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Abstract 

Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to 

climate change have been subject of active research over the past years. But, ‘to what extent can 

breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to 

climate adaptation, mitigation and food security?’. Here, we address this question by critically 
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reviewing how model-based approaches can be used to assist breeding activities, with particular 

focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now 

known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many 

different ways, including assessing genotypic adaptability and stability, characterizing and identifying 

target breeding environments, identifying tradeoffs among traits for such environments, and making 

predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR 

has contributed to all of these. However, much progress remains to be done if modeling is to 

effectively contribute to more targeted and impactful breeding programs under changing climates. 

In a period in which CGIAR breeding programs are undergoing a major modernization process, crop 

modelers will need to be part of crop improvement teams, with a common understanding of 

breeding pipelines and model capabilities and limitations, and common data standards and 

protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, 

in turn, enable more rapid and better-targeted crop modeling activities, thus directly contributing to 

accelerated and more impactful breeding efforts. 

 

1. Introduction 

Global change projections indicate that many parts of the world will continue to face extreme and 

erratic climate trends, as a result of rapid population growth, and increasing greenhouse gas (GHG) 

emissions (IPCC, 2014). Model-based projections indicate greater heat and drought stress during the 

21st Century (Teixeira et al., 2013; Gourdji et al., 2013b; Li et al., 2015a), especially (though not only) 

if no major GHG emission reduction strategies are implemented at scale (Betts et al., 2011; 

Schleussner et al., 2016; Rogelj et al., 2016). Compounded by other drivers of global change (e.g. 

population growth, changing economic structures, and changing land use), these changes will reduce 

crop productivity and increase crop yield variability of many crops (Li et al., 2009; Deryng et al., 

2014; Campbell et al., 2016), with major implications on farmer livelihoods (Morton, 2007; Jones and 

Thornton, 2009) and global food security (Wheeler and von Braun, 2013; Campbell et al., 2016). In 

light of these projections, crop improvement efforts aiming at increasing crop production (quantity, 

quality) in a sustainable and efficient way have been subject of active research over the past years. 

 

Crop breeding programs have contributed to farmers achieving higher yields, food security and 
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income by developing and delivering varieties with higher yield potential, as well as greater 

resistance to pests and diseases, tolerance to abiotic stresses, and desirable market quality and 

nutritional characteristics in the public (Evenson and Gollin, 2003; Pfeiffer and McClafferty, 2007) 

and private sectors (Cooper et al., 2014b; Voss-Fels et al., 2019d). Moreover, the use of varieties 

resistant to heat stress, drought, and possible future pests and diseases can also contribute to 

climate change adaptation (Takeda and Matsuoka, 2008; Habash et al., 2009; Gourdji et al., 2013a; 

Gaffney et al., 2015). A key question is, however, ‘to what extent can breeding gains be achieved 

under changing climates, at a pace sufficient so as to usefully contribute to climate adaptation, 

mitigation and food security?’. Here, we address this question by reviewing how model-based 

approaches can assist breeding activities, with particular focus on the CGIAR (formerly the 

Consultative Group on International Agricultural Research but now known simply as CGIAR). We 

critically discuss limitations and opportunities in light of the need for greater breeding gains under 

changing climates. Since the body of published literature (especially in some thematic or geographic 

areas) is substantial, we concentrate on the most relevant examples, aiming at discussing their 

strengths and weaknesses, in order to ultimately determine the main crop modeling gaps and 

strategies for collaboration with researchers, crop improvement teams, farmers, and decision and 

policymakers. We first review the importance of genotypic adaptation in delivering climate change 

adaptation outcomes (Sect. 1.1), as well as the challenges in converting potential adaptations into 

actual genetic improvement (Sect. 1.2). We then review tools and approaches for accelerated 

breeding (Sect. 2), including modeling of environment- and management- specific yield responses 

(Sect. 2.1), environmental characterization (Sect. 2.2), ideotype design (Sect. 2.3), the linking of crop 

modeling and genetic data (Sect. 2.4), and simulation methods for optimizing breeding pipelines 

(Sect. 2.5). Finally, we discuss limitations in terms of data, models, and approaches (Sect. 3), and 

conclude by proposing a set of next collaborative research activities that can contribute to 

maximizing breeding gains under climate change. 

 

1.1. The importance of genotypic adaptation under climate change 

Modern varieties developed through years of crop improvement have contributed to large increases 

in crop production in the last 60 years, and they will continue to do so. Evenson and Gollin (2003) 

reviewed breeding gains during and after the Green Revolution for 11 major food crops, estimating 

that the contribution of modern varieties to yield growth is in the range 17–50 % in the period 1961–
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2000. One notable example is the 70 % yield potential increase from the release of the semi-dwarf 

rice variety IR8 by the International Rice Research Institute (IRRI) in the 1950s and 1960s (Peng et al., 

2008). Fischer et al. (2014) indicate a rate of progress in potential yield of 0.5 to 1.08 % per year for 

wheat, rice, maize and soybean, as a result of crop improvement. Genotypic adaptation to climate 

change –that is, the process of designing and developing novel crop varieties to enhance 

productivity and stability under future climates, has the potential to continue delivering productivity 

gains under changing climates (Rötter et al., 2015; Ramirez-Villegas et al., 2015). 

 

Evidence of how genotypic adaptation can effectively contribute to climate change adaptation 

generally arises from two types of studies: those in which models are used to simulate future 

growing conditions with and without adaptation; and those that quantify the yield benefit of 

climate-adapted genotypes by means of field experimentation. Model-based studies generally 

indicate potential for substantial gains in both yield and yield stability. A systematic review of the 

literature (by searching the keywords ‘climate change’, ‘genotypic adaptation’, and ‘ideotype’ in 

http://scholar.google.com in June 2019) identified 19 studies, from which 389 individual data points 

for eight crops were drawn. While some publication bias is expected in the meta-analysis, the 

identified studies indicate that gains from genotypic adaptation are positive for a number of crops 

(Fig. 1). For instance, modelling by Semenov and Stratonovitch (2013) suggested that if certain traits 

could be improved adequately, wheat ideotypes could outperform current cultivars in Europe by up 

to 65 % under future climates. Similarly, simulations by van Oort and Zwart (2018) showed that 

favoring varieties with greater thermal time can compensate for climate change-induced yield 

reductions in African rice systems. Similar findings have been reported for Asian rice (Li and 

Wassmann, 2010; Mottaleb et al., 2017), groundnut (Singh et al., 2012, 2014b), sorghum (Singh et 

al., 2014c), pearl millet (Singh et al., 2017), chickpea (Singh et al., 2014a), maize (Tesfaye et al., 

2017), and wheat in China (Challinor et al., 2010). 

[Figure 1 near here] 

 

Experimental studies also provide robust evidence on the benefits of genotypic adaptation, 

corroborating or extending model-based findings. On-farm maize trials in Africa have shown that 

drought-tolerant maize can yield between 20–25 % more than current commercial varieties, with no 
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yield penalty in ‘good’ years (Setimela et al., 2017; Cairns and Prasanna, 2018). Suarez Salazar et al. 

(2018) identified common bean lines adapted to a heat-stress environment in the Colombian 

Amazon, where commercial bean varieties show low yield. Mondal et al. (2016) estimated genetic 

yield gains in the range 0.5–0.8% per year when breeding short-cycle heat-adapted wheat varieties 

in South Asia. Success has also been reported for drought tolerance in maize for the United States 

corn belt (Cooper et al., 2014a; Messina et al., 2015) and other regions and crops (Sinclair et al., 

2020). These studies provide initial evidence that genotypic adaptation can indeed deliver greater 

yields in stress-prone environments, thus likely contributing to future adaptation outcomes. 

 

1.2. Current warming rates will reduce yields unless breeding and seed system efficiency is 

enhanced 

The process of breeding a novel cultivar, increasing seed availability and achieving significant 

adoption often takes more than a decade (Langyintuo et al., 2008; Challinor et al., 2016). This means 

that temperature increases during the breeding cycle can lead to a systematic (and unintended) 

yield reduction due to decreases in the duration of the growing cycle (Zheng et al., 2016; Challinor et 

al., 2016). Researchers confirmed that the challenge is more critical in many subtropical areas with 

emerging precipitation trends under climate change (Rojas et al., 2019). The breeding of climate-

ready crops should, therefore, seek to deliver more productive and resilient crops that keep pace 

with climate change (Ramirez-Villegas et al., 2015; Challinor et al., 2016). In doing so, it is important 

to implement a wide range of solutions aiming at making the breeding process more effective and 

efficient. Anticipatory and predictive tools using crop-climate models (reviewed in Sect. 2 and 3) can 

enable preemptive breeding and can help enhance and accelerate breeding gains, ultimately 

ensuring crop improvement contributes effectively to addressing major challenges for agriculture 

within the context of climate change. 

 

2. Tools and approaches for accelerating trait discovery in target environments 

For plant breeding, multi-environment trials (METs) are conducted regularly to study Genotype (G) × 

Environment (E) × Management (M) interactions (G×E×M), assess genotypic adaptability and 

stability, and make predictions about the breeding value of the genotypes in other environments 
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and years that will allow crop improvement teams to accurately select the parents for the next 

breeding cycle. This section reviews modeling approaches to assess G×E interactions (Sect. 2.1), 

characterize target breeding environments (Sect. 2.2), understand ideal plant types for such target 

environments (Sect. 2.3), predict breeding values (Sect. 2.4), and breeding cycle optimization (Sect. 

2.5). We review both process-based eco-physiological models as well as statistical approaches to 

G×E prediction. 

 

2.1. Modeling Genotype × Environment × Management 

Accurately predicting G×E responses allows identifying well-adapted genotypes for specific sites or 

stress situations (Hammer and Broad, 2003; Banterng et al., 2006), or testing ‘virtual’ genotypes to 

inform breeding programs (Cock et al., 1979; Suriharn et al., 2011; Bogard et al., 2020; Hammer et 

al., 2020). Similarly, predicting management responses allows identification of appropriate levels of 

fertilization, tillage, irrigation, weed control, amongst others, for a given set of genotypes (Boote et 

al., 1996; Artacho et al., 2011; Deryng et al., 2011). Accurate prediction of genotype performance 

across environments and management options is contingent on various elements, including (i) the 

development of a model with the necessary physiological processes represented at an appropriate 

level of complexity (Challinor et al., 2009; Boote et al., 2013; Hammer et al., 2019); (ii) the 

development of a well-constrained parameter set (Iizumi et al., 2009; Angulo et al., 2013); and (iii) 

high quality environmental (soil, climate) data to drive the model (Lobell, 2013). As discussed below, 

the CGIAR has made major contributions in these three areas. The use of models for analyzing G ×E 

× M interactions for accelerating breeding is described in Sect. 2.1.2. 

 

2.1.1 Model development, parameterization and input data 

Model development requires the acquisition of a deep understanding of the biological basis of G×E 

interactions (i.e. crop physiology), and the translation of such understanding into computer code. 

Physiological processes of interest, and approaches to model those processes, can vary, sometimes 

substantially, between contexts. During the early 1980s, progress in process understanding by CGIAR 

scientists led to the development of three crop models that ably captured G×E×M responses, while 

also contributing data and knowledge to many other models. Perhaps the earliest crop model 



 

 

 

This article is protected by copyright. All rights reserved. 

 

8 

developed and used in the CGIAR was the cassava model developed by the International Center for 

Tropical Agriculture (CIAT) (Cock et al., 1979), upon which various components of the GUMCAS 

model (Matthews and Hunt, 1994), the CROPSIM-Cassava model (Jones et al., 2003), the model of 

Gabriel et al. (2014), and the MANIHOT model (Moreno-Cadena et al., 2019), were later developed. 

The ORYZA1 rice model (Kropff et al., 1993a, 1994), developed at the International Rice Research 

Institute (IRRI), incorporated many years of eco-physiological research from IRRI and elsewhere. 

ORYZA1 quickly evolved into ORYZA2000 (Bouman et al., 2001), and later into ORYZAv3 (Li et al., 

2017). The International Potato Center (CIP) has also led the development of the SOLANUM and the 

dynamic carbon photosynthesis model (DCPM) models for potato (Condori et al., 2010; Quiroz et al., 

2017) and sweet potato (Ramírez et al., 2017). Lastly, CIAT also led the early development of the 

BEANGRO model, which is currently part of the ‘CROPGRO’ module within DSSAT (Decision Support 

System for Agrotechnology Transfer) (White and Izquierdo, 1991; Hoogenboom et al., 1993; White 

et al., 1995). The International Center for Agricultural Research in the Dry Areas (ICARDA) and the 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) have extensively 

contributed to the development and improvement of the Simple Simulation Model (SSM) (Soltani 

and Sinclair, 2012; Sinclair et al., 2020), the CROPGRO for peanut and chickpea, and the CERES model 

for sorghum and pearl millet, also available in DSSAT. 

 

The determination of parameters for crop models, whether they are statistically- or process-based, 

is crucial to ensure that the model correctly captures genotype behavior across different 

combinations of climate, soils, and management options. This is especially important for process-

based crop models, since the sometimes large number of parameters required means that there can 

be many more degrees of freedom in the model than can be constrained by the available data 

(Challinor et al., 2014; Wallach et al., 2016). Progress in model parameterization has been enabled 

by extensive eco-physiological trials conducted by the CGIAR. Notably, recent progress in 

characterizing yield changes in response to heat stress for wheat, at least in part, was possible due 

to data collected in the International Heat Stress Genotype Experiment (IHSGE) carried out by the 

International Maize and Wheat Improvement Center (CIMMYT) (Asseng et al., 2014). Based on 

CIMMYT data, too, statistical models by Lobell et al. (2011) and Gourdji et al. (2013a) assessed maize 

and wheat genotype responses to temperature, respectively. Li et al. (2015b) used IRRI trial data 

from Los Baños (Philippines) and Ludhiana (India) to calibrate and evaluate 13 different rice crop 
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models, and Fleisher et al. (2017) used an experiment from Bolivia conducted by the International 

Potato Center (CIP) as part of the calibration and evaluation dataset for nine potato crop models. 

The use of remote sensing has also been tested for the estimation of crop model parameters at a 

low cost (Quiroz et al., 2017). 

 

Attempts to estimate model parameters from genetic information date to work in the 1990s at CIAT 

on common bean, where simulations from gene-based estimates of model parameters were 

generally as accurate as manually estimated parameters (White and Hoogenboom, 1996; 

Hoogenboom et al., 1997). Similar work in collaboration with CIMMYT, showed that differences in 

phenology of winter wheat cultivars could be simulated based on genetic information (White et al., 

2008). Work also extends into the development of a gene-to-phenotype model for common bean 

based field trials conducted by CIAT and the University of Florida (UF) (Hwang et al., 2017). 

Compared to success in linking gene-to-phenotypes achieved by other institutions (Messina et al., 

2006; Chenu et al., 2009; Bogard et al., 2020), progress in the CGIAR remains slow. 

 

The CGIAR has also contributed to the development of key spatially-explicit climate datasets that are 

used as inputs into crop models. These include WorldClim (Hijmans et al., 2005) and the Climate 

Change, Agriculture and Food Security (CCAFS)-Climate database (Navarro-Racines et al., 2020), as 

well as methods to generate daily weather data for crop model simulations (Jones and Thornton, 

2000, 2013). Contributions to soil (Jones and Thornton, 2015; Vågen et al., 2016; Piikki et al., 2017) 

and crop geography (You et al., 2009, 2017; IFPRI, 2019) for crop modeling have also been made in 

recent years. By contrast, CGIAR work on developing datasets that characterize crop management 

for crop modeling is limited to specific regional or national studies (see Sect. 2.1.2). 

 

2.1.2 Explaining and simulating G×E×M interactions 

Using available data and models, CGIAR modelers have studied G×E×M interactions extensively in 

close coordination with breeding programs. Virtually all centers have done modeling for their 

mandate crops. Use of models has focused on assessing the stability of economically important traits 
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and predicting the performance of newly developed genotypes evaluated under varying 

environmental conditions and management practices.  

 

Statistical approaches have the longest history in plant breeding. These models can be used to study 

both univariate (Crossa et al., 2004) and multivariate responses (Montesinos-López et al., 2018d). A 

recent study with on-farm wheat trials (Vargas-Hernández et al., 2018) used a univariate model to 

assess the combined effects of the wheat lines and their interactions with the farmer-irrigation-year 

combinations for several traits. For single trait grain yield, the study identified stable wheat lines 

across all environments, as well as the environments that caused most of the G×E interaction. 

Multivariate models, though less used, are particularly useful when measurements are available for 

multiple response variables (i.e. multi-trait), and the objective is to increase our understanding of 

the complex nature of particular phenomena under field conditions. Many studies have shown that a 

multivariate approach is better than univariate approaches because it identifies the existing 

(co)variation between the response variables (Xiong et al., 2014). Moreover, the multivariate 

analysis also improves accuracy when classifying and identifying superior genetic components 

(Montesinos-López et al., 2018d). In addition, it increases the precision of genetic correlation 

parameter estimates between traits, which helps crop improvement teams perform indirect 

selection. Multivariate models have been implemented using Bayesian analysis (Montesinos-López 

et al., 2016b) as well as deep machine learning regression (Montesinos-López et al., 2018c; 

Montesinos-Lopez et al., 2018). Notably, Montesinos-Lopez et al. (2018) report that the 

performance of multi-trait and multi-environment deep learning (MTDL) is commensurate with that 

of the Bayesian multi-trait and multi-environment approach. Erzos et al. (2020) and Washburn et al. 

(2020) review machine-learning approaches in crop improvement. 

 

Process-based crop models have also been used for assessing G×E×M interactions within the CGIAR. 

At ICRISAT, crop models are used to investigate whether and how changes in G and M result in 

positive change in yield across different environments, as a way to prioritize breeding and agronomic 

intervention decisions, including sowing density (Vadez et al., 2017), irrigation (Vadez et al., 2012), 

the combination of better-adapted genotypes and irrigation (Soltani et al., 2016), and different traits 

and combinations of traits (Kholová et al., 2014). ICARDA has employed the Simple Simulation Model 
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(SSM) to characterize the stress scenarios in target regions of focus, as well as to explore plant traits 

and/or management to be exploited in stress-adapted cultivars for specific target environments 

(Ghanem et al., 2015; Guiguitant et al., 2017). CIP has used the SOLANUM (Condori et al., 2010) and 

LINTUL (Spitters, 1988, 1990) models to compare the performance of native and hybrid potato 

genotypes under extreme climatic conditions (Condori et al., 2010, 2014) and climate change (Quiroz 

et al., 2018), demonstrating that appropriate choice of germplasm and crop management practices 

could significantly secure and increase potato production under future climate conditions.  

 

Similar work has been conducted by IRRI, whereby high yielding and stable genotypes were 

identified using the ORYZA2000 crop model (Li et al., 2013a). At IRRI, simulations have also been 

used to simulate potential yield across environments (Kropff et al., 1993b), identify ideotypes for 

increasing rice yield potential (Kropff et al., 1995; Aggarwal et al., 1997; Dingkuhn et al., 2015, 2016), 

and to inform national certification processes for the release of crop varieties (Li et al., 2016). At 

CIMMYT, grid-based global-scale simulations are used to assess the value of certain traits. This 

modeling capacity was developed in a consortium of UF, CIMMYT, and the International Food Policy 

Research Institute (IFPRI) that incorporated three crop models, including CERES-wheat, CROPSIM, 

and NWheat (Gbegbelegbe et al., 2017; Hernandez-Ochoa et al., 2018). At CIAT, crop models have 

been used to understand drought responses across G and M for rice and beans (Heinemann et al., 

2016; Ramirez-Villegas et al., 2018), as well as to assess the value of drought tolerance traits 

(Heinemann et al., 2019). At IFPRI, a grid-based crop modeling framework was developed and linked 

with the IMPACT global trade and economic model (Robinson et al., 2015) to simulate the potential 

impacts of adopting agricultural technologies (e.g. precision agriculture), management practices (e.g. 

integrated soil fertility management), and breeding target traits (e.g. drought and/or heat tolerance) 

on global food security and economic implications under climate change scenarios (Rosegrant et al., 

2014; Islam et al., 2016). Analyses of climate risk for rice in Africa have also been possible by crop 

simulation at the Africa Rice Center (van Oort et al., 2015b; a).  

 

2.2. Environmental characterization for setting breeding priorities 

The existence of significant G×E×M interactions can slow plant breeding progress for broad 

adaptation and/or for adaptation to specific conditions within a region (Löffler et al., 2005; Chenu et 
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al., 2011). The Target Population of Environments (TPE) approach aims at addressing G×E×M 

through model-based environmental characterization (Lacaze and Roumet, 2004; Chenu, 2015). In 

the TPE approach, process-based crop models are used to assess and detect stress patterns and their 

impacts. This, in turn, allows prioritizing stress types by their intensity and frequency across 

geographies, as well as identifying sites where selection for given stresses is likely to be more 

successful. Thus, TPEs offer a concrete way to aid breeding programs through effectively setting trait 

and geographic priorities. The TPE approach has been used with success by wheat breeding 

programs in Australia (Chenu et al., 2011, 2013; Lobell et al., 2015), and more recently has been 

applied to maize in Europe (Harrison et al., 2014). 

 

Compared with the applications described in Sect. 2.1, CGIAR’s work on TPEs for breeding programs 

is less in terms of number of crops covered and published studies (Fig. 2A, B). CGIAR’s collaborative 

efforts include studies addressing drought for rice (Heinemann et al., 2015; Ramirez-Villegas et al., 

2018) and beans (Heinemann et al., 2016, 2017) under current and future climate in Brazil. 

Significant breeding progress has resulted from these studies, including improvements in drought 

phenotyping in a drought-prone environment which allows controlling the timing, intensity, and 

duration of drought, reducing the uncertainty associated with climate variability trials in the main 

season (Martinez et al., 2014). 

 

[Figure 2 near here] 

 

For rainfed beans, EMBRAPA (Empresa Brasileira de Pesquisa Agropecuaria) initiated a drought 

tolerance breeding program following the results of Heinemann et al. (2016, 2017), though its 

implementation was halted due to the Brazilian economic crisis. For post-rainy sorghum in India, 

Kholová et al. (2013) report five main types of stress conditions requiring different 

breeding/agronomic approaches (Fig. 2B). A related larger-scale method, referred to as Mega-

Environments, has been used by CIMMYT to target breeding since the 1990s (Rajaram et al., 1994; 

van Ginkel et al., 2002; Cairns et al., 2013). Though less mainstream in the CGIAR in terms of centers 

and traits, TPE and Mega-Environment work has the potential to help better-target breeding 
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programs across scales (see Fig. 2C). Similar TPE analysis has also been done for chickpea in India 

(Hajjarpoor et al., 2018). 

 

The first step across breeding programs should be to map what stresses exist currently (in recent 

decades) to then analyze changes in stress patterns under future climates (Harrison et al., 2014; 

Lobell et al., 2015). Using TPE results to stratify the target geographic area of the breeding program, 

in combination with socio-economic (e.g. farmer preference) studies, breeding programs can then 

decide which products are most relevant and impactful. Contrary to the private sector (Cooper et al., 

2014a; Voss-Fels et al., 2019a; c), however, to the best of our knowledge, the extent to which this is 

currently done in a systematic way across the CGIAR system is very limited. Yet, taking into account 

the TPE definition as part of the definition of the breeding products will allow modelers to impact 

breeders, while allowing breeders to discuss model results from the start of the breeding process. 

 

2.3. Design of ideotypes for future target environments 

With a clear understanding of the target stresses for breeding, a key use of process-based crop 

models is to determine which traits can maximize yield in each target environment. When applied to 

a range of traits simultaneously, this then becomes a process referred to as ideotype design (Donald, 

1968; Rasmusson, 1987). Ideotypes can be developed for current as well as for future climates via a 

variety of methods ranging from iterative testing changes in model parameters (Suriharn et al., 

2011; Dingkuhn et al., 2015), optimization to maximize mean yield and minimize yield variability 

(Semenov and Stratonovitch, 2013; Hammer et al., 2020), or by developing gene- or trait × gene-

specific components into the crop models (White and Hoogenboom, 1996; Hoogenboom et al., 

2004; Messina et al., 2006). Modeling in this case is based on traits that have previously indicated 

promise for example in boosting yield potential (Reynolds et al., 2012), adaptation to heat stress 

(Cossani and Reynolds, 2012), amongst others. Table 1 summarizes all existing studies in which 

models have been used to design ideotypes within the CGIAR; that is, conducted by CGIAR scientists 

on CGIAR mandate crops and geographic areas. 

 

[Table 1 near here] 
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The 12 studies listed in Table 1, published in a span of 9 years, indicate that CGIAR Centers are very 

active in this area of work. The list, while not extensive in terms of crops or countries (i.e. covers five 

crops across five countries), offers valuable insights as to the methods used and the potential value 

of these analyses for breeding programs. Foremost, we note that all studies use systematic 

parameter modifications to create ideotypes, which suggests opportunities to explore optimization 

methods as well as more direct gene-to-phenotype modeling (e.g. van Eeuwijk et al., 2019). 

Additionally, the similarity in the ideotypes proposed for different studies (e.g. chickpea, sorghum 

and groundnut) suggests the need for refinement in the traits assessed through discussion with crop 

improvement teams, or through the use of more detailed eco-physiological models (Rebolledo et al., 

2015; Dingkuhn et al., 2016). Such similarity could also suggest that the models may fail to capture 

cropping system dynamics realistically when subjected to these parameter modifications. 

Furthermore, little connection is seen in most studies between the parameter variations proposed 

and existing ideotypes for these crops, except for the study of Mottaleb et al. (2017). Additionally, 

there is a need to ensure that parameter modifications, especially when several traits are simulated 

simultaneously, are done within realistic biological bounds (Koornneef and Stam, 2001). 

 

Finally, we note that moving from a set of prescribed changes in model parameter values (as 

reported in the studies listed in Table 1) to a range of phenotypic screens that can be feasibly 

measured and selected for in breeding trials is not a trivial process. Most notably, it requires 

delivering information on (i) the available genetic diversity, (ii) heritability, and (iii) high-throughput 

phenotyping methods for the trait in question. Future research within and outside the CGIAR will 

need to capitalize on existing well-calibrated models, results from environmental characterization, 

methods to connect eco-physiological models with genetic data (see Sect. 2.4), in better connection 

with existing ideotypes and crop improvement teams and their knowledge, needs and priorities. 

 

2.4. Assisting varietal selection through linking crop models and genetic information 

A more recent area of work aims at directly linking crop model and genetic information with the aim 

of addressing two different, but related, questions (i) what is the phenotypic response of a set of 
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genotypes for which the genetics are known, but on which no phenotyping has been conducted?; 

and (ii) what is the phenotypic response of a set of genotypes (with known genetics) in a location 

where environmental (soil, climate) characteristics are known, but no phenotyping has been 

conducted? As the methods to be used may depend on the crop and geographic areas of interest 

(e.g. due to differences in data availability, targets, and breeding methods), several potential 

avenues need to be explored to address these questions (Asseng et al., 2019a). These are discussed 

below. 

 

2.4.1 Link environmental information into genomic selection models 

Genomic selection (GS) that leverages genome-wide molecular marker information to select 

individuals based on their predicted genetic merit (Meuwissen et al., 2001) is a promising tool for 

accelerating crop genetic gains in the face of climate change. In a recent paper, Zhang et al. (2017) 

reported genetic gains of 0.225 ton ha-1 per cycle (or 0.100 ton ha-1 year-1) from rapid cycling 

genomic selection for four recombination cycles in a multi-parental CIMMYT tropical maize 

population (Fig. 3). However, in spite of these early findings and the fact that GS has revolutionized 

animal breeding by increasing the accuracy of selections and reducing cycle time and cost (Hayes et 

al., 2013; Hickey et al., 2017), its implementation in CGIAR crop breeding programs is still limited 

(focusing primarily on the major cereals), in part due to costs associated with routine evaluation and 

relatively low prediction accuracy due to G×E. 

 

[Figure 3 near here] 

 

CGIAR has done extensive research to evaluate the genomic predictabilities of several traits 

including phenology, grain yield and its components, disease resistance, quality and micronutrients 

(Juliana et al., 1887; Grenier et al., 2015; Crossa et al., 2016a; Juliana et al., 2017a; Sukumaran et al., 

2018). The accuracy of forward predictions for grain yield (using a previous nursery/year to predict 

the next nursery/year) is, however, low and highly influenced by the environment (Juliana et al., 

1887), thereby highlighting the importance of incorporating environmental data in genomic 

prediction models for grain yield (van Eeuwijk et al., 2019; Bhandari et al., 2019). Several novel 
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methods and statistical models for modeling genomic relationships, pedigree relationships, 

environmental data and genomic × environment (Gi×E) interactions have been developed and 

evaluated in the CGIAR. These methods (see Table 2) vary in the type of information they use as 

input, the way they assess Gi×E interactions, and their prediction purpose and accuracy. Notably, 

studies comparing the predictive abilities of some of these approaches have also been conducted 

(Pérez-Rodríguez et al., 2012; Juliana et al., 2017b; Montesinos-López et al., 2018a).  

 

[Table 2 near here] 

 

While GS models are promising tools to accelerate breeding gains, further research is needed to 

understand how they fit in different stages of the breeding cycle, their comparative advantage over 

conventional breeding, their integration with rapid cycling technologies such as speed breeding 

(Voss-Fels et al., 2019b), and the type of approach used to integrate crop and genomic models 

(Messina et al., 2018; Voss-Fels et al., 2019a; van Eeuwijk et al., 2019). Experience for hybrid maize 

breeding in the private sector, however, offers evidence of the potential of GS for enhancing 

breeding gains (Cooper et al., 2014b, 2020). 

 

2.4.2 Models that capture trait-trait relationships 

Crop models aimed at capturing trait-trait relationships, developed with sufficient simplicity to be 

understandable, yet with enough mechanistic detail to be robust, can also help crop improvement 

teams in the selection process. CGIAR involvement and leadership in this area is very limited. These 

models can be useful in situations where a trait is too difficult to screen but is clearly predictable on 

the basis of other, more easily measurable, traits. Fundamental changes in the structure of current 

crop models would, however, be required for this approach to be implemented. That is, models 

should be sufficiently generic to be applicable across genotypes with limited or no calibration 

requirements (Soltani and Sinclair, 2012; Kholová et al., 2014; Holzworth et al., 2014). More 

flexibility in the types of model inputs may also be required when dynamic changes in certain plant 

traits are used as predictors. For instance, prediction modeling for genotype values can use 

correlated physiological traits measured using high-throughput phenotyping (HTP) platforms. This, in 
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turn, facilitates indirect selection for grain yield in early-generations. Integration of HTP data for 

canopy reflectance and vegetation indices in genomic and pedigree-relationship based prediction 

models has proven to increase prediction accuracies in several studies (Rutkoski et al., 2016; Sun et 

al., 2017, 2019; Juliana et al., 2019). 

 

2.4.3 Gene-based crop simulation models 

Another way to couple crop models and genetic data is to develop models or model components 

that, from the start, use genetic and environmental information and are based on empirical 

relationships from available agronomic trial and marker data. This can be achieved through a highly 

dynamic approach (Hwang et al., 2017), at the expense of increasing uncertainty, or through 

prediction of crop state variables at coarser time scales, at the expense of mechanistic detail. 

Dynamic approaches that link genetic information with crop simulation models have proved 

successful for crop development variables (i.e. phenology) (White and Hoogenboom, 1996; Yin et al., 

2004; White et al., 2008) as well as for more complex traits (Chenu et al., 2009; Bertin et al., 2010). 

The current level of direct engagement and leadership by the CGIAR in this line of work is very 

limited, likely due to a combination of CGIAR center-specific focus, funding sources for modelers, 

and limited uptake and applicability of these models in CGIAR breeding programs. 

 

2.5. Optimization of breeding methods through genetic modeling and simulation  

In addition to modeling of cropping systems and trait-specific responses, simulation work also 

extends to the design of breeding pipelines. While not directly related to crop modeling, we include 

this area of work in our review as constitutes part of the simulation tools available to crop 

improvement teams. These computer tools are capable of simulating the performance of a breeding 

strategy. For instance, QuLine, can simulate the selection of inbred lines, which means most major 

food cereals in the world, plus basically all leguminous crops (Wang et al., 2003, 2005; Wang and 

Pfeiffer, 2007). QuLine has been used to compare and optimize conventional selection strategies 

(Wang et al., 2003, 2009; Li et al., 2013b), to predict cross performance using known gene 

information (Wang et al., 2005), and optimize marker assisted selection to pyramid multiple genes 

(Wang et al., 2007). 
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3. Limitations of existing approaches and future work 

The use of crop models to accelerate breeding under changing climates is a complex and rapidly 

evolving area of work, especially with regards to linking crop models and genetic data. At the same 

time, with the availability and affordability of high throughput phenotyping and genotyping 

technologies, most breeding programs are undergoing major transformations in the way they 

operate, most notably through the incorporation of genomic selection and modeling. The CGIAR is 

no exception to these transformations, as shown by the establishment of the Excellence in Breeding 

Platform and the Crops to End Hunger Initiative1, and the existing research on genomic selection 

(Sect. 2.4.1). Under these initiatives, breeding programs are expected to become more focused and 

impactful, with clearly set product profiles that clearly outline geographic, farmer and consumer, as 

well as trait priorities. Hence, it is in the context of these transformations that crop modeling needs 

to operate, in an effective, flexible and agile way, to provide crop improvement teams with tools and 

information that can help them make informed decisions.  

 

An emerging result from the review of Sect. 2 is that there is no common protocol or approach in the 

CGIAR to inform breeding programs. This is in part due to the diversity of methods and approaches 

used, but also due to the lack of collaboration platforms for crop modelers, as well as between 

modelers and crop improvement teams. In addition, varying degrees of leadership by the CGIAR and 

coordination between CGIAR Centers also exists with respect to the integration of modeling into 

breeding programs. As a result, crop modeling activities have little perceived and actual impact on 

breeding decisions and the breeding process itself. We highlight four suggestions for targeted joint 

work across the modeling and breeding communities. 

(i) Actively take part in the transformation of the breeding programs. Many CGIAR modeling 

studies, especially those focused on ideotype design, fail to capture the range of traits relevant 

                                                           

1
 The CGIAR Crops to End Hunger Initiative (CtEH Initiative) seeks to improve and modernize CGIAR crop 

breeding programs, moving toward using improved breeding approaches. See document of the 8
th

 CGIAR 

System Council meeting here https://storage.googleapis.com/cgiarorg/2019/04/SC8-08-CtEH-Module.pdf. 

 

https://storage.googleapis.com/cgiarorg/2019/04/SC8-08-CtEH-Module.pdf
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in crop improvement, the range of model outputs and spatial and temporal scales that would be 

useful to them, and the parts of the breeding process that need to be informed (see Sect. 2.3). 

As breeding programs become more modern (Voss-Fels et al., 2019c), crop modelers need to be 

an active part of crop improvement, ensuring crop improvement teams are truly 

multidisciplinary, including crop physiology and modeling, quantitative genetics, genomic 

prediction and breeding. Given its potential to enhance breeding gains (Messina et al., 2018; 

Voss-Fels et al., 2019a), a critical part of this endeavor will be the integration of crop modeling 

with genomic selection (Sect. 2.4.1), and the use of crop models to map and stratify stress 

variation and response in the target breeding area (Sect. 2.2). As has been demonstrated by 

some private sector breeding programs (e.g. Cooper et al. 2014), if these tools are integrated to 

enable the definition and implementation of breeding products, the impact of the breeding 

programs can be maximized. 

(ii) Move towards simpler models that ably simulate key traits and their responses across 

environments and management conditions. In the last decade, most model improvements have 

been relatively slow (compared to the rate of knowledge generation), limited by data 

availability, typically incremental (i.e. without thinking out of the box), and focused on a small 

range of crops (Challinor et al., 2014; Maiorano et al., 2017). At the same time, because crop 

models are increasingly being used beyond their original design purposes, they have also tended 

to become overly complex. Furthermore, as summarized by Rotter et al. (2011) and Challinor et 

al. (2018), major limitations exist in process-based crop models regarding the processes they 

consider, the accuracy and precision with which they do so, and the true significance of their 

parameters. New models need to be designed that specifically incorporate those traits that are 

of importance to CGIAR breeding programs and crops, as well as their response to key stresses 

and their interactions, considering the proper balance between parsimony, and biological 

relevance (Hammer et al., 2019). Leapfrog changes in crop modeling frameworks, such as those 

proposed by Droutsas et al. (2019) and Soltani and Sinclair (2011, 2012), offer promise in 

creating models that can be more effectively and rapidly improved to support the breeding 

process (e.g. by adding new processes and/or traits, or by connecting them with genetic or 

phenotypic data) [e.g. Messina et al. (2015)]. A documented portfolio of models will allow 

selection of best-bet models on a case-by-case basis. 

(iii) Modernize data storage and interoperability. Collaboration across researchers in crop modeling 

in global or regional projects, including the Agricultural Model Inter-comparison Project (AgMIP), 
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has helped the crop modeling community to identify high-value datasets (Asseng et al., 2015; 

Raymundo et al., 2018), resulting in improved models with greater applicability for breeding 

under future climates, for example for heat stress response on wheat (Asseng et al., 2013, 2014, 

2019b), or CO2 response on maize (Durand et al., 2018). As breeding programs become more 

data-driven (e.g. through the application of genomic selection), joint efforts between the 

modeling and breeding communities will help develop and deploy common standards and inter-

connected data storage, translation, transfer, and use platforms that enable the seamless 

integration of crop modeling into breeding methods. 

(iv) Fully take advantage of phenotyping and breeding data for modeling key traits. Lack of 

appropriate documentation and benchmarking and extensive model evaluation across target 

breeding environments implies that the range of model capabilities is generally poorly 

understood within the modeling community itself (Ramirez-Villegas et al., 2015; Challinor et al., 

2018), and even less so by the breeding community. Testing models against experimental data 

will generate closer links between crop model parameter sets and specific crop varieties, and 

enable faster and more targeted model development and improvement. 

 

4. Conclusions 

We have reviewed the use of crop models in support of accelerated breeding, with a particular focus 

on the CGIAR. Crop modeling can support breeding efforts in many ways, including assessing 

genotypic adaptability and stability, characterizing and identifying target breeding environments, 

identifying traits and/or eco-physiological characteristics that maximize yield for such environments, 

and making predictions about the breeding value of the genotypes. Crop modeling science, 

especially within the CGIAR, has contributed to all of these, with clear strengths around knowledge 

generation on eco-physiology, the translation of such knowledge into crop model development and 

evaluation, and the assessment of G×E×M interactions. However, much progress remains to be 

made if crop modeling is to effectively contribute to the accelerated breeding rates required to 

adapt to climate change (see Sect. 1.2).  

 

In a decade in which major CGIAR system breeding program transformations are expected, crop 

modelers will need to be part of crop improvement teams, with a common understanding of 
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breeding pipelines and model capabilities and limitations, and common data and protocols, ensuring 

they follow and deliver according to common and clearly defined breeding products. Doing so will 

imply more rapid and better targeted crop model improvement activities, and ‘thinking out of the 

model box’ to create novel approaches that capitalize on the availability of genetic data, thus 

ultimately allowing the use of the knowledge embedded in current models to effectively address 

breeding program questions. Standard tests of crop model skill, whilst requiring perhaps a little 

courage on the part of modelers, will ultimately be of great service to the modelling and breeding 

communities, as well as those who use the results of their work. 
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Figure captions 

 

Figure 1 Average simulated future potential benefits from genotypic adaptation (including ideotype 

design) as derived from 19 modelling studies for wheat (n=15 simulations), sorghum (n=4), pearl 

millet (n=48), groundnut (n=12), chickpea (n=48), rice (n=159), maize (n=19), and barley (n=48). The 

number of data points used to compute means and error bars follows the number of studies, and 

the number of sites, varieties, and scenarios reported in each study. The height of the bar shows the 

mean of all reported simulations for each crop, and error bars extend 5–95 % of the data. 
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Figure 2 Three major CGIAR examples of environmental characterization to support breeding. (A) 

Drought stress patterns for rice in central Brazil (Ramirez-Villegas et al., 2018); (B) drought stress 

patterns for post-rainy sorghum in India (Kholová et al., 2013); and (C) map of maize breeding mega-

environments from CIMMYT (Cairns et al., 2013). Panels A and B are redrawn from the original 

studies, and data from C was provided by CIMMYT. 
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Figure 3 Response to rapid GS cycling for grain yield from the rapid cycling recombination genomic 

selection for four cycles (C1, C2, C3, and C4). Colored dots indicate means of the checks (red) and of 

the entries (blue). Figure taken from Zhang et al. (2017). 
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Table 1 Key CGIAR model-based ideotype design studies  

Crop Region Model Proposed ideotype / trait change Reference 

Chickpea 

South Asia 

and East 

Africa 

CROPGRO 

(DSSAT) 

– Increased maximum leaf photosynthesis rate, 

partitioning of daily growth to pods and seed-filling 

duration. 

– Drought and heat tolerance: greater rooting density, 

water extraction capacity, and lower sensitivity for 

seed-set, individual seed growth, and partitioning 

(depending on location) 

Singh et al. 

(2014a) 

Peanut India 
CROPGRO 

(DSSAT) 
Longer maturity 

Singh et al. 

(2012) 

Peanut 

India and 

West 

Africa 

CROPGRO 

(DSSAT) 

– Increased crop maturity, leaf photosynthesis, 

partitioning to seeds, and seed filling duration 

– Greater heat and drought (root traits) tolerance 

Singh et al. 

(2014b) 

Peanut India GLAM 

Increasing maximum photosynthetic rates, total 

assimilate partitioned to seeds, and, where enough soil 

moisture is available, also maximum transpiration rates 

Ramirez-

Villegas et 

al. (2016) 

Lentil East Africa SSM 

– Shorter cycle of lentil 

– Limited transpiration rates under high vapor pressure 

deficit 

Ghanem et 

al. (2015) 

Lentil South Asia SSM 

– Shorter cycle of lentil 

– Limited transpiration rates under high vapor pressure 

deficit 

Guiguitant 

et al. (2017) 

Sorghum 

India and 

West 

Africa 

CERES-

Sorghum 

– Increased crop maturity, radiation use efficiency, 

relative leaf size and partitioning of assimilates to the 

panicle. 

– Greater heat (lower sensitivity of reproductive 

processes) and drought (root traits) tolerance 

Singh et al. 

(2014c) 

Sorghum India APSIM 

Limited transpiration rates under high vapor pressure 

deficit, especially combined with enhanced water 

extraction capacity at the root level. Smaller canopy 

size, later plant vigor or increased leaf appearance rate. 

Kholová et 

al. (2014) 

Pearl 

millet 

India and 

West 

Africa 

CERES-

Pearl millet 

– Increased crop duration and yield potential traits 

(photosynthesis, partitioning) 

– Drought and heat tolerance in arid and semi-arid hot 

tropical climates. 

Singh et al. 

(2017) 
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Rice Africa ORYZA2000 
Greater crop duration and increased maximum 

photosynthetic rate at high temperatures 

van Oort 

and Zwart 

(2018) 

Rice South Asia ORYZA2000 

Deeper roots (from 45 to 50 cm) to reduce plant 

sensitivity to drought. Drought onset occurs 3 weeks 

after transplanting. 

Mottaleb et 

al. (2017) 

Rice Philippines ORYZA2000 
Greater duration and tolerance to extreme 

temperatures 

Li and 

Wassman 

(2010) 

 

 

 

Table 2 List of statistical approaches that incorporate environmental information into genomic 

prediction models 

 
Method description Reference(s) 

i 
Prediction model integrating pedigree based additive genetic 

covariances between relatives and G×E interactions  

Crossa et al. (2006) 

 

ii 
Multi-environment prediction framework for modeling G×E 

interactions using pedigree and genomic information 
Burgueño et al. (2012) 

iii 
Reaction norm model for incorporating the main and interaction 

effects of high-dimensional markers and environmental covariates  
Jarquín et al. (2014) 

iv 

Threshold models incorporating Gi×E and additive × additive × 

environment (G×G×E) interactions for predicting ordinal categorical 

traits  

Montesinos-Lopez et al. 

(2015) 

v 
Bayesian mixed-negative binomial genomic regression model for 

count data that integrates G×E interactions 

Montesinos-Lopez et al. 

(2016a) 

vi 

Marker × environment interaction (Mk×E) genomic model for 

predicting non-phenotyped individuals and identifying genomic 

regions associated with yield stability and environmental specificity 

Crossa et al. (2016b) 

vii 
Models integrating genomic, pedigree and environmental covariates 

for predicting grain yield in different agro-ecological zones  
Saint Pierre et al. (2016) 
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viii 

G×E interaction kernel regression models using nonlinear Gaussian 

kernels for modelling marker main effects and marker-specific 

interaction effects  

Cuevas et al. (2017) 

ix 
Single-step approach incorporating genomic, pedigree and G×E 

interaction information for predicting wheat lines in South Asia 

Perez-Rodriguez et al. 

(2017) 

x 
Pedigree-based reaction norm model incorporating G×E interactions 

for multi-environment trial data 
Sukumaran et al. (2017), 

xi 
Bayesian approach and a recommender systems approach for 

predicting multiple traits evaluated in multiple environments 

Montesinos-Lopez et al. 

(2016b, 2018b) 

xii 

G×E interaction model in durum wheat evaluated using three cross-

validation (CV) schemes for predicting incomplete field trials (CV2), 

new lines (CV1), and lines in untested environments (CV0) 

Sukumaran et al. (2018); 

Roorkiwal et al. (2018) 

 

 


