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5 ABSTRACT: Charcoal is produced through the pyrolysis of wood. It is used as the main domestic energy source in many tropical
6 countries from Africa and Asia, and it is used as a reductor product in the steel industry in Brazil. However, the indiscriminant use of
7 wood from native forests is detrimental to sustainability. The development of rapid and efficient methodologies for distinguishing
8 charcoal produced from native forest or Eucalyptus plantations, as found partially in Brazil, is essential to curb illegal charcoal
9 transport and trade. The aim of this study was to distinguish charcoals from native or Eucalyptus woods by using artificial neural
10 networks (ANNs) based on their mineral composition. Specimens from Brazilian native woods (Apuleia sp., Cedrela sp.,
11 Aspidosperma sp., Jacaranda sp., Peltogyne sp., Dipteryx sp., and Gochnatia sp.) and from Eucalyptus sp. hybrid woods of commercial
12 forest plantations were pyrolyzed at temperatures from 300 °C to 700 °C in order to simulate the actual pyrolysis conditions and
13 species widely used illegally in southeastern Brazil. Charcoals composition and proportion of mineral elements were determined by
14 X-ray fluorescence. The ANNs were trained based on the elemental composition of the charcoal specimens to classify the species
15 and origin of the charcoals (i.e., native forest or Eucalyptus). The ANNs based on mineral element content yielded high percentage
16 of correct classification for charcoal specimens by species (72% accuracy) or origin (97% accuracy) from an independent validation
17 sample set.

1. INTRODUCTION

18 Charcoal is a major source of energy in many countries.
19 According to FAOSTAT,1 Brazil occupies the first position
20 among the main world producers of this product, and its
21 consumption is concentrated in the steel industry. Extensive
22 areas of Eucalyptus are cultivated to meet the demand of the
23 steel industry in Brazil.2 However, wood from native forests
24 has been used illegally.
25 According to Stange et al.,3 charcoal producers have used
26 native species from deforestation regions in tropical forests
27 worldwide. The use of native wood for charcoal production is
28 prohibited in many regions, because it increases the
29 deforestation rate in the country. According to Brasil,4 the
30 Brazilian government has made a national commitment to
31 reduce 40% of the annual rates of deforestation in the Cerrado
32 biome. In 2016, charcoal manufacture from native forests
33 reduced 31.7%.5 However, enforcement actions to stop the
34 production, transport, and trade of illegally produced charcoal
35 are insufficient, because there is no official information about
36 illegal operations. Under these circumstances, although a
37 conservation priority hotspot, the Brazilian Cerrado is one of
38 the most threatened biomes in the country.6

39 Fraud is difficult to identify, because of the similarity
40 between charcoals when observed with the naked eye.7 Also,
41 identification of charcoal by anatomical analysis is time-
42 consuming and requires highly trained technicians.6 Alternative
43 techniques for charcoal classification have been investigated,
44 such as image analysis,8,9 where some wood characteristics are

45extracted and analyzed to discriminate among the precursory
46species. Moreover, several studies have shown promising
47results, applying spectrum-based processing systems for
48classifying charcoal,10,7,11 but many limitations must be
49overcome to apply these models in real situations where
50pyrolysis temperature and species are unknown and must be
51used within the models.
52The possibility of differentiating charcoals produced from
53planted or native wood based on the mineral composition of
54charcoal was examined in the present study via X-ray
55fluorescence (XRF), which is a technique used in analytical
56routines to identify and measure mineral elements in solid or
57liquid samples.12 This technique is versatile and does not
58require exhaustive preparation of the material to be analyzed.13

59Because of that, XRF spectroscopy has been successfully
60applied in various fields of science that require rapid analytical
61routines such as agriculture,14 soil science,15 mining,16 and
62environmental sciences,17 as well as chemical18 and archeo-
63logical studies.19

64Faced with the challenge of differentiating charcoal
65produced from planted or native wood, the hypothesis of
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66 this study is that the mineral composition of charcoal varies
67 according to whether trees have grown in native or planted
68 forest. While native plants rely on the natural composition of
69 their environment to grow, soils of forest plantations are
70 managed for production of wood for pulp or bioenergy
71 industries in such a way that mineral contents are adjusted
72 before planting, which affects the mineral composition of the
73 plant. Some studies support our hypothesis, although they
74 were not designed to evaluate this issue.20,21 In fact, Kim et
75 al.20 have evaluated inorganic metals in oak, Eucalyptus, Pinus,
76 and Japanese cedar biochars by means of XRF spectrometry.
77 They reported the presence of Si, K, Ca, Al, Mg, Na, P, and Fe
78 in all studied materials, but in different concentrations: oak,
79 pitch pine, and Japanese cedar present much more Si, Ca, K,
80 Al, and Na than Eucalyptus charcoals. The above results clearly
81 show that Eucalyptus wood has a very different ash
82 composition from other biomasses. But, again, Kim et al.20

83 and Brewer et al.21 did not design their studies to evaluate the
84 potential of XRF spectrometry to detect the origin of biochars
85 precursor raw material.
86 In this study, artificial neural networks (ANNs) were
87 developed to evaluate the complex information on the mineral
88 composition of charcoal specimens. ANNs are computational
89 techniques based on mathematical models capable of
90 classifying and predicting material properties.22 The ANN
91 approach has been successfully applied in different fields of
92 forest sciences, such as wood defect detection,23 wood veneer
93 classification,24 and wood species classification.25,26 ANNs
94 have also shown efficiency in assessing several biochar
95 properties. Yang et al.27 evaluated the adsorption potential of
96 bamboo biochar for dyes of metal complexes using ANNs.
97 Moreover, Selvanathan et al.28 used modeling by feedforward
98 back-propagation (FFBP) neural networks to predict the
99 weight loss of biomass in the pyrolysis process and copper
100 concentration for adsorption reactions using biochar derived
101 from rambutan shell (Nephelium lappaceum). Liao et al.29

102 developed multilayer feedf-orward ANNs to predict the total
103 yield and surface area of activated carbon produced from
104 various biomass raw materials using pyrolysis and steam
105 activation. Also, Cao et al.30 studied an intelligent modeling
106 approach using ANNs to predict the biochar yield of cattle
107 manure pyrolysis.
108 Most studies that have applied ANNs to wood and its
109 coproducts have reported promising results for classification or
110 estimation of properties. However, to our knowledge, there is

111no study involving ANNs for charcoal classification by origin,
112or for identification of the precursor wood species. Thus, the
113aim of this study was to develop ANNs to classify the origin of
114charcoal (i.e., native or planted forest) and the precursor
115species based on their mineral composition.

2. MATERIALS AND METHODS
1162.1. Materials. Native tropical wood species from the Cerrado and
117Amazon biomes and reforestation were used in this study. The native
118species were Cedrela sp. (Cedar, labeled as “C”), Aspidosperma sp.
119(Peroba, labeled as “P”), Jacaranda sp. (Rosewood, labeled as “J”),
120Apuleia sp. (Garapa labeled as “A”), Peltogyne sp. (Pau-roxo, labeled as
121“R”), Dipteryx sp. (Cumaru, labeled as “U”), and Gochnatia sp.
122(Cambara,́ labeled as “B”).
123As for reforestation, two genetic materials from two forest
124companies were used as representative hybrids of the sector. One
125company produces charcoal (6.5 years old Eucalyptus grandis × E.
126urophylla hybrid clones labeled “Ev”) and the other one produces
127paper and pulp (6 years old Eucalyptus grandis × E. urophylla hybrid
128clones labeled “Ec”).7 The seven native species occur in the two
129largest Brazilian biomes, while Eucalyptus hybrids were selected to
130represent the genetic variation that exists between the clonal materials
131 t1used in reforestation by forestry companies in the country. Table 1
132lists the species, furnaces, and temperatures used to generate the
133dataset of this study.
1342.2. Specimen Preparation. Central boards were removed from
135trees. A total of 141 specimens (defect-free) were obtained from
136native and Eucalyptus trees. From the native species, 91 specimens
137presenting the dimensions of 3.5 cm × 3.5 cm × 4.5 cm (R × T × L)
138and 3.5 cm × 3.5 cm × 10 cm were produced while 50 specimens
139(defect free) of Eucalyptus were produced with dimensions of 2.5 cm
140× 2.5 cm × 10 cm (R × T × L). Sampling was properly identified
141using a special pencil (labeling did not disappear after pyrolysis).
142Before pyrolysis, the wood specimens were kept in an acclimatized
143room until reaching 12% moisture.
1442.3. Pyrolysis Process. Wood specimens were pyrolyzed in two
145laboratory ovens: a Macro ATG oven and a muffle furnace,
146respectively developed by the Center of International Cooperation
147in Agronomic Research for Development (CIRAD, France) and by
148Universidade Federal de Lavras (UFLA, Brazil).
1492.3.1. Macro ATG Furnace. The Macro ATG prototype is
150equipped with an oven that can reach 1000 °C, a pyrolysis reactor
151pressure controller, a condensable gas condenser, a load cell, a gas
152chromatography flow meter, a control panel, and software. Experi-
153ments can be developed using various gases simulating various
154conditions of partial or complete combustion in the presence of an
155inert atmosphere.31,7

156Wood specimens were added in a crucible for pyrolysis in the
157Macro ATG. The temperature inside the system was monitored by

Table 1. Pyrolysis Plan As a Function of Biological Material, Temperature, and Number of Samples

Furnace Number of Specimens by Temperature

vegetal material code ATG muffle 300 °C 400 °C 500 °C 600 °C 700 °C

Apuleia sp. A × 5 6 6
Cedrela sp. C × 4 6 6
Aspidosperma sp. P × 5 6 6
Jacaranda sp. J × 5 6 6
Eucalyptus sp. (1)a Ec × 5 6 6
Eucalyptus sp. (2)b Ev × 5 6 6
Peltogyne sp. R × 2 2 2 2
Dipteryx sp. U × 2 2 2 2
Gochnatia sp. B × 2 2 2 2
Eucalyptus sp. (1)a Ec × 2 2 2 2
Eucalyptus sp. (2)b Ev × 2 2 2 2

aEucalyptus sp. (1): reforestation hybrids managed for charcoal production. bEucalyptus sp. (2): reforestation hybrids managed for pulp and paper
industry.
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158 means of four thermocouples, and the gases resulting from the
159 pyrolysis process were condensed by means of a condenser attached
160 to the oven. After the prototype cooling period, the charcoals were
161 removed and brought to moisture stabilization in a climate room. The
162 pyrolysis of the specimens was conducted at an initial temperature of
163 40 °C, a heating rate of 5 °C min−1 and remained for 1 h at the final
164 temperatures of 300, 500, and 700 °C. After the process of converting
165 wood to charcoal, the material remained inside the oven for cooling
166 for 15 h.7

167 The biological materials carbonized in the Macro ATG oven were
168 Apuleia sp., Cedrela sp., Aspidosperma sp. (Peroba), Jacaranda sp.
169 (Jacaranda)́, and Eucalyptus, resulting in 101 specimens divided into
170 three pyrolysis temperatures.
171 2.3.2. Muffle Furnace. Operating conditions for specimens
172 pyrolyzed in a muffle furnace (electric; model Q318M; Quimis, Saõ
173 Paulo, Brazil) were as follows: initial temperature, 100 °C; heating
174 rate, 100 °C h−1; 30 min at final temperatures of 400, 500, 600, and
175 700 °C and 16 h after completion of the conversion process.
176 The wood specimens were carbonized within a pyrolysis capsule
177 placed inside the muffle furnace. The pyrolysis capsule was connected
178 to a water-cooled condenser coupled to a receiver flask of condensable
179 gases. The charcoal specimens were produced at 400, 500, 600, and
180 700 °C to simulate the temperature range adopted in real situations in
181 most Brazilian industries.
182 The biological materials carbonized in the muffle furnace were
183 Peltogyne sp., Dipteryx sp., Gochnatia sp., and, again, Eucalyptus,
184 resulting in 40 specimens, divided into four pyrolysis temperatures.
185 The different furnaces and temperatures were used to verify the
186 influence of the conversion process on material distinction and to
187 simulate the thermal variation that occurs in an industrial and
188 conventional furnace. After the furnaces were cooled, the charcoals
189 produced were removed and taken to a climate room until moisture
190 stabilization occurred.
191 2.4. X-ray Fluorescence Spectrometer. In order to simulate a
192 variation source, the determination of mineral elements was
193 performed using two XRF spectrometers: a M4 Tornado and a S8
194 Tiger spectrometer.
195 2.4.1. M4 Tornado. An energy-dispersive X Ray fluorescence
196 (EDXRF) spectrometer (Model M4 Tornado, Bruker Nano GmbH,

197Berlin, Germany) was used to determine and quantify the mineral
198elements present in the different charcoal samples.
199The X-ray tube of this commercial benchtop spectrometer is a
200microfocus side window Rh tube powered by a low-power HV
201generator and cooled by air. A polycapillary lens is used to obtain a
202spot size down to 25 μm for Mo Kα radiation. The X-ray generator
203was operated at 50 kV and 600 μA and a composition of filters was
204used to reduce background (100 μm Al/50 μm Ti/25 μm Cu).
205Detection of the fluorescence radiation is conducted using a
206thermoelectrically cooled silicon-drift-detector with energy resolution
207of 142 eV for 5.9 keV (Mn Kα). Measurements were performed under
20820 mbar vacuum conditions to avoid back diffusion and improve
209detection limits.
210A built-in camera allows one to visualize the studied area and the
211analysis was fully automated and unattended. The counting time and
212the scanning spatial resolution is freely selected, according to the
213required resolution. The sample was mounted directly on a Table 360
214mm × 260 mm, which was attached to a stage translatable along the
215XY axis. The scanning step size used was 25 μm, and the time per
216analyzed point was 0.5 ms × 3 cycles. Each selected area was analyzed
217over a period to accumulate sufficient data points for high-resolution
218mapping. Data output was obtained through the X-ray intensity of
219specific X-ray peaks corresponding to the element signals measured in
220each point defined by its X and Y coordinate (μm). The data were
221converted using the software into a data matrix, from which XY
222contour maps (two-dimensional (2D) maps) of the data were
223generated for each element.32

224The analysis was performed on five specimens of each charcoal
225produced at different temperatures in the Macro ATG furnace. Each
226charcoal specimen was placed inside the equipment and a rectangular
227area was selected for irradiation during the analysis. In this area, 100
228points were analyzed and the resulting spectrum was the average of all
229these points.
230Treatment of the X-ray spectra, analyses of the peaks, and
231determination of which mineral elements are present in each sample
232and in what quantity were conducted using the M4 Tornado software.
2332.4.2. S8 Tiger. A wavelength-dispersive X-ray fluorescence
234(WDXRF) spectrometer (Model S8 Tiger, Kennewick, WA, USA)
235was also used to determine and quantify the mineral elements present
236in the different charcoal samples.

Figure 1. Network diagram to estimate the wood species of charcoal based on the mineral composition.
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237 Using the 150-μm fraction of different charcoal samples, pressed
238 flat dies (3.4 cm of diameter) were obtained using an automatic press
239 machine (Vaneox model − Fluxana) applying 25 ton cm−2. Each
240 pellet was obtained by mixing 4.5 g of ground charcoal and 3.5 g of
241 Hoechst wax C micropowder (Merck- C38H76N2O2). The pellets were
242 screened using a WDXRF spectrometer (Model S8 Tiger 4 kW,
243 Bruker). The analysis was performed by scanning the full length of the
244 sample surface.
245 This spectrometer was equipped with a Rh X-ray tube (60 kV
246 maximum) with 75 μm Be window; analyzer crystals - (LiF200,
247 LiF220, PET, XS-55 and XS-C): 20−60 kV, 5−170 mA, 4 kW
248 excitation power; two detectors (flow and scintillation counter); two
249 filters (Al and Cu), two collimators (0.23 and 0.46°); and one beam
250 mask (34 mm). The box for automatic loading has a 60-sample
251 capability. The analyses were conducted using the Bruker Quant-
252 Express and GeoQuant methods. For this standardless method, after
253 an internal calibration check, the following results (mg kg−1) were
254 found (certified/obtained): Na2O (13.94/13.82), Al2O3 159 (1.22/
255 1.21), SiO2 (71.08/71.21), SO3 (0.57/0.56), Cl (0.25/0.26), K2O
256 (5.01/5.01), CaO 160 (5.13/5.16), Fe2O3 (0.07/0.08), SrO (1.97/
257 1.94), and Sb2O3 (0.66/0.65). For data spectral acquisition,
258 processing, identification, and quantification of the elements, the
259 software Spectraplus 2.2.3.2 (Geo-quant test) was used. Measure-
260 ments were made under a vacuum system.
261 2.5. Artificial Neural Network. ANNs were developed using a
262 feedforward multilayer perceptron (MLP) algorithm. The mineral
263 contents of charcoal specimens were used as input variables, while the
264 wood species or charcoal origin comprised the output variables. The
265 ANNs of the present study were developed using the SPSS statistical
266 software (v. 20).
267 2.5.1. Network Architectures. The optimal network architectures
268 were established by trying different combinations of number of
269 hidden layers (1 or 2) and neurons (1−9). ANN 1 has six neurons in
270 the hidden layer and nine output layer neurons, which represent the
271 nine wood species converted to charcoal specimens (Eucalyptus,
272 Peltogyne sp., Gochnatia sp., Dipteryx sp., Apuleia sp., Jacaranda sp.,
273 Aspidosperma sp., and Cedrela sp.), while ANN 2 presented two (2)
274 hidden layer neurons and two (2) output layer neurons, which
275 represent the origin of the charcoal (native forest or Eucalyptus). The

276maximum number of epochs of each ANN was 100. The diagrams of
277 f1the ANNs designed for species and for origin are shown in Figures 1
278 f2and 2, respectively.
279Every neuron is in a hidden layer and the output layer represents an
280activation function. In this study, a hyperbolic tangent sigmoid
281function was used as the activation function in the hidden layers,
282while the output layer activation function was softmax. General
283information on the ANN for classifying wood species or charcoal
284 t2origin based on mineral composition is listed in Table 2.
2852.5.2. Covariate Sets for ANN. The model inputs (covariables)
286were the concentration values of the mineral components present in
287the charcoal and the output of the model were species (ANN1) or
288origin (ANN2). For ANNs, 11 (11) explanatory variables (Ca, K, Mn,
289Fe, Si, S, Mg, Al, Cu, Zn, and Sr, hereafter called covariates) were
290considered for training the ANN to classify the species (ANN1) or
291origin (ANN2) of charcoals (see Table 2). Data were normalized
292before developing ANNs.
2932.5.3. Network Training and Validations. ANN models were
294validated by test sets. To guarantee homogeneity between training
295and validation sets, the selection of the samples of each subset was
296done manually. The sample set (142 observations) was ranked by
297species, temperature, and origin and the dataset was split into two
298uniformly distributed subsets. This procedure allowed higher control
299of the variability within each subset: the calibration set was composed
300of 95 specimens, while the test set had 47 samples with mineral
301composition information. The selection of ANN models was based on
302the percentage of correct classifications, with regard to the different
303species of charcoal (ANN1) or their origin (ANN2).

3. RESULTS AND DISCUSSION

3043.1. Mineral Composition Variation of Charcoal. The
305mineral elements present in the charcoals produced from
306different species and under different pyrolysis temperatures
307 t3were detected by XRF analysis. Table 3 presents the mean
308values as a percentage of the elemental composition of the
309native and planted wood charcoal samples.

Figure 2. Network diagram to estimate the wooden origin (native forest or Eucalypt plantation) of charcoal based on the mineral composition.
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310 The results show that minerals such as calcium (Ca) and
311 iron (Fe) present higher proportion, relative to the others. In
312 addition to varying by species, the percentage of minerals also
313 varies as the pyrolysis temperature increases, yet no trend was
314 detected. These variations are important for training the
315 artificial networks to classify the charcoal by its origin.
316 Although the data does not have a clear tendency detectable
317 by visual analysis, the ANN can recognize nonlinear data
318 patterns.
319 There are few studies that have evaluated the composition
320 and proportion of mineral elements in charcoal or forest
321 biomass. Kim et al.20 have evaluated inorganic metals in oak,
322 Eucalyptus, pine, and Japanese cedar biochars via XRF
323 spectrometry and found Si, K, Ca, Al, Mg, Na, P, and Fe in
324 all studied materials. The elements that stood out in Eucalyptus
325 were Si, K, and Ca. In the present study, the last two elements
326 are present in high percentage. Brewer et al.21 studied the ash
327 composition of Switchgrass (grass), maize straw, and hard-
328 wood (unspecified) samples via XRF spectroscopy using the
329 pressed tablet method and found Al2O3, CaO, Cl, Fe2O3, K2O,
330 MgO, MnO2, Na2O, P2O5, SiO2, and SO3 in all varieties
331 studied, with CaO presenting the highest percentage (22.37%)
332 for wood. Bouraoui et al.33 have analyzed the mineral content
333 of faveira and found significant amounts of silicon (4430 mg
334 kg−1), calcium (1260 mg kg−1), and potassium (990 mg kg−1),
335 while magnesium was detected in smaller amounts (550 mg
336 kg−1). All minerals reported by Bouraoui et al.33 were found in
337 the charcoal samples analyzed in the present study.
338 3.2. Neural Network Architecture. The ANN architec-
339 tures developed in this study are presented, respectively, in
340 Figures 1 and 2, along with their respective input layers, hidden

341layers, neurons, output layers, and synaptic weights. Both
342ANNs used to estimate charcoal origination as a function of
343wooden species (Figure 1) as well as origin (i.e., native forest
344or Eucalyptus plantation) (Figure 2) were obtained using 11
345input neurons and 1 hidden layer, with 6 and 2 neurons,
346respectively.
347Synaptic weights represent the connecting forces between
348neurons and are used to store acquired knowledge.34 Weight is
349considered excitatory when it is positive (>0) and inhibitory
350when it is negative (<0). High synaptic weights are indicated
351by thick lines while low weights are represented by thin
352connections. A synaptic weight greater than zero is indicated in
353light gray, while a synaptic weight below zero is indicated in
354dark gray (Figures 1 and 2). Since very negative or very
355positive weights can generate thicker connections, the more
356positive or the more negative a weight, the thicker the
357connection. Input variables can be evaluated by considering
358the connections between the hidden layer or the output layer.
359The two ANN models were developed based on the values
360of the proportion of mineral components present in the
361material to estimate the origination of the charcoals, as a
362function of wood species and as a function of origin classes, i.e.,
363native forest or Eucalyptus plantation. For ANN 1 (Figure 1)
364the thick connections with very negative synaptic weights
365occurred at the Ca, K, Si, S, Mg, Al, Cu, Zn, and Sr inputs and
366those with very positive weights occurred at the Ca, K, Mn, Fe,
367 t4S, Mg, Al, Cu, and Zn inputs (see Table 4). For ANN 2
368(Figure 2), the very negative weights were highlighted in the K,
369Fe, Si, Cu, Zn, and Sr inputs and very positive ones occurred in
370 t5the Ca, Mn, S, Mg and Al inputs (Table 5). Since the quality of
371data can affect the performance of the ANN, it is very
372important to observe whether the data are adequate. The
373thicker, very positive and negative connections indicate that
374the input variable is important to define the output variable. In
375fact, most of the mineral elements used in the input layer had
376such connections.
3773.3. Identification of the Charcoal Origin. The model
378 t6for classifying species (ANN 1, Table 6) was able to correctly
379predict 88.3% of the specimens of the independent test set and
38074.5% of specimens belonging to the training set. Of the
381erroneous classifications in the test set, only two specimens of
382the native genus (Jacaranda) were confused with Eucalyptus
383specimens and only one specimen from plantation (Eucalyptus)
384was classified as Peroba (native). Most incorrect predictions
385were of the genera of native specimens among themselves or
386Eucalyptus specimens among themselves. This type of error
387within each category is positive for classification purposes,
388because it is possible to identify illegal native charcoals,
389regardless of the tree genus.
390The model to classify the origin (native or Eucalypt) of
391 t7charcoal (ANN 2, Table 7) was able to estimate the classes
392correctly with 97.9% success in the test set. Only one native
393specimen was misclassified as Eucalyptus, and the entire
394remaining set was correctly predicted. This finding indicates
395that the use of ANNs can be an efficient tool for classifying
396charcoal samples, based on the proportion of mineral elements
397as input data. In addition to the high percentage of correct
398classifications, the only error that occurred should not lead to
399an accusation of false fraud, which would be serious if the error
400is to classify Eucalyptus charcoal (legal) as native charcoal
401(mostly illegal).
402ANNs have proven to be a powerful machine learning tool
403for function approximation and pattern recognition. ANN has

Table 2. Information from Artificial Neural Networks To
Classify the Origin of Charcoals Based on Their Mineral
Components

Information

variable ANN 1 ANN 2

Input Layers
Covariate 1 Ca Ca
Covariate 2 K K
Covariate 3 Mn Mn
Covariate 4 Fe Fe
Covariate 5 Si Si
Covariate 6 S S
Covariate 7 Mg Mg
Covariate 8 Al Al
Covariate 9 Cu Cu
Covariate 10 Zn Zn
Covariate 11 Sr Sr
number of units 11 11
rescaling method for covariates standardized standardized

Hidden Layer
number of hidden layers, N 1 1
number of units in the first hidden
layer

6 2

activation function hyperbolic
tangent

hyperbolic tangent

Output Layer
dependent variables wood species native or

Eucalyptus
number of units, N 9 2
activation function softmax softmax
error function cross-entropy cross-entropy

Energy & Fuels pubs.acs.org/EF Article

https://dx.doi.org/10.1021/acs.energyfuels.0c01034
Energy Fuels XXXX, XXX, XXX−XXX

E

pubs.acs.org/EF?ref=pdf
https://dx.doi.org/10.1021/acs.energyfuels.0c01034?ref=pdf


404 been applied as a modeling tool to overcome various
405 challenges in many timber forestry sectors. Some studies
406 have developed ANN models to estimate wood density,35,36

407 wood stiffness,37 and wood strength,38 as well as to assess the
408 surface quality of wood39 and to predict the moisture content
409 of wood during drying.40,41

410 With respect to the application of the ANN approach in
411 classifications, most studies have shown promising findings as
412 well as ours. For instance, Cui et al.26 have used laser-induced
413 breakdown spectroscopy (LIBS) combined with ANN to
414 classify four wood species and reported a correct specimen
415 classification rate of 100% in the test set, using a model with a
416 multilayer perceptron network and the Broyden−Fletcher−
417 Goldfarb−Shanno iterative algorithm. Nisgoski et al.25 have

418compared ANN and SIMCA classifications to identify some
419Brazilian wood species based on near-infrared spectra. Their
420neural network resulted in no misidentification for a ±2%
421margin using a spectral range of 10 000 to 4000 cm−1, while
422SIMCA produced over 60% misidentification, using the raw
423spectra. Esteban et al.42 have developed ANNs to differentiate
424wood from Pinus sylvestris and Pinus nigra and their network
425achieved 90.4% accuracy for the training set and 81.2% for the
426validation in the test set. Wenshu et al.23 have studied the
427detection of defects in wood board based on ANN with an
428identification success rate of 86.67%. Castellani and Row-
429lands24 have built an evolutionary ANN for classifying wood
430veneers from statistical characteristics of wood subimages.
431Experimental evidence from this study showed that their

Table 3. Averaged Mineral Composition of Charcoal by Wooden Species and Pyrolysis Temperature

Percentage (%)

speciesa temperature (°C) Ca K Mn Fe Si S Mg Al Cu Zn Sr

EV 300 21.08 3.59 2.77 42.07 3.16 0.28 1.92 4.12 1.21 2.60 1.27
400 65.96 13.84 5.00 3.06 3.32 1.65 1.17 1.46 0.97 1.27 2.91
500 31.33 13.58 4.64 36.39 1.95 0.69 0.76 1.30 1.29 1.19 1.32
600 23.06 2.87 3.29 2.69 17.21 1.56 1.39 5.94 0.88 0.93 3.10
700 27.37 19.41 3.26 23.75 9.85 1.37 0.52 4.55 1.18 1.52 1.28

EC 300 19.37 5.27 2.36 42.40 4.39 0.11 1.79 6.75 1.23 3.03 1.52
400 53.81 24.36 2.72 2.15 3.59 2.29 2.09 1.32 1.20 1.46 3.10
500 30.34 22.92 1.78 22.83 2.61 0.64 0.71 1.31 0.64 0.77 1.30
600 22.78 32.93 1.49 2.32 5.68 1.51 1.05 3.76 1.00 1.00 2.54
700 38.06 17.31 1.80 25.14 4.29 0.97 0.47 2.41 0.91 1.22 1.51

R 400 74.42 6.36 3.04 0.83 2.08 1.66 5.37 0.49 1.15 0.68 3.99
500 78.75 4.55 2.89 0.57 0.89 1.47 5.23 0.32 0.87 0.49 4.34
600 74.54 5.04 5.07 0.59 1.14 1.38 6.83 0.14 1.52 0.52 4.37
700 79.34 4.24 3.24 0.46 0.74 1.32 5.38 0.99 0.99 0.28 4.41

B 400 4.59 4.38 0.57 0.50 12.07 1.49 0.51 75.09 0.30 0.45 0.57
500 4.96 1.16 0.28 0.54 14.85 0.97 0.73 74.62 0.39 0.44 0.50
600 5.46 1.64 0.31 0.68 12.42 0.94 1.07 66.31 0.41 0.38 0.66
700 5.56 2.47 0.35 0.61 21.92 1.27 1.62 64.76 0.39 0.43 0.55

U 400 81.66 1.38 2.33 0.83 6.38 0.66 0.80 2.24 0.40 0.18 2.91
500 76.72 2.56 1.68 1.18 9.08 0.88 0.93 3.22 0.65 0.36 2.31
600 64.70 3.26 2.91 1.72 15.63 0.87 1.17 5.83 0.63 0.32 2.51
700 67.89 2.57 2.53 1.40 14.66 0.70 0.98 5.35 0.39 0.23 2.60

A 300 53.60 13.90 1.62 6.22 0.22 1.56 1.73 0.90 0.34 0.87 1.08
500 57.98 21.54 1.27 9.53 0.15 1.47 1.51 0.52 0.40 0.84 0.81
700 62.96 23.28 1.31 6.26 0.17 0.85 0.91 0.43 0.28 0.58 0.77

J 300 48.09 1.31 2.53 21.00 1.98 0.35 4.24 3.09 0.63 0.65 1.24
500 66.62 5.42 3.91 11.98 0.50 0.53 2.25 0.45 1.09 0.93 0.98
700 62.91 1.14 3.38 14.80 1.26 1.01 3.91 1.20 0.96 0.96 0.68

C 300 57.98 6.16 0.21 5.27 1.08 0.17 3.60 2.11 0.33 1.01 1.87
500 61.42 10.18 0.34 14.45 1.25 0.78 2.30 0.99 0.32 0.79 1.18
700 69.02 8.87 0.49 10.56 0.33 0.35 2.66 0.58 0.34 0.86 1.38

P 300 46.07 21.81 7.89 1.38 3.16 0.19 1.79 11.30 0.17 1.25 1.50
500 38.31 27.11 7.37 11.71 1.22 0.21 1.99 6.48 0.13 0.73 1.04
700 47.95 13.31 6.48 8.13 2.13 0.31 4.16 11.98 0.28 0.66 1.08

aAbbreviations: EV, Eucalyptus; EC, Eucalyptus; R, Peltogyne sp.; B, Gochnatia sp.; U, Dipteryx sp.; A, Apuleia sp.; J, Jacaranda sp.; P, Aspidosperma
sp.; and C, Cedrela sp.
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432 algorithm builds highly compact multilayer perceptron
433 structures capable of accurate and robust learning.
434 The studies reported above show that ANNs are robust
435 techniques capable of analyzing complex data. To our
436 knowledge, no study has applied neural networks for charcoal
437 classifications, especially to evaluate the mineral composition
438 of charcoal.
439 The data used as input variables in ANN for evaluating
440 wood can be physical and mechanical characteristics,43 heat

441treatment temperature,38,44 tree age,35 wood species,44 basic
442density,35 basal area (in m2 ha−1), annual average increment
443(in m3 ha−1 yr−1), total height and diameter at 1.3 m from the
444ground.35 This study is pioneering in its use of mineral
445elements contained in charcoals as predictive variables in ANN
446modeling.
4473.4. Limitations of This Study. The rapid identification of
448charcoal origin can be performed through the ANNs
449developed in this exploratory study. The approach used in
450this study shows that it is possible to create an automated
451process to determine the legality of the charcoal load and then
452reduce the fraudulent charcoal trade. However, robust models
453may be further developed, taking into account more wood
454species and pyrolysis process conditions. Complementary
455studies are necessary to build robust data of charcoal mineral
456composition, including samples of several wood species,
457regions, pyrolysis kilns, temperatures, dimensions, moisture,
458etc. Models generated in this research can be fed with new
459information on mineral content of other forest species to
460ensure greater applicability. Thus, they can be used to identify
461a greater variety of forest species. The model’s functionality
462shows that the mineral components associated with ANNs are
463factors that contain useful information capable of identifying
464unknown charcoals. This innovative approach can be used by
465other researchers and professionals to apply in their realities.

4. CONCLUSION

466The findings reported in this study show the great potential for
467the use of ANNs as systems to identify the charcoal origination
468when traditional qualitative or quantitative methods cannot be
469used. This same approach can be used by other researchers and
470professionals to be applied in their working conditions. Models
471can be fed with information from other forest species to

Table 4. Training Parameters of Artificial Neural Network 1 (ANN 1) Used To Estimate the Origin of Charcoal Based on
Mineral Components

Predicted

Hidden Layer 1

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6)

Input Layer (Bias) 0.293 −0.499 −0.544 0.753 0.461 −0.284
Ca 0.013 −0.392 0.610 −0.438 0.786 0.471
K 1.485 0.215 −0.169 −1.404 0.787 −0.022
Mn −0.073 −2.817 −1.104 −0.122 0.198 −0.530
Fe 0.064 −0.008 −0.654 −0.134 −0.345 −0.430
Si 0.409 −0.338 −0.271 1.225 0.053 −0.219
S 1.658 −0.535 0.382 −0.378 −0.364 −0.002
Mg −1.414 −1.397 1.567 −0.824 −0.736 0.433
Al −1.390 0.289 1.046 0.029 −0.919 −0.503
Cu 1.317 −0.170 −1.491 2.003 −0.665 0.501
Zn 0.450 0.721 −0.996 0.074 −0.109 0.091
Sr 1.062 1.577 0.010 0.677 0.211 −0.397

Output Layer

[Ev] [Ec] [R] [B] [U] [A] [J] [C] [P]

Hidden Layer 1 (Bias) 0.217 1.180 −1.027 −1.556 −0.467 0.102 1.570 0.111 0.082
H(1:1) 0.877 0.564 1.804 −1.832 1.194 2.084 −1.545 −1.673 −1.519
H(1:2) 0.287 2.227 −1.288 0.818 1.213 0.295 −1.926 1.690 −2.486
H(1:3) −3.054 −2.728 2.124 1.777 1.177 0.858 −0.354 0.653 −0.714
H(1:4) 1.726 0.398 1.305 1.671 1.838 −2.785 −0.152 −1.796 −2.561
H(1:5) −0.622 0.534 −0.336 −0.879 1.041 0.444 −0.483 −0.061 0.009
H(1:6) −0.306 0.004 0.385 −0.226 −0.130 −0.007 0.659 0.185 −0.619

Table 5. Training Parameters of Artificial Neural Network
(ANN 2) Used To Estimate the Origin of Charcoal Based
on Mineral Components

Predicted

Hidden Layer 1 Output Layer

Predictor H(1:1) H(1:2) Eucalyptus
native
forest

Input Layer (Bias) 0.383 −0.605
Ca 0.103 −0.663
K −0.467 0.403
Mn 0.374 0.145
Fe −0.882 0.429
Si −0.052 0.224
S 0.542 0.553
Mg 1.559 −0.455
Al 0.265 0.098
Cu −0.922 0.840
Zn −0.486 0.258
Sr −1.038 0.450

Hidden Layer 1 (Bias) −0.256 0.370
H(1:1) −1.807 1.933
H(1:2) 0.813 −0.911
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472 guarantee their functionality in applications in different actions
473 to monitor illegal charcoal trade.
474 Classification of charcoal specimens by origin (native or
475 Eucalyptus) by ANN 2 reached 97.9% of correct classification
476 in validations from the independent test set while the ANN 1
477 correctly predicted 74.5% of charcoal specimens by wood
478 species in the test set.
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Table 6. ANN Classification of Charcoal by Wood Species (Ev, Ec, R, B, U, A, J, C, and P)a Using the Mineral Composition of
the Charcoals Produced at Temperatures from 300 °C to 700 °C

Predicted by ANN

observed EV EC R B U A J C P correct classification (%)

Training Set
EV 12 5 70.6
EC 3 13 1 76.5
R 5 100.0
B 5 100.0
U 6 100.0
A 11 100.0
J 10 1 90.9
C 11 100.0
P 1 10 90.9
overall percentage (%) 16.0 19.1 5.3 5.3 6.4 11.7 11.7 12.8 11.7 88.3

Test Set
EV 5 2 1 62.5
EC 1 7 87.5
R 3 100.0
B 3 100.0
U 2 100.0
A 2 1 2 1 33.3
J 1 1 4 66.7
C 1 3 1 60.0
P 6 100.0
overall percentage (%) 14.9 21.3 6.4 6.4 4.3 6.4 10.6 10.6 19.1 74.5

aAbbreviations: EV, Eucalyptus; EC, Eucalyptus; R, Peltogyne sp.; G, Gochnatia sp.; D, Dipteryx sp.; A, Apuleia sp.; J, Jacaranda sp.; P, Aspidosperma
sp.; and C, Cedrela sp.

Table 7. ANN Classification of Charcoal by Source
(Eucalyptus (E) or Native (N)), Using the Mineral
Composition of the Charcoals Produced at Temperatures
from 300 °C to 700 °C

Predicted by
NIR

observed E N correct classification (%)

Training Set
E 33 1 97.1
N 0 60 100
overall percentage (%) 98.9

Test Set
E 16 0 100
N 1 30 96.8
overall percentage (%) 97.9
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