Agritrop
Accueil

Modelling the Guayule plant growth and development with a Functional Structural Plant Model

Sabatier Sylvie-Annabel, Jaeger Marc, Hemery Nicolas, Mougani Christ, Abed Alsater Ali, De Reffye Philippe, Palu Serge, Brancheriau Loïc. 2019. Modelling the Guayule plant growth and development with a Functional Structural Plant Model. In : Development of innovative alternative crops for the production of natural rubber. Book of abstracts. CIRAD-PERSYST-UPR BioWooEB. Montpellier : CIRAD, Résumé, p. 21. Conference on the Topic of Alternative Sources of Natural Rubber, Montpellier, France, 4 Novembre 2019/6 Novembre 2019.

Communication avec actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID595376.pdf

Télécharger (264kB) | Prévisualisation

Résumé : The Guayule (Parthenium argentatum, Asteraceae), is a small ramified tree native to the northern Mexico and southwestern United States. The guayule shows a growing interest in research and agriculture (Ray, 1993) due to its hypoallergenic latex properties (Taurines et al., 2019), and seems adapted to South France climate (Sfeir and al., 2014). However, the production itineraries in relation to latex production are still not assessed, and so far little studies were done on the plant structure and functioning. This study aims to propose a first FSPM of the species using the GreenLab model, calibrated from data issued from two varieties in different environmental conditions. The studying methodology is first based on a qualitative architectural analysis (Barthelemy and al., 2007). Second, on the various axis typologies, the development and branching stochastic rules can then be retrieved from field internode distributions collections. Finally, the organ source and sink relations parameters can be fitted from dedicated dry weight measurements (Kang et al., 2018). Experimental plots were hold south of France, close to Montpellier on two varieties CL1 and CLA1, with six environmental conditions related to density (9091 and 62500 plants per hectare) and hydric pressure (no stress, low stress and high stress). 50 plants per environmental conditions were measured. The sampling was optimized to the plant structure and to quantify the polyisoprene and resins contents. The guayule shows a sympodial development is composed of modules with terminal inflorescence. Its architecture corresponds to the Leeuwenberg's model (Hallé et al., 1978). The axes are constituted of successive modules. Over a year, the plant produces eight to nine successive modules. Studying the plant structure, we found out that the number of relay axis per module follows a binomial distribution. The modules are ordered from the plant base to the top. And these modules are composed of internodes whose number also follows a binomial law, which parameters are quite stable from one order to another. In the further modelling process, we thus did consider that the plant elementary unit was the module, called as a meta-phytomer. Under this assumption, we summarized the total dry weight of leaves and internodes per module to build the axis organic series (Buis and Barthou, 1984). Field measurements issued from these two series constituted then a target to be adjusted by the structural functional GreenLab model (Kang et al, 2018) in order to calibrate the organ source parameters. An initial analysis calculated the strength sink of leaves and internodes in a context of free growth and analysed the differences between the two varieties. We are currently applying the methodology to assess the impact on the parameters of development and growth, the effects of planting density and irrigation. This first modelling study hold on two varieties on the Guayule tree shows that the plant structure can be efficiently modelled using a simple module approach. The development parameters, defining the module number of phytomers and branching rules are nearly stable and close for both varieties under the various environmental conditions. First functioning parameters were also retrieved from the measurements. These parameters make it possible to obtain the first stochastic 3D simulations of the Guayule's growth and architecture for both varieties.

Auteurs et affiliations

  • Sabatier Sylvie-Annabel, CIRAD-BIOS-UMR AMAP (FRA)
  • Jaeger Marc, CIRAD-BIOS-UMR AMAP (FRA)
  • Hemery Nicolas
  • Mougani Christ
  • Abed Alsater Ali
  • De Reffye Philippe
  • Palu Serge, CIRAD-PERSYST-UPR BioWooEB (FRA)
  • Brancheriau Loïc, CIRAD-PERSYST-UPR BioWooEB (FRA) ORCID: 0000-0002-9580-7696

Autres liens de la publication

Source : Cirad-Agritrop (https://agritrop.cirad.fr/595376/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2023-04-19 ]