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Abstract 

Oil palm, Elaeis guineensis Jacq., is currently cultivated on 19 M ha and palm oil represents 

more than one-third of the global vegetable oil market. Addition of nitrogen via legume 

cover crop and fertilizers is a common practice in industrial oil palm plantations. Part of this 

added nitrogen is prone to loss from the field, contributing significantly to environmental 

impacts. To improve the sustainability of palm oil production, it is crucial to determine 

which management practices minimize N losses. Continuous field measurements would be 

prohibitively costly as a monitoring tool, and in the case of oil palm, available models do not 
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account for all the potential nitrogen inputs and losses or management practices. In this 

context, we developed IN-Palm, a model to help managers and scientists estimate nitrogen 

losses to the environment and identify best management practices. The main challenge was 

to build the model in a context of knowledge scarcity. Given these objectives and 

constraints, we developed an agri-environmental indicator, using the INDIGO® method and 

fuzzy decision trees. We validated the nitrogen leaching module of IN-Palm against field 

data from Sumatra, Indonesia. IN-Palm is implemented in an Excel® file and uses 21 readily 

available input variables to compute 17 modules. It estimates annual emissions and scores 

for each nitrogen loss pathway and provides recommendations to reduce nitrogen losses. 

IN-Palm predictions of nitrogen leaching were acceptable according to several statistics, 

with a tendency to underestimate nitrogen leaching. However, we highlighted necessary 

improvements to increase IN-Palm precision before use in plantations. 

Core ideas 

- We used INDIGO® method and fuzzy decision trees to develop IN-Palm indicator 

- IN-Palm is run in Excel® using 21 input variables to estimate 6 loss pathways of N 

- N leaching predictions against field data were acceptable, although underestimated 

- IN-Palm outputs were sensitive to management changes and climate variability 

 

1. Introduction 

Oil palm is an important crop for global production of vegetable oil and for the economies of 

many tropical countries. The area of land under oil palm is currently about 19 M ha 

(FAOSTAT, 2014) and palm oil represents more than one third of the global vegetable oil 

market (Rival & Levang, 2014). Over the period 1990-2010, rapid expansion of the area 

cultivated to oil palm was associated with deforestation and oxidation of peat soils, 

contributing to greenhouse gases emission, mainly in Indonesia and Malaysia (Carlson et al., 

2012; Koh, Miettinen, Liew, & Ghazoul, 2011; Miettinen et al., 2012). 

Oil palm is very productive and addition of nitrogen (N) via legume cover and fertilizers is a 

common practice to maintain productivity and avoid depleting soil resources. Rates of N 

fertilizer application can amount to 100 to 200 kg N ha yr-1 under adult palms, and 

application of fertilizers accounts for a large share of the production costs, ranging between 

46 % and 85 % of field costs (Pardon, Bessou, Nelson, et al., 2016). A part of fertilizer-
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derived N is prone to be transferred to be lost from the field and can contribute significantly 

to environmental impacts, such as eutrophication, acidification and climate change 

(Schmidt, 2010; Choo et al., 2011; Comte, Colin, Whalen, Gruenberger, & Caliman, 2012; 

Corley & Tinker, 2015). N compounds that are particularly important include ammonia 

(NH3), nitrous oxide (N2O), which is a potent greenhouse gas, and nitrate (NO3
-), which is 

well known to affect aquatic ecosystem functioning.  

To improve the sustainability of palm oil production systems, it is crucial to determine which 

management practices minimize N losses. Because N losses involve numerous compounds 

and impact pathways and are temporally and spatially highly variable, monitoring them with 

field measurements is prohibitively expensive. On the other hand, models can be useful to 

estimate potential losses based on current knowledge. However, in the case of oil palm 

plantations, there is insufficient knowledge to appraise all loss mechanisms. Available 

models do not account for all the potential N inputs and losses or management practices, 

such as residue and cover crop management. This leads to high uncertainty in N loss 

estimations (Pardon, Bessou, Saint-Geours, et al., 2016). In this context, we decided to 

develop a model specific to oil palm that estimates all potential N losses to the 

environment, as influenced by management practices, throughout the whole crop cycle. 

Given our objectives and constraints, we decided to develop an indicator derived from the 

nitrogen indicator of the INDIGO® method for developing agri-environmental indicators (C. 

Bockstaller & Girardin, 2008; C. Bockstaller, Girardin, & van der Werf, 1997). Such indicators 

are more suitable than process-based models for use in conditions with knowledge scarcity, 

as they use a limited number of input variables, while harnessing readily accessible data 

from a range of sources, such as measured or modeled, qualitative or quantitative, empirical 

or expert knowledge (P. Girardin, Bockstaller, & Werf, 1999). In their typology of indicators, 

C. Bockstaller, Feschet, & Angevin (2015) described such indicators as predictive effect-

indicators based on an operational model, differing from causal indicators using one or 

simple combination of input variables and measured effect indicators. This kind of indicator 

also has the advantage of being sensitive to practices and allowing ex-ante assessments in 

the form of simulations. Thus, even if estimates made by indicators are less precise than 

those made by the best process-based models, they may be sufficient to assess 

environmental risks and to support decisions based on site-specific practice levers. 

This paper describes our development of an agri-environmental indicator, IN-Palm, designed 

to enable managers of oil palm plantations to answer the question: “what practices can I 

implement in this field, this year, to reduce N losses, given the environmental conditions, 

characteristics of the field, and long-term consequences of previous practices?”. IN-Palm 
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was derived from the INDIGO® indicator for N risk assessment in vineyards. A preliminary 

adaptation of the INDIGO® N indicator to oil palm had been done by Carcasses (2004), but it 

was incomplete as it estimated only three types of N loss, i.e. N leaching, NH3 volatilization 

and N2O emissions, and only for oil palm plantations older than 7 years. It did not use fuzzy 

logic and had not been validated against field data. In order to improve the extent and 

relevance of the risk assessment, we now account for all the loss pathways throughout the 

complete crop cycle. In order to address the lack of knowledge and to include all the 

available and relevant data, we used a decision tree modeling approach (Breiman, 1984) to 

design most of the indicator modules, combined with fuzzy logic (Zadeh, 2008) to obtain a 

more realistic and sensitive output space. Fuzzy decision tree modeling approach has 

already been used for agri-environmental modeling (e.g. van der Werf & Zimmer, 1998, for 

the pesticide indicator of the INDIGO® method; see Papadopoulos, Kalivas, & Hatzichristos, 

2011, for a detailed example of the method applied to N balance in agriculture). Here, we 

present the design, calibration and validation of IN-Palm. We finally discuss the results of 

scenario testing aimed at assessing the sensitivity of the indicator to management practices, 

and hence its usefulness as a decision-making tool for field management. 

2. Materials and methods 

2.1. INDIGO® method and fuzzy decision tree modeling approach 

The development of INDIGO® agri-environmental indicators started in the 90’s (C. 

Bockstaller et al., 1997; P. Girardin & Bockstaller, 1997) and has resulted in a set of agri-

environmental indicators (C. Bockstaller et al., 2009, 2008). The original concept was to 

build operational models that would be efficient to improve agricultural management 

practices, despite the lack of knowledge to model all soil-plant-atmosphere transfer 

mechanisms involved in agroecosystems. 

INDIGO® indicators are generally structured as a set of risk (R) modules, each yielding an 

output, e.g. the R-N2O module estimates the risk linked to nitrous oxide emissions. As 

indicators must be readily understandable by non-experts, it was proposed that the outputs 

be expressed not in physical units but in dimensionless scores on a scale of 0 to 10, 

calculated with respect to reference values. The reference values represent minimum values 

of the indicator output for which the agroecosystem is considered to be sustainable (C. 

Bockstaller et al., 1997). 

To develop IN-Palm, we followed the five-step methodology proposed by Girardin et al. 

(1999): (1) identification of the objectives and end-users, (2) construction of the indicator, 
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(3) selection of reference values, (4) sensitivity analysis, and (5) validation of the indicator, 

i.e. demonstration that the indicator satisfies the target objectives. The objective of IN-Palm 

is to serve as a decision-support tool for oil palm plantation managers to help them 

minimize risks of N loss to the environment. 

We also introduced the new approach of decision tree modeling for most of the modules. 

Decision tree modelling (Breiman, 1984) is particularly suitable here, as it enables 

quantitative outputs to be obtained without simulating the actual processes that are not 

fully understood, but by instead integrating expert knowledge as rules. One of the limits of 

standard decision trees, though, is that their output space is discontinuous. Indeed, the 

model may react abruptly to a small variation of input, i.e. with a threshold effect between 

limit of classes (Christian Bockstaller, Beauchet, Manneville, Amiaud, & Botreau, 2017), 

while the actual system may react more smoothly. Or it may not react, due to a too-coarse 

class structure, while the actual system does react. In order to obtain a more realistic output 

space, the modeller needs to increase the number of rules, which requires more knowledge 

and quickly increases the complexity of the model (Craheix et al., 2015). Application of fuzzy 

logic (Zadeh, 2008) to decision trees is a very efficient method in such a context, as 

continuous outputs can be obtained from exactly the same tree structure, without requiring 

more knowledge (Olaru & Wehenkel, 2003). Another advantage of the method is that this 

process of aggregation is transparent and reproducible. 

To build and compute our fuzzy decision tree modules we used the same method as van der 

Werf & Zimmer (1998). First, for each module, the choice of the input variables, the 

structure of the tree, the conclusions of the rules, and the threshold values between classes 

were defined by expert judgment, using all available knowledge. Second, for each input 

factor, we defined two classes: Favourable and Unfavourable. More classes for each factor 

would require more knowledge to justify the threshold values, whereas preliminary tests, 

using the Fispro software (Guillaume & Charnomordic, 2010), showed that precision in 

outputs was not significantly improved. Third, we used a cosine function for all membership 

functions, because this produces a smoother and more realistic transition between the two 

classes than a linear function, without requiring more parameters (van der Werf & Zimmer, 

1998). Fourth, to deduce the outputs of each module, we used Sugeno’s inference method 

(Sugeno, 1985). 
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2.2. Modeled processes 

Recent studies have identified important peculiarities of N dynamics and losses in oil palm 

plantations. First, published measurements show that N dynamics and N losses vary over 

the cycle, with highest losses reported under young plantations (Pardon, Bessou, Nelson, et 

al., 2016). 

Second, a legume understorey, e.g. Pueraria phaseoloides or Mucuna bracteata, is generally 

sown at the beginning of the growth cycle, and the N fixed by the legume was identified as 

one of the largest N fluxes (Pardon, Bessou, Nelson, et al., 2016). The amount of legume 

understorey was also reported to be one of the most influential parameters on N losses 

before 7 years of age in a sensitivity analysis of APSIM-Oil palm simulation model (Pardon et 

al., 2017). Moreover, in a range of models compared, N fixation was always modeled with 

constant fixation rates (Pardon, Bessou, Saint-Geours, et al., 2016), while in the field, 

legumes usually have the capacity to regulate their N provision, by fostering N fixation or N 

uptake from soil, depending on soil mineral N content (Giller & Fairhurst, 2003). 

Third, internal N fluxes within the agroecosystem, such as N released during decomposition 

of palm residues, were identified among the largest N fluxes (Pardon, Bessou, Nelson, et al., 

2016). Moreover, the modeling, or not, of the kinetics of residue N release to the soil had a 

significant impact on the magnitude and timing of the first peak of losses simulated by 

several models (Pardon, Bessou, Saint-Geours, et al., 2016). 

Fourth, N losses were reported to have a high variability, depending, among others, on 

management practices and spatial variability (Pardon, Bessou, Nelson, et al., 2016). For 

instance, the amount of understorey vegetation, or the placement of residues on the 

ground, may affect runoff and erosion. 

We designed IN-Palm in order to account for the peculiarities of the oil palm system and 

obtain a complete estimate of N losses: (1) modeling of all loss pathways at all crop ages ; 

(2) modeling the contribution of the legume understorey in one specific module, with N 

fixation rate depending on mineral N available in soil; (3) modeling the kinetics of litter 

decomposition and N release in soil with two intermediate modules; and (4) accounting for 

the spatial effect of management practices, in a module estimating NH3 volatilization and an 

intermediate module estimating the fraction of soil covered.  

2.3. Data used for design, calibration, reference values and validation 

Different sources of data were combined for four different purposes: (1) to design the 

structure of the indicator, (2) to calibrate modules, (3) to define reference values for losses, 
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and (4) to validate the R-Leaching module and test scenarios. For each of these purposes, 

one or several sources of data were used (Table 1). 

For design of the structure, calibration of the modules, and definition of reference values, 

we mainly used three sources of data: measurements of N fluxes and losses in oil palm 

plantations synthesised in a literature review (Pardon, Bessou, Nelson, et al., 2016); 

qualitative and quantitative data from a range of models used for estimating N losses in oil 

palm and assessed in a model comparison (Pardon, Bessou, Saint-Geours, et al., 2016); and 

expert knowledge from a panel of experts. 

For design of the structure and module calibrations, we also used existing models. We used 

two regression models, one for estimating NH3 volatilization from organic fertilizer 

(Bouwman, Boumans, & Batjes, 2002a) and the other for NOx emissions (Bouwman, 

Boumans, & Batjes, 2002b). To calibrate the N2O emission modules we used the factors and 

classes defined in (Stehfest & Bouwman, 2006) model of N2O emissions. Finally, we used a 

dataset of 58,500 simulations (Pardon et al., 2017), from the APSIM-Oil palm process-based 

model (Huth, Banabas, Nelson, & Webb, 2014), for the calibration of the Palm N Uptake 

module and estimation of evapotranspiration in the Soil Water Budget module. APSIM-Oil 

Palm was the only process-based model validated for oil palm production which also 

included a prediction of N fluxes and evapotranspiration. In the absence of studies 

monitoring the dynamics of palm N uptake and evapotranspiration over the whole growth 

cycle of palms, APSIM-Oil Palm hence appeared to be the most robust source available to 

estimate these fluxes for different ages. 

For calibration of the R-Runoff-Erosion module, validation of the R-Leaching module, and 

the scenario testing, we used three measurement datasets from an oil palm plantation in 

Sumatra, Indonesia. The first dataset was from a 2-year-long trial investigating the response 

of N losses, via runoff and erosion, to slope and soil cover management under adult oil 

palms (Sionita, Pujianto, Bessou, Gervillier, & Caliman, 2014). The results of this trial were 

available in an aggregated format, and we used them for the calibration of the R-Runoff-

Erosion module. The second dataset, described in more detail below, was from an 8-year-

long trial in which N concentrations in soil solution were measured. We used this dataset for 

the validation of the R-Leaching module. The third dataset was a 16-year-long rainfall record 

and soil characteristics, already used in a model comparison (Pardon, Bessou, Saint-Geours, 

et al., 2016). We used this dataset to perform scenario testing of IN-Palm.  

The trial in which N concentrations in soil solution were measured was conducted between 

2008 and 2015 in a mature oil palm field. Nitrate and ammonium concentrations were 
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measured in soil solution at three depths (0.3, 1 and 3 m) under palms planted in 1993 on 

flat land with a sandy loam soil texture, less than 2% soil organic carbon (C) content, and 

average rainfall of 2,363 mm yr-1. The plot was managed following standard industrial 

management practices, and urea was applied manually twice per year in weeded circles of, 

on average, 1.65 m of radius around the palms. A total of 48 tension lysimeters (porous 

ceramic cups) were installed in 2005 and the data began to be stable in 2008, under 15-

year-old palms. Sixteen ceramic cups were located at each of the three depths to sample 

representatively the spatial variability of organic matter and fertilizer inputs within the 

plantation. For each ceramic cup, a suction of 80 kPa was applied twice a day and a 

composite sample was analyzed weekly to determine nitrate and ammonium 

concentrations. A total of 6465 soil solution samples were analyzed from 2008 to 2015. 

Weather data was recorded in an open area located 100 m from the experimental plot: 

rainfall and N concentration of rain were recorded daily; solar radiation, air temperature, air 

humidity and wind speed were recorded semi-hourly by a Davis automatic weather station. 

Urea application date and rate, as well as production of fresh fruit bunches, were also 

recorded.  

Table 1 around here. 
 
2.4. Validation of the R-leaching module 

In order to assess the capacity of the indicator to reach the objectives, we validated the R-

Leaching module. Three validation steps were proposed by C. Bockstaller & Girardin (2003): 

validation of the structure of the indicator by a panel of experts, validation of the soundness 

of indicator outputs, and validation of the utility by end-users. In this study, we performed 

the two first steps.  

Structure of the indicator was validated by a panel of experts, who are either co-authors of 

this paper or acknowledged. Experts’ fields of expertise were oil palm agronomy, N cycle 

and N emissions, and agri-environmental modeling. They evaluated the scientific validity of 

the indicator structure, the modeling approaches chosen, and the input variables and 

parameters selected. This evaluation was conducted several times during the development 

of the indicator. 

Validity of outputs was evaluated for the R-Leaching module, comparing modelled values to 

values calculated from field measurements. From the soil solution N concentration dataset, 

we calculated weekly mean N concentrations measured in the soil solutions collected from 

ceramic cups at 3 m depth. The N measured at 3 m depth was considered lost for palms, as 

most of the fine roots from palms are generally assumed to be located above 1.5 m depth 
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(Corley & Tinker, 2015). The number of samples per week at 3 m depth was very variable, 

ranging from 0 to 11 depending on many factors, such as soil moisture or technical 

difficulties to maintain the vacuum in tension lysimeters. In order to perform a robust 

validation, we ignored the least certain periods, when less than 3 samples were recorded 

per week. This led to a series of 24 complete months, all within the 2008-2011 period, 

among 96 months in total in the 2008-2015 period. However, we checked that the 

concentrations of mineral N measured at other dates were in the same range as in the time 

series of 24 months selected for the validation of the R-Leaching module. 

We calculated deep drainage using the water balance equation:  

                                                            

                    

(adapted from Corley & Tinker, 2015), where W is the plant available water in soil. 

Calculations were done at a daily timestep, for a soil depth of 1.5 m, assumed to include 

nearly all the fine roots of palms (Corley & Tinker, 2015). A too-deep soil thickness would 

have led to an overestimation of evapotranspiration, and hence an underestimation of 

drainage. Initial soil water was assumed to be at plant available water capacity, i.e. 

150 mm m-1 (Moody & Cong, 2008). Water intercepted by fronds, and eventually 

evaporated, was assumed to be 11% of rainfall (Banabas, Turner, Scotter, & Nelson, 2008; 

Kee, Goh, & Chew, 2000). Runoff water was estimated as a percentage of rainfall, using the 

equation from Sionita et al. (2014) relevant for this site’s conditions. Evapotranspiration was 

estimated using the Penman-Monteith equation (R. G. Allen, Pereira, Raes, Smith, & others, 

1998). Drainage was hence equal to the amount of water in excess of plant available water 

capacity, after computation of all other inputs and outputs. Daily input values necessary for 

calculations were rainfall, solar radiation, air temperature, air humidity and wind speed. 

Finally, we obtained daily values of N leaching by multiplying drainage by the average N 

concentration at 3 m depth. We cumulated these daily values in monthly values, to compare 

them to the monthly outputs of the R-Leaching module. 

To compare modelled and measured N leaching values we used a set of four model 

efficiency statistics and their respective ranges to define satisfactory results, according to 

Moriasi et al. (2007): (1) the coefficient of determination of the linear regression between 

modeled and observed values, considered to be acceptable when it is higher than 0.5; (2) 

the Root Mean Square Error to Standard Deviation Ratio, satisfactory when it is lower than 

0.7; (3) the Nashe-Sutcliffe efficiency, satisfactory when it is higher than 0.5; and (4) the 

Mean Error. Moreover, we completed these performance indicators with the method of the 
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probability area, using a likelihood matrix, which is particularly relevant for models yielding 

risk assessment, such as scores of losses (Aveline, Rousseau, Guichard, Laurent, & 

Bockstaller, 2009; C. Bockstaller & Girardin, 2003; Pervanchon et al., 2005). 

 
2.5. Scenario testing 

We also tested theoretical management scenarios, in order to check the sensitivity of the 

indicator to input variables, and its behaviour in different management conditions. This gave 

an idea of the indicator’s utility for the end-users in terms of sensitivity of simulated N 

losses to changes in management. 

The same soil characteristics and climate records were used as those in the model 

comparison performed by Pardon, Bessou, Saint-Geours, et al. (2016). We chose three 

scenarios: (1) standard management practices, as defined by Pardon, Bessou, Saint-Geours, 

et al. (2016); (2) composting of initial palm residues from the previous cycle, i.e. trunks and 

fronds at time of replanting, and recycling back to the field; and (3) adjustment of N 

fertilizer rates according to legume understorey and initial residue N inputs.  

These scenarios involved changes in most of the management practice input variables. For 

scenario 2, composting of initial residues is not a common practice yet, but could become an 

option so that we wanted to test the sensitivity of IN-Palm to such innovative practices. For 

scenario 3, we estimated the monetary savings resulting from fertilizer adjustment. 

Fertilizer applications corresponded to 25% urea and 75% ammonium sulfate (Pardon, 

Bessou, Saint-Geours, et al., 2016), and fertilizer price paid by industrial oil palm plantations 

in Indonesia ranged from 0.16 to 0.57 US dollars kg-1 for urea, and from 0.14 to 0.25 US 

dollars kg-1 for ammonium sulfate (Bessou, unpublished data, November 2019). 

In order to test the sensitivity to climate variations, we ran each scenario with five climate 

series, by offsetting the climate record against planting date by one year in each run 

(Pardon, Bessou, Saint-Geours, et al., 2016). 

 

3. Results 

3.1. General structure and outputs 

IN-Palm is implemented in an Excel file and consists of 17 modules and needs 21 readily 

available input variables relating to the crop, understorey, soil, land, weather, and 
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management of fertilizer and residues (Table 2). IN-Palm uses oil palm yield as an input, 

rather than modeling it explicitly, as do most fertilizer calculation methods based on N 

budget approaches. In this regard, IN-Palm aims at being complementary to existing crop 

models which already predict yield. Seven of the 10 risk modules were developed in this 

work: R-Runoff-Erosion, R-NH3-Organic, R-N2-Mineral, R-NOx-Mineral/Organic, R-N2O-

Baseline, R-NOx-Baseline, and R-N2-Baseline. Seven intermediate modules were also 

developed, in order to estimate intermediate variables needed to run the risk modules. 

Details of structure and operation are provided in a technical report in Supplementary 

Material. 

IN-Palm calculates emissions and scores for each risk module, for one hectare of palms, 1 to 

30 years old. All calculations are done monthly, except for 3 intermediate modules 

estimated annually, i.e. Litter Budget, Fraction of Soil Covered, and Palm N Uptake, as 

monthly calculations would increase complexity without improving precision. For each 

month, IN-Palm computes 5 main sets of calculations (Figure 1, Table 2). First, NH3 

volatilization from fertilizers is calculated. Second, intermediate variables on soil cover and 

water budget are calculated. Third, these intermediate variables are used to calculate 

denitrification from fertilizers (N2O, N2, NOx), and N losses via runoff and erosion. Fourth, 

net N inputs released to soil and plant uptake are calculated to estimate soil mineral N. 

Fifth, soil mineral N is used to calculate baseline denitrification (N2O, N2, NOx) and N 

leaching. 

Table 2, around here. 2-column fitting table, black-and-white in print 

Figure 1 around here. 2-column fitting figure, black-and-white in print 

 
Most of the risk module outputs are monthly emission factors, i.e. a percentage of N inputs 

or soil mineral N which is lost in the environment. For a given loss pathway, the monthly 

emission factor is transformed into a monthly N loss. Monthly losses are summed to obtain 

an annual loss and then converted into an annual score between 0 and 10. To convert a loss 

into a score we used the same function as C. Bockstaller and Girardin (2008, p. 35) based on 

a reference value of loss. For each loss pathway, we defined the reference value as equal to 

50 % of the N losses, measured or modelled, associated with standard practices in a range of 

soil and climate conditions (Pardon, Bessou, Nelson, et al., 2016; Pardon, Bessou, Saint-

Geours, et al., 2016). A score of 10 corresponds to no loss; 7 corresponds to the reference 

value of loss, i.e. emissions reduced by 50 % compared to standard practices; 4 corresponds 

to emissions with standard practices; and 0 corresponds to a loss more than three times 
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higher than that associated with standard practices. As N losses are highly dependent on 

palm age, we calculated reference values for each age, in order to obtain more sensitive 

scores. Over the whole cycle, average reference values are, in kg N ha-1 yr-1: 5 for NH3, 2.1 

for N2O, 0.8 for NOx, 5.1 for runoff-erosion and 20 for N leaching. 

IN-Palm also provides recommendations on possible management changes to reduce N 

losses. According to the N balance and N losses calculated, critical conditions are identified, 

such as a potential lack of available N to match the plant needs, or high N losses. Warning 

messages in the Excel tool are then parameterized to pop up when these critical conditions 

occur. First, recommendations are displayed in order to better adapt N inputs to plant 

needs. Second, for scores below 7, recommendations are provided for potential 

management changes specific to reduce N losses via specific pathways. 

Recommendations for improvements were most difficult to define for fertilizer application 

rate and date. Potential combinations of rates and dates are numerous, and the associated 

losses depend on many interacting processes over several months. Therefore, IN-Palm 

provides two more indicators to identify a priori (1) the riskiest month in which to apply the 

mineral fertilizers, and (2) the optimal month in the year and rate to apply fertilizers, aimed 

at reaching the expected yield while minimizing losses. This calculation is done assuming 

only one application per year, due to computing limitations in Excel spreadsheets. This 

limitation is restricted to the optimization calculation, though, as IN-Palm handles multiple 

applications per year in regular runs. More details on the recommendations are provided in 

the technical report (Supplementary Material, section 4).  

3.2. Calculation of the 17 modules 

In the 17 modules, three calculation approaches were used. In 11 modules we used a fuzzy 

decision tree modeling approach. When no data was available to design decision trees, we 

used existing regression models (3 modules). When modeled variables depended on their 

own values in a previous time step calculation, such as for soil water content, we used a 

mass budget approach, so as to reduce uncertainty propagation over the 30 years of 

calculations (3 modules) (Table 2, Figure 1). Input/output variables, parameters, and 

references from the literature are listed for each module in Tables A.2, A.3 and A.4 of the 

technical report (Supplementary Material). The modules run in the following order. 

First, 2 modules are run to calculate volatilization from fertilizers. R-NH3-Mineral is 

calculated with a fuzzy decision tree, using five input variables: fertilizer type, fertilizer 

placement, rain frequency, palm age and soil texture. This module hence accounts for 

spatial effects by considering fertilizer placement as a spatial variable. The output is a 
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monthly emission factor, from 2 to 45 % of mineral N applied. R-NH3-Organic is calculated 

with a regression model (Bouwman et al., 2002a), using the fertilizer rate as an input 

variable. The output is an emission factor of NH3 from the N applied as organic fertilizer. 

Second, 4 intermediate modules are run to calculate two main outputs, soil moisture and 

drainage; they are Litter Budget, Fraction of Soil Covered, Water Runoff, and Soil Water 

Budget. Litter Budget is calculated with a mass budget approach, accounting for inputs and 

decomposition kinetics of initial residues from the previous cycle, pruned fronds and organic 

fertilizer. The output is an annual quantity of litter. Fraction of Soil Covered is calculated 

with a fuzzy decision tree, using four input variables: litter amount, understorey biomass, 

and placement of pruned fronds and organic fertilizers. This module hence accounts for 

spatial effects by considering pruned fronds placement and organic fertilizer placement as 

spatial variables. The output is an annual percentage of soil covered, from 0 to 100 %. Water 

Runoff is calculated with a fuzzy decision tree, using 5 input variables: fraction of soil 

covered, rain amount, rain frequency, slope, and presence or absence of terraces. The 

output is a monthly runoff coefficient, from 1 to 20 % of rainfall. Finally, Soil Water Budget is 

calculated with a mass budget approach in the 1.5 m depth soil layer, accounting for all 

inputs to and outputs from the soil. The output values of this module are monthly soil 

moisture and drainage. 

Third, 4 modules are run to calculate denitrification from fertilizers and N losses through 

runoff-erosion: R-N2O-Mineral, R-N2-Mineral, R-NOx-Mineral/Organic, and R-Runoff-Erosion. 

R-N2O-Mineral is calculated with a fuzzy decision tree, using five input variables: fertilizer 

rate, soil moisture, soil texture, soil organic C and litter amount. The output is a monthly 

emission factor, from 0.01 to 13 % of mineral N applied. R-N2-Mineral is calculated with a 

fuzzy decision tree, using two input variables: N2O emissions and soil moisture. The output 

is a monthly N2/N2O ratio, from 1.92 to 9.96. R-NOx-mineral/organic is calculated with a 

regression model (Bouwman et al., 2002b), using six input variables: mineral and organic 

fertilizer type and rate, soil organic C and soil texture. This regression model directly 

calculates a quantity of NOx without using an emission factor. Finally, R-Runoff-Erosion is 

calculated with a fuzzy decision tree, using six input variables: fraction of soil covered, rain 

amount, rain frequency, slope, soil texture and presence or absence of terraces. The output 

is a monthly emission factor, from 1 to 20 % of mineral N applied and N deposited from 

atmosphere. Indeed, in the main dataset used to design and calibrate this Runoff-Erosion 

module, N losses through runoff and erosion were calculated jointly, as a percentage of 

mineral N applied and N deposited from atmosphere, without explicitly differentiating the 

share of N coming from soil. 
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Fourth, 3 intermediate modules are run to calculate soil mineral N content: Palm N uptake, 

Understorey N Uptake/Fixation, and Soil Mineral N Budget. Palm N Uptake is calculated with 

a fuzzy decision tree, using two input variables: expected yield and palm age. The output is 

an annual value of N uptake from soil, from 2.2 to 321 kg N ha-1 yr-1. Understorey N 

Uptake/Fixation is calculated with a fuzzy decision tree, using three input variables: the 

understorey type, i.e. legume or natural vegetation, the understorey biomass, and the 

mineral N remaining in soil after palm uptake. The outputs are monthly values of N fixation 

rate, from 0 to 90 %, and N uptake from soil. Finally, Soil Mineral N Budget is calculated with 

a mass budget approach, accounting for all N inputs to, and outputs from, the soil mineral N 

pool. Thus, Soil Mineral N Budget is calculated in two steps: the first estimating the N 

available in soil after palm uptake, for Understorey N Uptake/Fixation calculation; and the 

second estimating the N available in soil after understorey uptake, to calculate the N 

available in soil for losses. 

Fifth, 3 modules are run to calculate baseline denitrification, N leaching and net 

mineralization of soil organic N: R-N2O-Baseline, R-N2-Baseline, R-NOx-Baseline and R-

Leaching. R-N2O-Baseline is calculated with a fuzzy decision tree, using the same input 

variables as R-N2O-Mineral, except the fertilizer rate. The output of the module is a monthly 

emission factor, from 0.1 to 2.5 % of mineral N available in soil. R-N2-Baseline uses the same 

decision tree as for R-N2-Mineral, but the N2/N2O ratio is affected to baseline losses of N2O, 

instead of losses from fertilizer. R-NOx-Baseline uses the same regression model as R-NOx-

Mineral/Organic, but it accounts only for emissions not induced by fertilizers. R-Leaching is 

calculated with a fuzzy decision tree, using drainage as input variable. The output of the 

module is a monthly emission factor, from 0 to 5 % of mineral N available in soil. Finally, IN-

Palm estimates the monthly net mineralization from soil organic N to soil mineral N. If the N 

budget resulting from previous calculations is higher than the soil mineral N equilibrium 

reported for oil palm (K. Allen, Corre, Tjoa, & Veldkamp, 2015), the net mineralization is 

assumed to be zero for this given month. If the N budget is lower than the soil mineral N 

equilibrium, the net mineralization is assumed to be equal to the missing amount of N to 

reach this equilibrium. The latter case corresponds to a situation where the soil organic N 

pool may be depleted to reach the expected yield. 

 
3.3. Validation of the R-Leaching module against field data 

Model efficiency was acceptable according to three of the statistics calculated, but there 

was a tendency to underestimate N leaching. The visual representation showed that IN-

Palm predicted most of the time the months in which leaching was actually observed 
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(Figure 2a). The coefficient of determination of the linear regression (R2) was 0.56 

(Figure 2b), the Nashe-Sutcliffe efficiency was 0.53, and the Root Mean Square Error to 

Standard Deviation Ratio was 0.68, the three of them indicating acceptable predictions 

(Moriasi et al., 2007). Moreover, in the likelihood matrix comparing scores obtained by IN-

Palm to scores calculated from observed values, predicted values were good in 75 % of 

cases (Figure 2c). However, the slope of the linear regression line was 0.667, i.e. below 1, 

and its y-intercept was 0.1537, i.e. above 0. Thus, the linear regression line crossed the ideal 

line of slope 1 for 0.46 kg N ha-1 month-1. This indicated that IN-Palm tended to slightly 

overestimate N leaching for losses below 0.46 kg N ha-1 month-1, while underestimating N 

leaching for higher losses. Furthermore, this underestimation was quantified with a Mean 

Error index of about -1.9 kg N ha-1 yr-1, i.e. 17 % of observed losses. 

Figure 2 around here. 2-column fitting figure, black-and-white in print 

 
3.4. Scenario testing and management for N loss reduction 

IN-Palm estimated annual average losses of 78, 76 and 64 kg N ha-1 yr-1, for (1) standard 

management practices, (2) composting of initial palm residue from the previous cycle, and 

(3) fertilizer adjustment according to understorey and residue inputs, respectively (Figure 3). 

There was a high variability in annual losses, ranging from 12 to 242 kg N ha-1, and 

depending on scenario, palm age, and weather. Over the 1st year under standard practices, 

the N release from the decomposition of initial palm residues contributed to 45 % of total N 

losses, while the N release from the decomposition of empty fruit bunches applied in the 

weeded circles contributed to 26 %. The indicator also estimated that 91, 266 and 

151 kg N ha-1 were fixed from the atmosphere by the legume, for the 3 scenarios, 

respectively.  

According to these simulations, the adjustment of fertilizer according to other N inputs 

(scenario 3) is the best option. Adjusting fertilizer rate according to N inputs from legumes 

and initial residues from the previous cycle could reduce annual average N losses by 

14 kg N ha-1 yr-1, due to a possible 57 % reduction in fertilizer rate over the 3rd to the 10th 

year. This result suggested that fertilizer costs could be reduced by at least 274 US$ ha-1 per 

growth cycle, assuming minimum fertilizer prices and a reduction of fertilizers limited to the 

period from the 3rd to the 10th year. The relatively small mitigation of 14 kg N ha-1 yr-1 came 

from two main factors: (1) the buffering effect of the legume, and (2) the limitation of 

fertilizer adjustment to the period between the 3rd and the 10th year. (1) The legume 

reacted to the lower level of N in soil by fixing 61 kg of atmospheric N per ha more than 
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under standard practices. This N was then released to the soil, which partially compensated 

the lower addition of fertilizer. (2) The reduction of N losses is an average over the 25 years, 

while the fertilizer rate is adjusted only between the 3rd and the 10th year after planting. 

Lower rates for years 1 and 2 may have yielded less robust results (see section 4.2 in the 

discussion), and lower rates after the 10th year would have resulted in mining soil N. This 

reduction of 14 kg N ha-1 yr-1 over the whole cycle would hence correspond to a reduction of 

43 kg N ha-1 yr-1 (- 38 %) over the 3rd to the 10th year. This suggests that there is a significant 

potential for N loss mitigation under young palms, even when mitigation actions focus on 

fertilizer rate only. 

The composting of initial residues from the previous cycle (scenario 2) reduced the annual 

average N losses by only 2 kg N ha-1 yr-1, due to higher losses under adult palms when the 

spreading of compost was concomitant with standard rates of mineral fertilizer application. 

But the legume N fixation was enhanced by 175 kg N ha-1 due to the reduction of N inputs at 

the beginning of the cycle. This fixation was twice more than in the case of fertilizer 

adjustment (scenario 3), because, in the latter case, high amounts of soil mineral N from 

initial residue were still inhibiting fixation over the first few years. This confirms the 

importance of modelling the legume understorey with a N fixation rate which depends on 

soil N status, in order to be able to capture such significant N fluxes. The composting of 

initial residues could hence be worthwhile to enhance legume fixation, but would also 

involve more logistical challenges and costs for the transport and composting processes, for 

small results in terms of N loss mitigation. These results suggest that combining the 

scenarios 2 and 3, by replacing part of the fertilizer by N fixation and compost application, 

could save fertilizer and help reduce N losses under young and adult palms. 

Therefore, these results suggest that different strategies should be combined to address N 

losses over the whole cycle. Under young palms, mitigating N loss may require fertilizer rate 

adjustment, while under adult palms it would be more efficient to target specific N loss 

mechanisms. Moreover, these results show that IN-Palm estimates of N losses were 

sensitive to management changes and climate variability, as shown on Figure 3 by the 

different N loss patterns between the scenarios and the error bars, respectively. 

Figure 3 around here. 2-column fitting figure, black-and-white in print 
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4. Discussion 

4.1. Soundness of outputs 

We showed that IN-Palm captured the dynamics of observed N leaching at an acceptable 

level, according to the statistics calculated. The validation of the N leaching module was 

strategic, given that leaching is one of the most uncertain N fluxes in oil palm (Pardon, 

Bessou, Saint-Geours, et al., 2016), and its calculation occurs after all other fluxes in IN-

Palm, hence depending on the relevance of previous modeling steps.  

However, we identified a tendency to underestimate N leaching compared to the measured 

data. There are two possible explanations for this underestimation. First, high and uncertain 

internal fluxes, such as palm N uptake, estimated at 267 kg N ha-1 yr-1 in 2009 by IN-Palm, 

may have been slightly overestimated. Errors in estimating such high and uncertain internal 

fluxes could impact significantly soil mineral N and hence N leaching calculations. Second, 

IN-Palm may not have captured the effect of short and intense weather events observed at 

the study site, due to its monthly time step calculations. When short and intense 

evapotranspiration occurs, IN-Palm may tend to overestimate soil moisture, soil water 

drainage and hence leaching (e.g. end of 2009, start of 2010). When short and intense rain 

occurs, IN-Palm may tend to underestimate soil water drainage and hence leaching (e.g. end 

of 2011). These short and intense events can also induce timing errors, where leaching 

events are predicted one month earlier or later than observed (e.g. end of 2008). For our 

specific study site, the tendency to underestimate dominated, due to a high 

underestimation at the end of 2011. 

Nevertheless, this underestimation is likely to be restricted to adult palms, as, on the 

contrary, IN-Palm showed a tendency to overestimate N leaching under young palms during 

the calibration process. This overestimation is presumably due to an underestimation of soil 

N immobilization at young age, as IN-Palm does not model this potential immobilization of 

N. Moreover, the spatial and temporal variability in soil solution chemistry is high in agro-

ecosystems with tree species, and N concentrations measured are dependent on the 

position of lysimeters (Laclau, Ranger, de Dieu Nzila, Bouillet, & Deleporte, 2003). This leads 

to uncertainties in N leaching measurements. In this context, a discrepancy of less than 

2 kg N ha-1 yr-1 between observed and modeled values is probably lower than the 

uncertainty of the measurements of N leaching. 

Given the significant effect of palm age on N fluxes and losses, a validation of the N leaching 

module with field measurements from a young plantation would be very helpful. Such 

measurements could record responses of leaching to different management scenarios 



 

 

 

This article is protected by copyright. All rights reserved. 

18 

 

involving key practices, such as residue and soil cover management, and fertilizer 

placement. A validation of this module in industrial plantations managed in soils with 

contrasting textures would be also of interest to assess the robustness of IN-Palm. Finally, 

the validation of other modules of N loss would also be beneficial in order to further 

investigate the robustness of IN-Palm and/or highlight further areas for improvement. 

Therefore, IN-Palm can already help to identify tendencies in N losses dynamics, while 

accounting for all the fluxes and practices along the whole crop cycle. However, it should be 

used carefully for more precise analyses of individual loss phenomenon until further 

validation is done against new available measured data. 

4.2. Validity domain 

IN-Palm (1) is suitable for application to a wide range of oil palm growing environments, (2) 

is applicable to palms of any age, (3) is suitable for testing common management practices, 

and (4) uses reference values logically related to current practices.  

However, IN-Palm should be used carefully in some very specific conditions. IN-Palm is not 

parameterized to assess N losses in plantations on organic soils. Besides, due to its monthly 

time step calculations, IN-Palm is not much sensitive to very short and extreme weather 

events. In such cases, results should be used carefully. 

IN-Palm can be applied at all ages of palms, but results should be interpreted with caution 

when assessing fertilizer management practices for very young palms of about 1-2 years, 

whose roots do not cover yet all the area. At that age the amount of soil mineral N actually 

available for palms may differ from IN-Palm predictions, as IN-Palm does not simulate the 

spatial distribution of N inputs and uptake within the plantation. 

Finally, IN-Palm can test most of the common management practices in industrial 

plantations, except for the field application of palm oil mill effluents. We did not model this 

practice, as it applies to only a small proportion of plantation fields and is becoming less 

common as companies move to co-composting the effluent with empty fruit bunches. 

Moreover, very little knowledge was available, notably on emissions related to palm oil mill 

effluents during and after field application. 

 
4.3. Further measurements to improve IN-Palm precision 

The main uncertainties in module calculations were: (1) the emissions induced by compost 

application, (2) palm N uptake, (3) understorey N uptake and fixation, (4) soil N 
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immobilization and mineralization processes, and (5) the influence of spatial factors on 

leaching. New field measurements would help reduce these uncertainties and increase IN-

Palm precision. 

First, uncertainty of emissions from compost may be reduced with new field data on NH3 

volatilization and N2O emissions. This improvement would be useful, as composting is 

becoming more common in oil palm plantations.  

Second, palm N uptake is a very high internal flux, and also very uncertain, as no direct 

measurements are available. Measurements of N uptake at different ages, using for 

instance 15N techniques, could help reduce uncertainty and underestimation of N leaching 

under adult palms.  

Third, understorey N uptake and biological N2 fixation is also a potentially high and very 

uncertain internal flux. To reduce uncertainty, useful measurements could involve the 

response of N fixation to soil mineral N in field conditions, and the testing of other factors 

potentially driving fixation rate, such as soil moisture and pH.  

Forth, in IN-Palm, soil N immobilization and mineralization processes are accounted for by 

estimating a net soil N mineralization depending on a soil mineral N equilibrium parameter 

inferred from measurements in oil palm (K. Allen et al., 2015). Complementary field data 

quantifying immobilisation, storage and mineralization dynamics of organic N under oil palm 

would be very useful to reduce uncertainty in soil N dynamics modelling.  

Lastly, leaching calculations could be better adapted to the oil palm system by accounting 

for fertilizer placement. However, this issue requires further investigations into the 

response of leaching to fertilizer placement, as the processes are complex, notably involving 

variable plant uptake depending on the relationship between long-term management and 

the development and distribution of palm roots. Thus, controversies emerge when trying to 

identify favourable and unfavourable placement. 

 

4.4. Utility for decision-support and environmental assessment 

IN-Palm can be used as a decision-support tool for management as well as an emission 

model for environmental assessments. For management, IN-Palm is easy to use and 

sensitive to most of the common management practices in industrial plantations. The 

scenario testing also showed that IN-Palm estimates of N losses were sensitive to 

management changes, accounting for important processes in oil palm agronomy, such as 
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legume N fixation or crop residues decomposition. IN-Palm can support decision-making 

about fertilizer management, by estimating the least risky months for applying fertilizer in a 

given field, and the optimal fertilizer rate, depending on soil characteristics, weather and 

other management practices implemented, such as the placement of pruned fronds and 

empty fruit bunches. A future test of the indicator by end-users in plantations could help to 

qualify and further improve its utility as management tool. 

For environmental assessments, IN-Palm can help estimate all the important N loss 

pathways necessary to perform life cycle assessments for instance. The scenario testing also 

showed that IN-Palm estimates of N losses were sensitive to inter-annual climate variability, 

which is important to help reduce uncertainty in life cycle assessments. In complement to 

the N losses in the field assessed with IN-Palm, it is worthwhile noting that further 

investigation would be needed before concluding on management tracks to implement in 

order to reduce environmental impacts. Notably, environmental impact assessment should 

also account for emissions of N and other compounds induced out of the field, as done in 

life cycle assessments. For instance, N2O, NO3 and methane (CH4) are emitted during the 

composting process (Peigné & Girardin, 2004), as well as non-renewable carbon dioxide 

(CO2) and other fluxes during the production of fertilizers. 

IN-Palm scores are calculated using as reference values 50 % of the losses under standard 

industrial management practices. This approach is assumed to be conservative given that 

standard industrial management practices are already optimized in order to avoid 

economically excessive application of fertilizer. We also tested other approaches to define 

reference values, e.g. minimum value for each loss pathway encountered in the literature, 

or the lower end of uncertainty ranges. However, those reference values could be very low. 

For instance, the lower end of (IPCC, 2006) uncertainty range of 0.3 % applied to a standard 

annual fertiliser rate of 140 kg N ha-1 yr-1 would lead to a reference value of 0.42 kg N ha-

1 yr-1 for N2O. In this case, the indicator score for N2O emissions would be insensitive to any 

kind of practice change. However, depending on the context, those reference values maybe 

adapted in order to assess with a finer grain the room for improvement against best local or 

regional recorded performances for instance. 

5. Conclusion 

We developed an agri-environmental indicator, IN-Palm, to estimate all N losses throughout 

the oil palm crop cycle. The indicator uses 21 input variables readily available in most oil 

palm companies, and provides scores and management recommendations to reduce N 
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losses. Predictions of N leaching against measured data in Sumatra, Indonesia, were 

acceptable according to three standard statistical indicators and one dedicated evaluation 

method. We showed that IN-palm was sensitive to management changes, and was hence a 

potential tool for testing management scenarios and identifying practices likely to reduce N 

losses. We also highlighted the main uncertainties of IN-Palm, and we identified 

measurements and improvements necessary to increase IN-Palm precision before its use in 

commercial plantations. Field measurements are unsuitable to monitor large scale 

plantations, and the use of existing process-based models for oil palm is limited by the 

complexity of running them and getting the right parameters. Therefore, our indicator 

constitutes a useful tool for managers and scientists. This kind of agri-environmental 

indicator, easily adaptable to new crops in contexts of limited knowledge, can be of great 

utility to address the current need of reducing our global environmental impact. In 

particular, N fluxes could be used as inventory flows in palm oil life cycle assessments of 

environmental impacts. 
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Figures 

Figure 1. Fluxes and N losses calculated in IN-Palm. Five main steps of calculation are 

computed for one hectare of palms for each month of the chosen year (1 to 30 years of 

age): ① NH3 volatilization from mineral and organic fertilizers; ② Soil cover and water 

budget estimations; ③ Denitrification from mineral and organic fertilizers, and N losses 

through runoff and erosion from mineral fertilizer and atmospheric deposition; ④ Soil 

mineral N estimation after net N release to soil and plant N uptake; ⑤ Baseline 

denitrification and N leaching, from soil mineral N, and net mineralization of soil organic N. 

EFB: Empty Fruit Bunches 
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Figure 2. Modeled values from R-Leaching module vs. observed field measurements. (a) Visual 

representation of modeled and observed values of N leaching, for the 24-month period in which at 

least 3 samples were analysed per week. (b) Linear regression of modeled vs. observed values (solid 

line), ideal line of slope 1 (dotted line), and efficiency statistics: Nashe-Sutcliffe efficiency: 0.53, 

Mean Square Error to Standard Deviation Ratio: 0.68, Mean Error: -1.9 kg N ha-1 yr-1. (c) The 24 

scores distributed in the likelihood matrix. 
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Figure 3. Nitrogen losses simulated by IN-Palm in three management scenarios. Losses 

include all N loss pathways: NH3 volatilization, N lost through runoff-erosion, N2O, N2, and 

NOx emissions and N leached. Error bars represent minimum-maximum losses, depending 

on climate. N: Nitrogen 
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Tables 

Table 1. Sources of data used in IN-Palm development and validation. Data from the 

literature, existing models, measurement datasets and expert knowledge, were used for (1) 

the design of the structure of the indicator, (2) the calibration of modules, (3) the reference 

values for scores, and (4) the validation of the R-Leaching module and the scenario testing. 

Source Type and availability Use References 

Literature review (N fluxes 

and losses in plantations) 

 

Quantitative and qualitative 1, 2, 3 (Pardon, Bessou, Nelson, et 

al., 2016) 

Comparison of 11 models, 

specific regression models 

(NH
3
 volatilization, and N

2
O 

and NO
x
 emissions) 

 

Quantitative and qualitative, 

equations, classes for 

correction factors 

1, 2, 3, 4 (Bouwman et al., 2002a, 

2002b; Pardon, Bessou, Saint-

Geours, et al., 2016; Stehfest 

& Bouwman, 2006) 

Expert knowledge Qualitative, meetings, review 

of documents 

1, 2, 3 Panel of experts (oil palm 

agronomy, N cycle and N 

emissions, agri-environmental 

modeling) 

APSIM-Oil palm model 

simulations  

Quantitative dataset, 58 500 

simulations, detailed data 

2 (Pardon et al., 2017) 

Runoff and erosion 

measurements 

Quantitative dataset, 3-year-

trial, aggregated data 

2 (Sionita et al., 2014) 

Measurements of N 

concentration in soil solution  

Quantitative dataset, 8-year-

trial, 7610 samples, detailed 

data 

4 Unpublished data 
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Table 2. Overview of IN-Palm structure: IN-Palm consists of 21 inputs and 17 modules. Of 

the 17 modules, 11 use fuzzy decision trees, 3 use mass budget models, and 3 use 

regression models. Each module uses 1 to 33 inputs, being either user inputs or 

intermediate variables (*) calculated by other modules. C: Carbon, N: Nitrogen, FM: Fresh 

Matter, DM: Dry Matter, FFB: Fresh Fruit Bunches 

 


