risk rather than variables reflecting the different phases of rust development (Table 1). 130 

Since the 2000s, most models have been generated using decision trees (Avelino et al., 2006) and 131 

machine learning methods such as the support vector machine (Luaces et al., 2010), neural 132 

networks (Pinto et al., 2002), decision trees (Meira et al., 2008, 2009), fuzzy decision trees 133 

(Cintra et al., 2011) and Bayesian networks (Perez-Ariza et al., 2012). These modeling 134 

approaches have enabled inclusion of a larger number of variables (Table 1), particularly 135 

cropping practices such as fertilization and fungicide sprays (Corrales et al., 2016, 2015). 136 

However, in all cases, the periods during which the meteorological variables were considered to 137 

explain the disease were defined a priori, based on strong assumptions: monthly averages of 138 

meteorological variables were chosen that did not reflect the short duration of certain stages of 139 

the fungus’s development. One recent study revisited mechanistic approaches, inspired by 140 

survival analysis through calculation of instantaneous risk averages as a function of 141 

meteorological variables (Bebber et al., 2016). Another recent study focusing on coffee leaf rust 142 
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prediction used the same concept of linearization of coffee leaf rust incidence used by 143 

Kushalappa in 1981 and Pedro in 1983 to study the effect of three possible periods of influence of 144 

meteorological variables (Hinnah et al., 2018) (Table 1).  145 

We propose that improving the accuracy of prediction models does not necessarily require 146 

taking more variables into account but rather identifying the precise combinations of 147 

meteorological variables that cause onset of symptoms and signs. This approach would help us 148 

arrive at a model with a balance between the simplicity to facilitate its use and the complexity to 149 

provide sufficient precision. For coffee-based agroforestry systems, another point of 150 

improvement in prediction accuracy is to understand how shade modifies the microclimatic 151 

drivers of coffee leaf rust development, as meteorological variables are monitored by stations in 152 

full sunlight. Few of the studies cited have considered the effect of shading in their model 153 

(Avelino et al., 2006; Corrales et al., 2016, 2015; de Moraes et al., 1976). This is certainly due to 154 

the major modernization of coffee plantations after the 1970s that led to the conversion of many 155 

diversified agroforestry systems into monoculture systems, as in Brazil (Jha et al., 2014). 156 

However, agroforestry is considered as a necessary practice in the future to cope with climate 157 

change: it buffers extreme temperatures and reduces soil moisture fluctuations, for example (Lin 158 

et al., 2007). Better understanding shade effects on microclimate could be useful to select 159 

appropriate shade trees that help cope with climate change and regulate coffee leaf rust, if the 160 

critical microclimatic variables and periods of influence of the microclimate were determined. 161 

In our study, we tried to determine, without using a priori assumptions, which combinations 162 

of microclimatic variables are responsible for the onset of coffee leaf rust symptoms and signs. 163 

We applied a method developed in Bugaud et al. (2015), inspired by the Window Pane approach 164 

introduced by Coakley and Line (1982), and already used to find the microclimatic periods that 165 

influence abundance of banana thrips (Carval et al., 2015), pineapple acidity (Dorey et al., 2016) 166 
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or the onset of symptoms and signs of cocoa moniliasis (Leandro-Muñoz et al., 2017). These 167 

identified microclimatic variables were used to build three models: risks of lesion occurrence, 168 

sporulation and infectious area growth. The separation into several models had the benefit of 169 

simplifying the interpretation of the microclimatic combinations identified as well as predicting 170 

specific risks that imply different recommendations in terms of chemical control. 171 

 172 

2. Materials and methods 173 

2.1. Field locations 174 

To observe a large range of microclimatic conditions, the trial was set up in coffee plots 175 

located in experimental sites distributed in a gradient of three altitudes over a 15-month period, 176 

from May 2017 to July 2018 The first site was the long-term trial of coffee-based agroforestry 177 

systems established by the Tropical Agricultural Research and Higher Education Center (CATIE, 178 

Centro Agronómico Tropical de Investigación y Enseñanza) in Turrialba, Costa Rica (9º53´44´´ 179 

latitude north, 83º40´7´´ longitude west) at an altitude of 600 m.a.s.l. The second site was a 180 

coffee-based agroforestry plot established by the Costa Rican Coffee Institute (ICAFE, Instituto 181 

del Café de Costa Rica) in Barva de Heredia, Costa Rica (10º2´9´´ latitude north, 84º8´11´´ 182 

longitude west) at an altitude of 1180 m.a.s.l. The third site was located in the plantation of a 183 

coffee grower living in Aserrí (9º50´54´´ latitude north, 84º6´0´´ longitude west), at an altitude of 184 

1500 m.a.s.l., that trial beginning in September 2017, four months later than the others. 185 

 186 

2.2. Experimental design  187 
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The trial was carried out on four plots: two in Turrialba, one in Heredia and one in Aserrí. The 188 

two selected plots in Turrialba had the same agronomic management except for the agroforestry 189 

practice, which offered different microclimatic conditions: one exposed to full sunlight; the other, 190 

in an agroforestry system based on poró (Erythrina poeppigiana). The plots located in Heredia 191 

and Aserrí were also agroforestry systems, based on E. poeppigiana in Heredia and E. 192 

poeppigiana combined with trees of the citrus family in Aserrí. In each plot, the coffee variety 193 

planted was susceptible to most rust races and was managed without fungicides to monitor 194 

natural behavior of coffee leaf rust. Each plot consisted of a minimum of six rows of coffee 195 

plants, with 2 m between rows and a dozen coffee plants per row, with 1-m spacing. To avoid a 196 

potential border effect, we selected the six central plants of the three central rows of each plot to 197 

monitor the coffee leaf rust, totaling 18 coffee plants per plot. In January 2018, in the plots 198 

located in Turrialba and Heredia, most of the selected plants were exhausted and deteriorated by 199 

coffee leaf rust so were replaced by new ones. Since they were selected later, in September 2017, 200 

the coffee plants of the plot in Aserrí were conserved for the 2018 monitoring. As shown in Fig. 201 

1, the Heredia and Aserrí sites, under Pacific influence, faced a dry season from January to April 202 

2018, while Turrialba site, under Caribbean influence, did not experience a significant dry season 203 

during the experiment. On average, higher elevation sites were those where the lowest daily 204 

minimum and maximum temperatures were measured.  205 

 206 

2.3. Field monitoring of coffee leaf rust symptoms and signs and inoculum stock assessment 207 

Every month, three branches per coffee plant (one branch in each of three coffee plant strata) 208 

were selected and, from each branch, a node of young healthy leaves was labeled. This helped us 209 

renew the stock of healthy leaves periodically. These selected pairs of leaves were then observed 210 
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weekly over a two-month period and photographed weekly from the onset of the first visible 211 

symptom of the disease. The photographs were then analyzed by image processing with the 212 

ImageJ software (Schindelin et al., 2015) (Fig. 2). Thanks to image processing analysis, we were 213 

able to measure the lesion surfaces (symptoms and signs), from a size of 0.001 cm². This method 214 

allowed a nondestructive monitoring of lesions over time and thus to record the history of each 215 

lesion: the week it was detected, the week the first uredospores appeared, the size of its infectious 216 

area each week. Finally, focusing on lesions rather than measuring indicators such as incidence 217 

and severity allowed us to avoid the effects of host growth dynamics on the disease. Because 218 

previous studies have shown that coffee fruit load can affect the leaf physiological resistance to 219 

the fungus (Eskes and Souza 1981), we counted the number of fruiting nodes of each coffee plant 220 

studied.  221 

Each month, to estimate the inoculum amount present in the plot, we selected 18 branches 222 

different from those used for coffee leaf rust symptoms and signs: one per selected coffee plant 223 

and six branches per foliar stratum. On these branches, every leaf with coffee leaf rust lesions 224 

showing uredospores was photographed. The rust area with uredospores was measured using the 225 

ImageJ software. The total area per branch was calculated and averaged over the 18 branches 226 

selected in each plot. This average was considered as a proxy for inoculum stock (Kushalappa, 227 

1981; Merle et al., 2019).  228 

 229 

2.4. Microclimatic data recording 230 

Microclimate data were recorded using Campbell CR1000 (Campbell Scientific) data loggers 231 

placed in the center of each of the four experimental plots. Each station was equipped with a data 232 

logger connected to the following nine sensors: 233 
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• a rain gauge placed 2 m high and far from shade trees (TE525MM, accuracy 0.1 mm), 234 

• an air temperature and relative humidity sensor positioned at 1.5 m high (HMP45C), 235 

• four leaf wetness sensors at 1.2 m high and oriented in four different directions 236 

(Dielectric LWS), 237 

• three T-type thermocouples (copper/constantan) giving the average temperature of 238 

three leaves each, chosen in three coffee plants and three different strata in each coffee 239 

plant (Miller, 1971).  240 

Climatic data were recorded every five seconds by the sensors and their minimum, maximum and 241 

average values were stored every 30 minutes. Data were retrieved weekly from the data loggers 242 

using PC200W 4.5 Datalogger Support Software (Campbell Scientific).  243 

 244 

2.5. Variables description 245 

A total of 5400 leaves were monitored over all the 2-month periods, from May 2017 to July 246 

2018. Among the total of appeared coffee leaf rust lesions, 95% ranked from the first to 25th 247 

lesion on a leaf. We therefore considered that 25 sites per leaf were available for coffee leaf rust 248 

lesion emergence. On each of the monitoring dates, each new lesion implied a change in status 249 

for a site from “healthy” to “infected.” Once the lesion appeared, this site was no longer available 250 

on the following dates because it could not become infected again. The variable presence or 251 

absence of a new coffee leaf rust lesion per foliar site (NewLesion) was used as a response 252 

variable to build a model forecasting the lesion emergence probability per foliar site (Fig. 2). That 253 

means that at leaf scale, the predicted number of new lesions emerged is equal to this probability 254 

multiplied by the 25 foliar sites. The date of emergence of each lesion was used to compute the 255 

lesion’s age, indicated in days but with a weekly accuracy due to the monitoring frequency 256 
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(LesionAge). At each monitoring date, a lesion with no uredospores had the possibility to change 257 

its status from “infected” to “infectious.” The variable presence or absence of uredospores 258 

(Sporulation) on the lesions was used to build a model forecasting the probability of uredospore 259 

emergence (Fig. 2). The last model aimed to predict the infectious area (InfectiousArea) of the 260 

lesions. In order to reduce the error about the date of site status change, we considered that this 261 

date was the middle date between the date when the change was observed and the previous 262 

monitoring date.  263 

These three variables describing coffee leaf rust development were explained as a function of 264 

these basic daily microclimatic variables: air minimum temperature, maximum temperature and 265 

thermal amplitude (TaMin, TaMax, TaAmp, respectively) as well as coffee leaf minimum 266 

temperature, maximum temperature and thermal amplitude (TcMin, TcMax and TcAmp 267 

respectively), relative humidity amplitude (RHAmp), total rainfall (Rainfall), rainfall duration 268 

(FreqRain) and leaf wetness duration from 6 a.m. to 11 a.m. (FreqLW6to11) and from noon to 6 269 

p.m. (FreqLW12to18) (Table 2). By night, the leaves were always wet in our study sites because 270 

of dew. That is why we did not consider leaf wetness duration during the night. In addition, we 271 

chose to study the morning and the afternoon separately for leaf wetness to better consider the 272 

preinfectious processes: germination usually starts in the late afternoon and continues during 273 

night, and appresorium and penetration into the leaf occur soon in the morning (Rayner, 1961). 274 

Additional variables were measured because of their known effect on coffee leaf rust 275 

development: the average inoculum stock per branch at plot level, estimated weekly by linear 276 

interpolation from monthly data (Inoculum), the age of the lesions (LesionAge), the coffee leaf 277 

stratum that marked leaves belonged to (LeafStratum) and the number of fruiting nodes per 278 

coffee plant (PlantFruitLoad) (Table 2). 279 

 280 
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2.6. Statistical analysis 281 

We performed a two-step analysis. For each microclimatic variable (MicroclimVar), we first 282 

needed to identify which periods better explained each of the three studied dependent variables: 283 

NewLesion, Sporulation and InfectiousArea. A period is defined by a duration (D) and a time 284 

before status change (T) (from a healthy foliar site to the emergence of a lesion, from a latent 285 

lesion to an infectious lesion, from the past infectious area to the current infectious area). The 286 

method used described by Bugaud et al. in 2015, proceeds as follows: (1) we calculated, over all 287 

the possible periods (T ranges from 1 to n and, for each time T, D ranges from 1 to T), the 288 

explanatory microclimatic variables MicroclimVarTxDy, defined as the daily averaged 289 

microclimatic variable (Table 2) over a y-days period starting x days before the symptom or sign 290 

onset (2) each of these explanatory variables was included in a generalized linear model (GLM) 291 

to explain NewLesion, Sporulation and InfectiousArea with different distributions depending on 292 

the dependent variable (see Eqs. 1, 2 and 3); for rainfall and temperatures, which generally have a 293 

nonlinear effect, we tested their unimodal form; (3) explanation level provided by the variables 294 

was then assessed by the difference between the Akaike information criterion (AIC) of the model 295 

with the microclimatic variable and the AIC of a specific reference model without this variable 296 

(see following equations); AIC is an indicator of “relative goodness of fit of a statistical model 297 

for a given data set” (Akaike, 1974); (4) the variable whose model maximized the difference, i.e. 298 

the most explanatory variable, was retained in the second step. Considering the second selection 299 

criterion of the Window Pane approach mentioned by Pietravalle et al. (2003), consecutive 300 

periods, i.e. same duration but a starting day differing by one day or same starting day but a 301 

duration differing by one day should result in similar AIC due to autocorrelations between these 302 
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periods. The last selection criterion (Pietravalle et al., 2003) was the similarity of the selected 303 

periods between related microclimatic variables such as leaf and air temperatures. 304 

 305 
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We included a variant in this general method by incorporating in the models some variables 315 

that necessarily explain NewLesion, Sporulation or InfectiousArea. Hence, in the models for 316 

explaining NewLesion, we incorporated a variable called PastInoculum (see Eq. 1). This variable 317 

represents the averaged inoculum stock available in a specific period before the observation of 318 

new coffee leaf rust lesions. This inclusion seemed appropriate as no infection can occur without 319 

inoculum. We did not choose an arbitrary period. On the contrary, we used the same method 320 

previously described to identify the best past inoculum period to explain NewLesion (see Eq. 4). 321 

In the models used, we considered the coffee leaf stratum because incidence and severity, and 322 

hence quantity of uredospores, have been reported to be higher in the low coffee tree strata 323 

(Avelino et al. 1991; Villegas-García and Baeza-Aragón, 1990). 324 

 325 
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Similarly, for the sporulation model, the age of the lesion (�����	%&�) entered in the model 329 

since an older lesion has a higher probability of sporulating than a younger one (see Eq. 2). In the 330 

last model, for InfectiousArea modeling, we included the past infectious area of the lesion (one 331 

week before): InfectiousArea day-7 (see Eq. 3). This variable is the lesion infectious area 332 

(InfectiousArea) measured at the previous monitoring date, so it is a reference for infectious area 333 

growth.  334 

The second step consisted of building complete generalized linear models (GLMs) for 335 

NewLesion, Sporulation and InfectiousArea by including the best microclimatic variables 336 

identified in Step One. Only uncorrelated predictors were included in the models. For that 337 

purpose, we analyzed the correlation between variables and discarded those with R² >0.49 338 

(Dormann et al., 2012). We also used biological criteria to finalize certain choices for several 339 

variables. The variable PlantFruitLoad was included in all of the models for its possible effects 340 

on coffee leaf rust development (López-Bravo et al., 2012).  341 

Prior to proceeding with the complete model step, the distributions of the selected variables 342 

were studied to focus on domains of definition with a sufficient number of observations. When 343 

there were interactions between variables, a division into submodels was performed using the 344 

"party" package (Hothorn et al., 2006), which builds a tree-based regression by recursive binary 345 

partitioning. The binomial models were then evaluated using the package pROC (Robin et al., 346 

2011) that transforms the response variable into a binary response, finding the threshold that 347 

maximizes the area under the receiver operating characteristic (ROC) curve. The classification 348 

error is then determined by the confusion matrix. We evaluated the Gaussian models by building 349 

the regression between observed and predicted data. All statistical analyses were performed with 350 

R 3.5.1 (R Development Core Team 2018) and with an alpha level of 0.05. Eqs. 1, 2, 3 and 4 and 351 

their reference models (Step One) and complete models (Step Two) were fitted with the GLM 352 
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function in the lme4 package (Bates et al., 2015). The maximum likelihood of parameters was 353 

approximated by the Laplace method (Bolker et al., 2009). 354 

 355 

3. Results 356 

In the graphs generated in Step One of the analysis, the largest differences in AIC indicate a 357 

strong influence of the microclimatic variable averaged on the associated period (Figs. 3, 4, 5, 6). 358 

Due to the second selection criteria (Pietravalle et al. 2003) and our approximation of symptom 359 

or sign onset by the midpoint of the two monitoring dates, the periods of influence were visible 360 

on the graphs by areas of higher AICs rather than punctual dots. Table 3 indicates the selected 361 

periods for each microclimatic variable: a starting date for the consideration of the variable (T), 362 

in days before foliar site status change, and duration in days (D). Only uncorrelated and 363 

significant variables were kept in the models. In the final models equations, we indicated the 364 

parameter estimates with Greek letters described in Table 4. 365 

 366 

3.1. Predictive model of the probability of lesion emergence per foliar site 367 

By exploring the influence periods of the inoculum stock on NewLesion, we were able to 368 

identify the best period of influence of PastInoculum (Eq. 1): between five and three weeks 369 

before the lesion appeared (Fig. 3). From the 26 microclimatic variables resulting from this first 370 

selection (Fig. 4), only three uncorrelated variables were conserved and had a significant effect: 371 

the average daily rainfall recorded between 33 and 24 days before lesion emergence (RainT33D10), 372 

the average daily minimum leaf temperature recorded between 20 and 18 days before lesion 373 

emergence (TcMinT20D3) and the average daily thermal amplitude of the leaves recorded between 374 
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20 and 10 days before lesion emergence (TcAmpT20D11). Prior to design of the complete model, 375 

we removed the microclimatic data combinations not well-represented in the distributions of 376 

these variables (Fig. 7). The final data sets of models A1 and A2 contained 223 945 and 347 491 377 

observations respectively. We found interactions including the average rainfall recorded between 378 

33 and 24 days before lesion emergence (RainT33D10). Because this variable had a unimodal 379 

effect, we created two models (A1 and A2) based on two rainfall classes determined by the tree-380 

based regression built by recursive binary partitioning: ≤4 mm per day and >4 mm per day. 381 

 382 
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 385 

In both models, PastInoculum showed a positive effect on NewLesion (p < 0.0001). In model 386 

A1, the effect of the RainT33D10 variable was positive (p < 0.0001) (Fig. 8A), while its effect was 387 

unimodal with a maximum around 10 mm in model A2 (p < 0.0001) (Fig. 8B). TcMinT20D3 had a 388 

positive effect on NewLesion in model A1 (p < 0.0001) and a unimodal effect with a maximum of 389 
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about 19.5°C in model A2 (p < 0.0001). TcAmpT20D11 negatively affected NewLesion in both 390 

models (p < 0.0486 in model A1 and p < 0.0001 in model A2). Predicted values of NewLesion as 391 

a function of RainT33D10, TcMinT20D3, TcAmpT20D11 and PastInoculum within the range of observed 392 

values are presented in Fig. 8 (A1 and A2 graphs). After transformation into binary responses 393 

using classification thresholds of 0.0141 for the A1 model and 0.0590 for A2 model, the 394 

confusion matrix of models A1 and A2 indicated a classification error of 0.32 and 0.24, 395 

respectively. The PlantFruitLoad variable was not kept in the complete model because it did not 396 

improve the classification error of each of these models. Models A1 and A2 together expressed a 397 

root mean square error of 0.032 in predicting the lesion emergence probability, by plot and by 398 

date (Fig. 9A). 399 

 400 

3.2. Predictive model of sporulation probability of a coffee leaf rust lesion 401 

We selected 23 microclimatic variables associated with a period (Fig. 5), resulting from Step 402 

One of our analysis method, as the best predictors of Sporulation. Among these variables, only 403 

seven were conserved after removing the highly correlated ones (Table 3). The complete model 404 

included four main microclimatic variables: the average daily maximum air temperature recorded 405 

between 15 and 12 days before lesion sporulation (TaMaxT15D4), the average daily rainfall 406 

recorded between 12 and 11 days before lesion sporulation (RainT12D2), the average daily rainfall 407 

recorded between five and three days before lesion sporulation (RainT5D3) and the average daily 408 

thermal amplitude of the leaves recorded four days before lesion sporulation (TcAmpT4D1), 409 

Among the seven variables that influenced Sporulation, two variables were related to the 410 

pathogen and the host plant: LesionAge and PlantFruitLoad. 411 

 412 
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 421 

In order to focus on a domain of definition with a sufficient number of observations, we first 422 

removed the microclimatic data combinations not well represented in the distributions, as 423 

described in Fig. 7 for models A1 and A2. The final data set of model B contained 51 539 424 

observations. LesionAge was the variable that most influenced Sporulation (Model B), with a 425 

maximum effect about 15 days before the date of foliar site status change (p < 0.0001). 426 

PlantFruitLoad, which characterizes host phenology, positively influenced Sporulation (p = 427 

0.0005). The microclimatic variables TaMaxT15D4 and RainT5D3 showed a significant unimodal 428 

effect (p < 0.0001) on Sporulation, with respective maxima about 28°C and 10 mm (Fig. 8C). In 429 

addition, RainT12D2 had a positive effect on Sporulation (p < 0.0001), while TcAmpT4D1 affected it 430 

negatively (p < 0.0001). Predicted values of Sporulation as a function of TaMaxT15D4, RainT5D3, 431 

RainT12D2, TcAmpT4D1, LesionAge and PlantFruitLoad, within the range of observed values, are 432 

presented in Fig. 8B. After transformation into binary responses using a classification threshold 433 

of 0.140, the classification error computed by the confusion matrix was 0.39 for this model. 434 

However, Model B expressed a root mean square error of 0.070 in predicting the sporulation 435 

probability, by plot and by date (Fig. 9B). 436 

 437 
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3.3. Model forecasting coffee leaf rust lesion infectious area  438 

For this last model, eight microclimatic variables were selected at the end of Step One (Fig. 6). 439 

Of these variables, only three were kept after removing the highly correlated variables and only 440 

two had a significant effect in the complete model (Table 3). 441 

 442 
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����%���'(�)* 444 

                                                                                         + S8 D F���?�G�9 + SE D �F���?�G�9�²  445 
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 447 

InfectiousArea was mainly explained by InfectiousArea day-7. TaMaxT5D1 had a unimodal 448 

effect, with a maximum of about 28°C (p < 0.0001) (Fig. 8D). InfectiousArea was also affected 449 

negatively by TcAmpT1D1 (p < 0.0001). PlantFruitLoad had no significant effect. As we did for 450 

models A1 and A2, as shown in Fig. 7, we selected domains of definition of TaMaxT5D1 and 451 

TcAmpT1D1 in order to include combinations that represented the data well in model C. These 452 

definition domains are shown in Fig. 8C. The final data set of model C contained 16 363 453 

observations. Since this model had a Gaussian response, we did not use the confusion matrix. 454 

Model C expressed a root mean square error of 0.012 in predicting the lesion infectious area, by 455 

plot and by date (Fig. 9C). 456 

 457 

4. Discussion 458 

By modeling foliar site status changes, i.e. lesion level changes, we were able to determine, 459 

with no assumptions, complex combinations of microclimatic variables that influence several 460 

disease processes. In addition, this approach helped us isolate disease growth from the host 461 
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dynamics, which is not possible when studying synthetic disease descriptors as incidence or 462 

severity (Ferrandino, 2008). As already demonstrated by other studies (Bugaud et al., 2015; 463 

Carval et al., 2015; Dorey et al., 2016; Leandro-Muñoz et al., 2017), our results show the 464 

importance of exploring different periods of influence of microclimatic variables, as these can 465 

vary according to the considered variable and their specific effect. Short duration periods, some 466 

only days long, have been identified for several microclimatic variables. These would have been 467 

masked if we had considered long periods determined in advance. We showed that the periods of 468 

influence of microclimatic variables follow on logically according to their specific effect on 469 

disease development instead of overlapping (Fig. 10). Not all of the favourable conditions for 470 

disease growth need to be met at the same time and during the same period. 471 

Our two models on lesion emergence probability incorporated more adjusted microclimatic 472 

variables than the empirical models obtained so far. These variables are consistent with the 473 

knowledge of the factors affecting the biology of the fungus. Based on the best estimated 474 

inoculum predictor for lesion emergence probability — the period from five to three weeks 475 

before the lesion emergence — the incubation period would be at least 21 days. In addition, the 476 

period from 20 to 18 days before a lesion emergence in which an influence of the minimum leaf 477 

temperature was observed could be related to the uredospore germination and penetration. 478 

Indeed, germination is stimulated by the previous exposition to low temperatures recorded at 479 

night, and the duration of three days could evoke a survival time of the uredospores (Nutman et 480 

al., 1963). This hypothesis would imply that the incubation period would be around three weeks, 481 

a result in agreement with the findings of Leguizamón-Caycedo et al. (1998), who measured 482 

incubation periods ranging from 18 to 24 days depending on the level of shade in their studies on 483 

the Caturra coffee variety in Colombia.  484 
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In our study, the unimodal effect of the average rainfall between 33 to 24 days before lesion 485 

emergence could therefore correspond to the dissemination phase of the uredospores. We 486 

hypothesize that uredospore release and deposition occur with rainfall below 10 mm, in 487 

accordance with previous works (Bock, 1962; Nutman et al., 1960). However, above 10 mm, 488 

uredospore wash-off by rain probably occurs, decreasing the probability of lesion emergence. 489 

Uredospore wash-off by rain has already been recognized as a strong limitation for H. vastatrix 490 

propagation (Avelino et al., 2019; Savary et al., 2004) and in other pathosystems (Sache, 2000). 491 

Under the conditions of our trial, in agroforestry systems, dispersal is mainly carried out by rain 492 

through raindrop impact on leaves, rather than by wind (Boudrot et al., 2016). The presence of 493 

trees in agroforestry systems and in the landscape helps intercept wind, limiting its effect 494 

(Avelino et al., 2012; Boudrot et al., 2016; Pezzopane et al., 2011). In other conditions, however, 495 

wind has been considered as the main factor affecting uredospore dispersal (Becker et al., 1975).  496 

Once the uredospore is located on the underside surface of the leaf, where the stomata that 497 

serve as entry doors to the fungus are located, uredospore germination, germ tube growth and 498 

appressorium formation phases require the presence of water and low light intensity (Rayner 499 

1961). In our study, the water required for these phases was not a limiting factor since the leaves 500 

were always wet at night because of dew. The last microclimatic variable included in our two 501 

models on lesion emergence probability was the average thermal amplitude of the leaves between 502 

20 and 10 days before symptom onset. This finding possibly illustrates the influence of leaf 503 

temperature on the colonization phase of the fungus (Kushalappa and Eskes, 1989; Ribeiro, 504 

1978). The values of the lesion emergence probability are in general low: 75% of the values 505 

below a probability of 0.04 (Fig. 9A). However, as we subdivided the coffee leaf into 25 foliar 506 

sites for potential lesion emergence, this model calculates a probability of occurrence of a lesion 507 

per site and not per leaf. A probability of 0.04 at the foliar site scale represents a probability 25 508 
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times higher at the leaf scale, therefore a probability equal to one for a leaf to become diseased 509 

and express the symptoms.  510 

Given the complexity of investigating internal leaf-development phases (McCain and Hennen, 511 

1984), most studies have focused on studying the latency period. In the case of coffee leaf rust, 512 

this period includes the incubation period and the time required by the pathogen to colonize the 513 

leaf and produce its first infectious entities via stomata. In our predictive model on sporulation, 514 

the most important variable was the age of the lesion, with an optimal age of 15 days to sporulate 515 

(Fig. 8C). Microclimatic variables were secondary. This result indicates that once into the leaf, 516 

the pathogen was less dependent on external conditions for its growth and sporulation. The 517 

optimal age of a lesion for sporulation is the time that the pathogen requires to colonize the 518 

mesophyll sufficiently and to accumulate in the substomatal spaces from which the uredospore 519 

precursor cells will be differentiated and released (McCain and Hennen, 1984). This optimal 520 

lesion age can also be the time needed to accumulate the necessary nutrients for the development 521 

of these cells.  522 

Few studies have investigated the microclimatic factors that influence the processes of 523 

sporulation and growth of the lesion infectious area independently from the infection phase. We 524 

hypothesized that the microclimatic periods that we identified were related with stomata 525 

functioning that, in turn, affected the occurrence of the subprocesses of coffee leaf rust 526 

sporulation (Guggenheim and Harr, 1978). The positive rainfall influence between 12 and 11 527 

days and between five and three days before lesion sporulation can be explained by the opening 528 

of the stomata under high humidity conditions (Butler, 1977). Stomata opening facilitates the 529 

release of sporogenous cells (Guggenheim and Harr, 1978), with a number of emerging 530 

sporogenous cells increased with a larger ostiole opening (McCain and Hennen, 1984). In 531 

addition, daily leaf temperature amplitude four days before lesion sporulation negatively affected 532 
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sporulation, possibly because high temperatures, increasing thermal amplitude, promote stomata 533 

closure, due to CO2 accumulation in the substomatal areas (Heath and Orchard, 1957). Another 534 

possible hypothesis is the lethal effect of high temperatures on fungus internal development 535 

(Ribeiro, 1978). Finally, the unimodal effect of the daily average of the maximum air 536 

temperatures from 15 to 12 days before lesion sporulation, with an optimal temperature around 537 

28°C, can be explained by negative effects of low temperatures (Toniutti et al., 2017) and high 538 

temperatures on sporulation. This effect could also be related to the colonization phase, as 28°C 539 

is the maximum temperature limit for the latent period (Waller, 1982). Finally, the negative part 540 

of the unimodal effect of rainfall, from five to three days before lesion sporulation, is not easy to 541 

interpret. It can be assumed that days with heavy rainfall will generally be related to lower 542 

maximum temperatures, less favorable to sporulation.  543 

The last variable included in the sporulation model was the plant fruit load, estimated by the 544 

number of fruiting nodes per plant, which was found to have a positive effect on the sporulation 545 

probability of the lesions. This result is compatible with the hypothesis of a migration, from 546 

leaves to fruits, of phenolic compounds involved in the plant's defense mechanisms (Chalfoun 547 

and Carvalho, 1987).  548 

Despite these interesting results, our model appeared rather inaccurate since the model 549 

explained only 26% of the sporulation probability. This low precision is possibly due to a high 550 

variability in leaf temperature within the same coffee layer (Miller, 1971) that our measurements 551 

did not capture. Indeed, the radiation received by the leaves can vary greatly, especially in the 552 

lower strata, which benefit from the partial and irregular shade provided by the upper stratum of 553 

the coffee plants and that of neighboring coffee plants (Butler, 1977). Another hypothesis to 554 

explain the inaccuracy could be our consideration of plant fruit load in the model without taking 555 

into account the development stage of fruits. Indeed, within fruit development, there is a 556 
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progressive migration from leaves to fruits of phenolic compounds known for their role in plant 557 

defense mechanisms (de Carvalho et al., 2001; Kushalappa and Eskes, 1989).  558 

With regard to the model predicting lesion infectious area growth, the variable that logically 559 

emerged as the main factor was the past lesion infectious area measured at the last monitoring 560 

date. However, this growth was dependent on microclimate variations. Infectious area was larger 561 

when maximum air temperature was about 28°C five days before area measurement and leaf 562 

temperature amplitude the day before was lower. These short duration effects are probably 563 

related to brief phenomena such as stomata opening, releasing more sori. These effects could be 564 

similar to those of maximum air temperature and leaf temperature amplitude on sporulation 565 

onset. 566 

It is important to focus on the predictive potential of the models in terms of time of 567 

anticipation. In all of the models we developed, some weather variables had an effect close to the 568 

onset of symptoms and signs. In the case of the models predicting the probability of lesion 569 

emergence, the earliest influencing variables, the inoculum amount between five and three weeks 570 

before lesion emergence and the average rainfall intensity between 30 and 24 days before, can be 571 

used to calculate intervals of lesion emergence probability or provide possible scenarios. In 572 

contrast, weather does not have an early influence on sporulation and infectious area growth. In 573 

these cases, the use of meteorological forecasts with a confidence interval, instead of 574 

meteorological measurements, could be used in our models to compute response intervals and 575 

suggest possible future scenarios.  576 

Our models require monitoring of variables such as the inoculum stock, lesion age and past 577 

lesion infectious area. These variables are good predictors, respectively, of infection levels 578 

(Kushalappa, 1981), sporulation probability and lesion infectious area and significantly 579 
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contribute to the accuracy of plant disease prediction models (Krause and Massie, 1975), 580 

therefore deserving to be assessed in coffee leaf rust surveillance activities. 581 

 582 

5. Conclusion 583 

Our statistical analysis permitted determination, without a priori assumptions, of periods of 584 

influence per microclimatic variable that vary according to their specific effect on coffee leaf rust 585 

development stages instead of hypothetical periods of influence identical for all meteorological 586 

variables. This process-based approach, such as mechanistic models, improved our understanding 587 

of coffee leaf rust development and enabled building models forecasting the onset of coffee leaf 588 

rust symptoms and signs. It is likely that these models can be used in Central American coffee 589 

areas with meteorological variables that fit within our domains of definition to predict different 590 

risks in terms of coffee leaf rust development stages. These different development stages imply 591 

different fungicide type recommendations: protectant fungicides to prevent infection; curative 592 

fungicides to suppress colonization and sporulation. However, the accuracy of the sporulation 593 

probability model still needs to be improved to consider its application, by incorporating missing 594 

variables, as possibly fruit phenology. Due to their simplicity, these models have the advantage 595 

that they can be easily evaluated with other datasets and improved. Their use, combined with a 596 

crop model in a simulator, could even make it possible to compare the simulated incidences with 597 

incidences measured by the monitoring programs of the different Central American countries. 598 

The combinations of microclimatic variables that we determined as influencing coffee leaf rust 599 

growth also represent valuable information for the development of a mechanistic model. Finally, 600 

it would be important to study how agroforestry systems and their management can help regulate 601 
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coffee leaf rust by modifying potential favourable microclimate conditions to this disease in the 602 

understory. 603 
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Fig. 1. Symptoms and signs of Hemileia vastatrix on the under-side of a coffee leaf. Photographs 822 

by Steven Cerdas Hernandez taken in Turrialba the 7th, the 14th and 28th of June 2017 823 

from left to right. 824 

Fig. 2. Graphics showing daily rainfall (black bar plot) and daily minimum (blue points) and 825 

maximum (orange points) air temperatures measured by the weather stations in the four 826 

plots from May 2017 to July 2018. In Turrialba, for both coffee plots in full sun and under 827 

medium shade, there was only one rain gauge, set in the full sun coffee plot. 828 

Fig. 3. Inoculum stock influence on lesion emergence probability, per periods from one to eight 829 

weeks before the symptom detection (abscises) and for durations from one to eight weeks 830 

(ordinates). The scale on the right indicates the absolute difference between Akaike 831 

information criterion (AIC) of the model including the inoculum stock averaged over the 832 

considered periods (dates and durations) (NewLesion ~ LeafStratum + Inoculum period) and 833 

AIC of its reference model without including the inoculum stock (NewLesion ~ 834 

LeafStratum). The highest AIC difference, labelled with a white square, indicates the period 835 

to be considered for inoculum stock that better explains the lesion emergence probability: 5 836 

weeks before lesion emergence for 3 weeks. Code explanations are available in Table 2. 837 

Fig. 4. Influence of microclimatic variables on lesion emergence probability by foliar site, per 838 

periods from one to 40 days before the symptom detection (abscises) and for durations from 839 

one to 40 days (ordinates). The scale on the right indicates the absolute difference between 840 

Akaike information criterion (AIC) of the model including the microclimatic variable 841 

averaged over the considered periods (dates and durations) (NewLesions ~ PastInoculum + 842 

MicroclimVar period) and AIC of its reference model without including the microclimatic 843 

variable (NewLesions ~ PastInoculum). The highest AIC differences, labelled with black 844 

circles, indicate the periods, to be considered for the microclimatic variable, that better 845 

explain the lesion emergence probability. 846 

Fig. 5. Influence of microclimatic variables on sporulation probability, per periods from one to 28 847 

days before the sign detection (abscises) and for durations from one to 28 days (ordinates). 848 

The scale on the right indicates the absolute difference between Akaike information 849 

criterion (AIC) of the model including the microclimatic variable averaged over the 850 

considered periods (dates and durations) (Sporulation ~ LesionAge + MicroclimVar period) 851 
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and AIC of its reference model without including the microclimatic variable (Sporulation ~ 852 

LesionAge). The highest AIC differences, labelled with black circles, indicate the periods, 853 

to be considered for the microclimatic variable, that better explain sporulation probability. 854 

Fig. 6. Influence of microclimatic variables on lesion infectious area growth, per periods from 855 

one to seven days before the lesion infectious area growth (abscises) and for durations from 856 

one to seven days (ordinates). The scale on the right indicates the absolute difference 857 

between Akaike information criterion (AIC) of the model including the microclimatic 858 

variable averaged over the considered periods (dates and durations) (InfectiousArea ~ 859 

InfectiousArea day-7 + MicroclimVar period) and AIC of its reference model without including 860 

the microclimatic variable (InfectiousArea ~ InfectiousArea day-7). The highest AIC 861 

differences, labelled with black circles, indicate the periods, to be considered for the 862 

microclimatic variable, that better explain lesion infectious area growth. 863 

Fig. 7. Graphs displaying the distributions of the microclimatic variables used to develop the 864 

complete model forecasting the lesion emergence probability by foliar site. Grey areas are 865 

removed ranges due to under representation of data. TcMinT20D3 : averaged daily minimum 866 

leaf temperature over a period of three days starting 20 days before lesion emergence; 867 

RainT33D10 : averaged daily rainfall over a period of 10 days starting 33 days before lesion 868 

emergence; TcAmpT20D11 : averaged daily amplitude of leaf temperature over a period of 11 869 

days starting 20 days before lesion emergence. 870 

Fig. 8. Predictions of models A1 and A2 (graphs A1 and A2) for the lesion emergence 871 

probability of one of the 25 leaf sites considered, model B for sporulation probability 872 

(graph B) and model C for lesion infectious area growth (graph C). Graphs A1 and A2 were 873 

presented among model’s variation ranges of RainT33D10 and TcMinT20D3, while TcAmpT20D11 874 

(ranges [6.2:17.9] in model A1 and [7.1:17.3] in model A2) was fixed to its mean and 875 

PastInoculum (range [0:1.1] in model A1 and [0:3.8] in model A2) to its first (clear grey) 876 

and third quantiles (dark grey). Graph B was represented among variation ranges of 877 

TaMinT15D4 and RainT5D3, while RainT12D2 (range [0:28.3]), TcAmpT4D1 (range [5.9:18.9]) 878 

and PlantFruitLoad (range [0:1150]) were fixed to their mean and LesionAge (range [0:50]) 879 

was fixed to seven (clear grey), fifteen (grey) and 23 days (dark grey). Graph C was 880 

presented among variation ranges of TaMaxT5D1 and TcAmpT1D1 and InfectiousArea day-7 881 
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(range [0:0.295]) was fixed to its first (clear grey) and third quantiles (dark grey). All the 882 

variables are described in Tables 2 and 4. 883 

Fig. 9. Regressions between predicted values and observed averaged values by plot and date for 884 

new lesion emergence probability by foliar site (A), sporulation probability (B) and lesion 885 

infectious area (C). 886 

Fig. 10. Representations with a time axis of the variables corresponding to the complete models 887 

A1, A2, B and C. The box color of the variables indicates a positive effect (white), a 888 

negative effect (black) and a unimodal effect with a maximum (grey). 889 



 

Fig. 1. Graphics showing daily rainfall (black bar plot) and daily minimum (blue points) and 

maximum (orange points) air temperatures measured by the weather stations in the four plots from 

May 2017 to July 2018. In Turrialba, for both coffee plots in full sun and under medium shade, 

there was only one rain gauge, set in the full sun coffee plot. 



 

Fig. 2. Symptoms and signs of Hemileia vastatrix on the under-side of a coffee leaf. Photographs 

by Steven Cerdas Hernandez taken in Turrialba the 7th, the 14th and 28th of June 2017 from left 

to right. 

  



 

Fig. 3. Inoculum stock influence on lesion emergence probability, per periods from one to eight 

weeks before the symptom detection (abscises) and for durations from one to eight weeks 

(ordinates). The scale on the right indicates the absolute difference between Akaike information 

criterion (AIC) of the model including the inoculum stock averaged over the considered periods 

(dates and durations) (NewLesion ~ LeafStratum + Inoculum period) and AIC of its reference model 

without including the inoculum stock (NewLesion ~ LeafStratum). The highest AIC difference, 

labelled with a white square, indicates the period to be considered for inoculum stock that better 

explains the lesion emergence probability: 5 weeks before lesion emergence for 3 weeks. Code 

explanations are available in Table 2.  



 

Fig. 4. Influence of microclimatic variables on lesion emergence probability by foliar site, per 

periods from one to 50 days before the symptom detection (abscises) and for durations from one 

to 50 days (ordinates). The scale on the right indicates the absolute difference between Akaike 

information criterion (AIC) of the model including the microclimatic variable averaged over the 

considered periods (dates and durations) (NewLesions ~ PastInoculum + MicroclimVar period) and 

AIC of its reference model without including the microclimatic variable (NewLesions ~ 

PastInoculum). The highest AIC differences, labelled with black circles, indicate the periods, to be 

considered for the microclimatic variable, that better explain the lesion emergence probability. 



 

Fig. 5. Influence of microclimatic variables on sporulation probability, per periods from one to 28 

days before the sign detection (abscises) and for durations from one to 28 days (ordinates). The 

scale on the right indicates the absolute difference between Akaike information criterion (AIC) of 

the model including the microclimatic variable averaged over the considered periods (dates and 

durations) (Sporulation ~ LesionAge + MicroclimVar period) and AIC of its reference model without 

including the microclimatic variable (Sporulation ~ LesionAge). The highest AIC differences, 

labelled with black circles, indicate the periods, to be considered for the microclimatic variable, 

that better explain sporulation probability. 

  



 

Fig. 6. Influence of microclimatic variables on lesion infectious area growth, per periods from one 

to seven days before the lesion infectious area growth (abscises) and for durations from one to 

seven days (ordinates). The scale on the right indicates the absolute difference between Akaike 

information criterion (AIC) of the model including the microclimatic variable averaged over the 

considered periods (dates and durations) (InfectiousArea ~ InfectiousArea day-7 + MicroclimVar 

period) and AIC of its reference model without including the microclimatic variable (InfectiousArea 

~ InfectiousArea day-7). The highest AIC differences, labelled with black circles, indicate the 

periods, to be considered for the microclimatic variable, that better explain lesion infectious area 

growth.  



 

 

Fig. 7. Graphs displaying the distributions of the microclimatic variables used to develop the 

complete model forecasting the lesion emergence probability by foliar site. Grey areas are removed 

ranges due to under representation of data. TcMinT20D3 : averaged daily minimum leaf temperature 

over a period of three days starting 20 days before lesion emergence;  RainT33D10 : averaged daily 

rainfall over a period of 10 days starting 33 days before lesion emergence; TcAmpT20D11 : averaged 

daily amplitude of leaf temperature over a period of 11 days starting 20 days before lesion 

emergence. 

  



 

Fig. 8. Predictions of models A1 and A2 (graphs A1 and A2) for the lesion emergence probability 

of one of the 25 leaf sites considered, model B for sporulation probability (graph B) and model C 

for lesion infectious area growth (graph C). Graphs A1 and A2 were presented among model’s 

variation ranges of RainT33D10 and TcMinT20D3, while TcAmpT20D11 (ranges [6.2:17.9] in model A1 

and [7.1:17.3] in model A2) was fixed to its mean and PastInoculum (range [0:1.1] in model A1 

and [0:3.8] in model A2) to its first (clear grey) and third quantiles (dark grey). Graph B was 

represented among variation ranges of TaMinT15D4 and RainT5D3, while RainT12D2 (range [0:28.3]), 

TcAmpT4D1 (range [5.9:18.9]) and PlantFruitLoad (range [0:1150]) were fixed to their mean and 

LesionAge (range [0:50]) was fixed to seven (clear grey), fifteen (grey) and 23 days (dark grey). 

Graph C was presented among variation ranges of TaMaxT5D1 and TcAmpT1D1 and InfectiousArea 

day-7 (range [0:0.295]) was fixed to its first (clear grey) and third quantiles (dark grey). All the 

variables are described in Tables 2 and 3.  



 

Fig. 9. Regressions between predicted values and observed averaged values by plot and date for 

new lesion emergence probability by foliar site (A), sporulation probability (B) and lesion 

infectious area (C).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Representations with a time axis of the variables corresponding to the complete models A1, A2, B and C. The box color of the variables 

indicates a positive effect (white), a negative effect (black) and a unimodal effect with a maximum (grey). 



Table 1 

Weather-based predictive models of coffee leaf rust development  

Variable to 
forecast 

Studied period 
for climatic 
variables 

Number of tested variables 
References 

Weather Rust 
Host and 
practices 

Latency period Latency period 
2 0 0 

Rayner 1961 
Kushalappa and Martins 1980 
Santacreo et al. 1983 
Tronconi et al. 1995 

2 0 1 de Moraes et al. 1976 

Incubation period Incubation period 2 0 0 
Kushalappa and Martins 1980 
Tronconi et al. 1995 

Number of 
lesions per leaf 

Over last 15, 30 
or 45 days 

3 0 1 Alfonsi et al. 1974 

Proportion of rust 
area 

Over the last 40 
days 

1 2 0 Kushalappa and Chaves 1980 

Apparent 
infection rate 
over 28 days  

Over last 14 days 
or from 28 to 14 
days before 

4 2 1 Kushalappa 1981 

Semi-
mechanistic 
approach 

4 2 1 Kushalappa et al. 1983 

4 2 2 
Kushalappa et al. 1984 
Holguín 1987 

Apparent 
infection rate 
over 15 days 

Over last 15 days 5 0 0 Pedro 1983 

Incidence 
Over last 15, 30, 
45 or 60 days 

8 0 1 Pinto et al. 2002 

Over the year 1 1 > 40 Avelino et al. 2006 

Class of monthly 
incidence 
variations 

Latency period 
> 10 0 2 Meira et al. 2008 
> 10 0 1 Meira et al. 2009 
> 10 1 1 Cintra et al. 2011 

Class of 
incidence 

Over last 45 days 
> 10 1 2 Luaces et al. 2010 
> 20 1 2 Perez Ariza et al. 2012 

Last month and 
last two months 

6 0 7 Corrales et al. 2015, 2016 

Month average of 
daily infection 
risk 

Mechanistic 
approach 

2 0 0 Bebber et al. 2016 

Apparent 
infection rate 
over 30 days 

Periods of 30 
days, 90 days 
before, 60 days 
before and 30 
days before 

> 10 0 2 Hinnah et al. 2018 

Incidence Last 28 days 4 0 6 Liebig et al., 2019 
 

 



Table 2 

Description of the three forecasted variables on rust development and their explanatory variables 

including microclimatic descriptors 

Dependent variables Description Unit Range 

NewLesion Presence/absence of a new rust lesion per leaf site - 0 or 1 

Sporulation Presence/absence of uredospores on each rust lesion - 0 or 1 

InfectiousArea Area with uredospores per lesion cm² [0.001;0.535] 

Explanatory variables Description Unit Range 

Inoculum Area with uredospores per branch averaged per plot cm² [0;3.9] 
LesionAge Time since the lesion emergence days 0, 7, 14, 21, 

28, 35, 42, 49 
InfectiousArea day-7 Past area with uredospores per lesion (7 days ago) cm² [0.001;0.295] 

LeafStratum Coffee leaf stratum (Bottom; Middle; Top) - - 

PlantFruitLoad Plant fruiting nodes - [0;1793] 

Rainfall Daily rainfall mm [0;186.9] 

FreqRain Daily number of rainy hours - [0;24] 

TaMin Daily minimum air temperature °C [7.5;21.9] 

TaMax Daily maximum air temperature °C [15.5;35.9] 

TaAmp Daily amplitude of air temperature °C [1.9;22.9] 

RHAmp Daily amplitude of relative humidity % [0;87.8] 

TcMin Daily minimum leaf temperature  °C [8.4;22.0] 

TcMax Daily maximum leaf temperature °C [15.5;41.3] 

TcAmp Daily amplitude of leaf temperature °C [1.6;28.8] 

FreqLW6to11 Leaf wetness duration from 6am to 11am h [0;6] 

FreqLW12to18 Leaf wetness duration from 12am to 6pm h [0;7] 
 



Table 3 

Microclimatic variables identified as the most explicative for each of the three models of rust development. 

The variables in bold are the ones conserved after removing the over-correlated variables (r > 0.7) and 

those underlined are the variables used in the full models. 

Model Microclimatic variables identified 

Lesion 
emergence 
probability 

 
TaMinT11D1 
TaMinT19D2 
TaMinT44D3 
 
TaMaxT9D2 
TaMaxT23D3 
TaMaxT32D6 
TaMaxT44D6 
 

 
TcMinT11D1 
TcMinT20D3 

TcMinT28D25 
TcMinT37D3 
TcMinT44D3 
TcMinT50D17 

 
TcAmpT11D2 
TcAmpT20D11 

 

 
RainT16D6 
RainT26D3 
RainT33D10 

RainT35D17 
RainT42D19 
 
 

 
FreqLW6to11T13D3 
FreqLW6to11T13D12 
FreqLW6to11T20D11 
FreqLW6to11T37D5 
 
FreqLW12to18T13D10 
FreqLW12to18T19D16 

Sporulation 
probability 

 
TaMinT14D1 
TaMinT22D3 
TaMinT25D7 
 
TaMaxT4D1 
TaMaxT15D4 

TaMaxT23D4 
TaMaxT23D12 
 
 

 
TcMinT14D1 
TcMinT22D3 
TcMinT25D6 
 
TcMaxT4D1 
TcMaxT15D4 
 
TcAmpT4D1 

TcAmpT13D2 

 

RainT5D3 

RainT12D2 

RainT17D5 

RainT26D4 
 

 
FreqLW6to11T13D2 
 
FreqLW12to18T5D2 
FreqLW12to18T18D3 

 
FreqRainT3D1 
FreqRainT12D10 

Lesion 
infectious 
area 

 

TaMinT7D2 

 
TaMaxT5D1 

 

 
TaAmpT7D3 
 
TcMaxT5D1 
 

 

TcAmpT1D1 

 
RHAmpT7D2 
 

 
RainT5D1 
 
FreqRainT5D1 
 

Microclimatic variables (MV): TaMin; TaMax; TaAmp: TcMin: TcMax; TcAmp; RHAmp; 

FreqLW6to11; FreqLW12to18 are described in Table 2 and Rain is a shorter term for Rainfall 

MVTxDy: averaged daily microclimatic variable over a y-days period starting x days before the 
symptom or sign onset 



Table 4 

Description of the parameters estimate of the models A1, 

A2, B and C 

Model Parameter Value [±Standard error] Unit 

A1 

α1.1 - 11.41 [±0.22] - 

α1.2 + 1.84 [±0.065] cm-2 

α1.3 + 0.33 [±0.015] mm-1 

α1.4 + 0.38 [±0.0099] °C-1 

α1.5 - 0.017 [±0.0089] °C-1 

A2 

α2.1 - 32.57 [±1.22] - 

α2.2 + 1.15 [±0.010] cm-2 

α2.3 + 0.16 [±0.015] mm-1 

α2.4 - 0.0091 [±0.00077] mm-2 

α2.5 + 3.08 [±0.14] °C-1 

α2.6 - 0.079 [±0.0039] °C-2 

α2.7 - 0.10 [±0.0043] °C-1 

B 

β1 - 19.69 [±2.11] - 

β2 + 0.30 [±0.0047] days-1 

β3 - 0.010 [±0.00021] days-2 

β4 + 0.00016 [±0.000044] - 

β5 + 1.24 [±0.14] °C-1 

β6 - 0.022 [±0.0024] °C-2 

β7 + 0.018 [±0.0019] mm-1 

β8 + 0.065 [±0.0070] mm-1 

β9 - 0.0032 [±0.00037] mm-2 

β10 - 0.045 [±0.0043] °C-1 

C 

γ1 - 0.068 [±0.0081] - 

γ2 + 1.30 [±0.0045] cm-2 

γ3 + 0.0057 [±0.00057] °C-1 

γ4 - 0.00010 [±0.000010] °C-2 

γ5 - 0.00021 [±0.000030] °C-1 
 




