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Abstract
Species	distribution	models	(SDMs)	are	now	being	widely	used	in	ecology	for	man‐
agement	and	conservation	purposes	across	terrestrial,	freshwater,	and	marine	realms.	
The	increasing	interest	in	SDMs	has	drawn	the	attention	of	ecologists	to	spatial	mod‐
els	and,	in	particular,	to	geostatistical	models,	which	are	used	to	associate	observa‐
tions	of	species	occurrence	or	abundance	with	environmental	covariates	in	a	finite	
number	of	locations	in	order	to	predict	where	(and	how	much	of)	a	species	is	likely	to	
be	 present	 in	 unsampled	 locations.	 Standard	 geostatistical	methodology	 assumes	
that	the	choice	of	sampling	locations	is	independent	of	the	values	of	the	variable	of	
interest.	However,	 in	 natural	 environments,	 due	 to	 practical	 limitations	 related	 to	
time	and	financial	constraints,	this	theoretical	assumption	is	often	violated.	In	fact,	
data	commonly	derive	from	opportunistic	sampling	(e.g.,	whale	or	bird	watching),	in	
which	observers	tend	to	look	for	a	specific	species	in	areas	where	they	expect	to	find	
it.	These	are	examples	of	what	is	referred	to	as	preferential sampling,	which	can	lead	
to	biased	predictions	of	the	distribution	of	the	species.	The	aim	of	this	study	 is	to	
discuss	a	SDM	that	addresses	this	problem	and	that	it	is	more	computationally	effi‐
cient	than	existing	MCMC	methods.	From	a	statistical	point	of	view,	we	interpret	the	
data	as	a	marked	point	pattern,	where	the	sampling	locations	form	a	point	pattern	
and	 the	measurements	 taken	 in	 those	 locations	 (i.e.,	 species	 abundance	or	occur‐
rence)	are	the	associated	marks.	Inference	and	prediction	of	species	distribution	is	
performed	using	a	Bayesian	approach,	and	integrated	nested	Laplace	approximation	
(INLA)	methodology	and	software	are	used	for	model	fitting	to	minimize	the	compu‐
tational	burden.	We	show	that	abundance	is	highly	overestimated	at	low	abundance	
locations	when	preferential	sampling	effects	not	accounted	for,	in	both	a	simulated	
example	and	a	practical	application	using	fishery	data.	This	highlights	that	ecologists	
should	be	aware	of	 the	potential	bias	 resulting	 from	preferential	 sampling	and	ac‐
count	for	it	in	a	model	when	a	survey	is	based	on	non‐randomized	and/or	non‐sys‐
tematic	sampling.
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1  | INTRODUC TION

An	 increasing	 interest	 in	 Species	 distribution	 models	 (SDMs)	 for	
management	and	conservation	purposes	has	drawn	the	attention	of	
ecologists	to	spatial	models	(Dormann	et	al.,	2007).	SDMs	are	rele‐
vant	in	theoretical	and	practical	contexts,	where	there	is	an	interest	
in,	for	example,	assessing	the	relationship	between	species	and	their	
environment,	identifying	and	managing	protected	areas	and	predict‐
ing	a	species’	response	to	ecological	changes	(Latimer,	Wu,	Gelfand,	
&	Silander,	2006).	In	all	these	contexts,	the	main	issue	is	to	link	infor‐
mation	on	the	abundance,	presence/absence,	or	presence	only	of	a	
species	to	environmental	variables	to	predict	where	(and	how	much	
of)	a	species	is	likely	to	be	present	in	unsampled	locations	elsewhere	
in	space.

In	studies	of	species	distribution,	collecting	data	on	the	species	
of	interest	is	not	a	trivial	problem	([Kery	et	al.,	2010).	With	the	excep‐
tion	of	a	few	studies	(Thogmartin,	Knutson,	&	Sauer,	2006),	SDMs	
frequently	rely	on	opportunistic	data	collection	due	to	the	high	cost	
and	time	consuming	nature	of	sampling	data	in	the	field,	especially	
on	a	 large	spatial	scale	(Kery	et	al.,	2010).	 Indeed,	 it	 is	often	infea‐
sible	to	collect	data	based	on	a	well‐designed,	randomized,	and/or	
systematic	sampling	scheme	to	estimate	the	distribution	of	a	specific	
species	over	 the	entire	area	of	 interest	 (Brotons,	Herrando,	&	Pla,	
2007).	Hence,	various	types	of	opportunistic	sampling	schemes	are	
commonly	used.	As	an	example,	studies	on	sea	mammals	commonly	
resort	to	the	affordable	practice	of	sampling	from	recreational	boats	
(so‐called	 platforms	 of	 opportunity),	 whose	 bearings	 are	 neither	
random	nor	systematic	(Rodríguez,	Brotons,	Bustamante,	&	Seoane,	
2007).	Similarly,	bird	data	are	often	derived	from	online	databases	
such	as	eBird,	which	make	available	locations	of	birds	sighted	by	bird‐
watchers,	who	tend	to	visit	habitats	suitable	for	interesting	species	
(https://ebird.org/).	Also,	in	the	context	of	fishery	ecology,	fishery‐
dependent	 survey	 data	 are	 often	 derived	 from	 commercial	 fleets	
tend	to	be	readily	available	for	analysis.	However,	the	fishing	boats	
naturally	tend	to	fish	in	locations	where	they	expect	a	high	concen‐
tration	of	their	target	species	(Vasconcellos	&	Cochrane,	2005).

All	these	types	of	opportunistically	collected	data	tend	to	suffer	
from	a	specific	complication:	The	sampling	scheme	that	determines	
sampling	locations	is	not	random,	and	hence	not	independent	of	the	
response	variable	of	interest,	for	example,	species	abundance	(Conn,	
Thorson,	&	Johnson,	2017;	Diggle,	Menezes,	&	Su,	2010).	However,	
SDMs	typically	assume,	if	only	implicitly,	that	sampling	locations	are	
not	 informative	and	 that	 they	have	been	chosen	 independently	of	
what	values	are	expected	to	be	observed	in	a	specific	location.	This	
assumption	 is	 typically	 violated	 for	 opportunistic	 data	 resulting	 in	
preferentially	sampled	data,	collected	in	locations	that	were	deliber‐
ately	chosen	in	areas	where	the	abundance	of	the	species	of	interest	

is	thought	to	be	particularly	high	or	 low.	This	violation	leads	to	bi‐
ased	estimates	and	predictions	(Diggle	et	al.,	2010).

Consequently,	biased	estimation	and	predictions	of	species	dis‐
tribution	lead	to	badly	informed	decision	making	and	to	inefficient	or	
in	appropriate	management	of	natural	resources	(Conn	et	al.,	2017;	
Diggle	 et	al.,	 2010;	Dinsdale	&	Salibian‐Barrera,	 2018).	 This	 paper	
seeks	 to	 address	 preferential	 sampling	 in	 the	 context	 of	 fisheries	
ecology,	where	this	 issue	 is	particularly	relevant	since	the	 identifi‐
cation	and	management	of	 sensitive	habitats	 (e.g.,	 through	marine	
protected	 areas,	 nurseries,	 high‐discard	 locations)	 is	 a	 common	
conservation	tool	used	to	sustain	the	long‐term	viability	of	species	
populations.

Diggle	et	al.	 (2010)	suggest	a	modeling	approach	that	accounts	
for	 preferential	 sampling	 using	 likelihood‐based	 inference	 with	
Monte	Carlo	methods.	However,	the	resulting	approach	can	be	com‐
putationally	intensive,	as	the	authors	recognize	in	their	reply	to	the	
issues	raised	on	the	discussion	of	their	paper,	which	implies	that	it	
is	quite	difficult	 to	use	 in	practical	 situations,	 especially	when	 the	
objective	of	 the	analysis	 is	 to	predict	 into	 in	extended	areas.	This	
is	of	significant	concern	as	prediction	is	often	the	main	objective	of	
SDMs	and	preferential	sampling	issues	are	by	their	very	definition	a	
practical	problem	that	needs	to	be	addressed	in	a	form	that	makes	
them	accessible	to	users.

As	Rue,	Martino,	Mondal,	and	Chopin	(2010)	indicate	in	the	dis‐
cussion	on	Diggle	et	al.’	s	paper,	preferential	sampling	may	be	seen	
as	a	marked	spatial	point	process	model,	in	particular	a	marked	log‐
Gaussian	Cox	process.	These	models	can	be	fitted	in	a	computation‐
ally	 efficient	 way	 using	 integrated	 nested	 Laplace	 approximation	
(INLA)	and	associated	software	Rue,	Martino,	and	Chopin	(2009)	in	
a	fast	computational	way.

In	 this	 study,	we	 thoroughly	 explain	 the	methodology	 for	 per‐
forming	preferential	sampling	models	using	the	approach	proposed	
by	Rue	et	al.	(2010)	within	the	context	of	SDMs,	with	the	final	aim	
to	provide	guidance	on	the	appropriate	use	and	interpretation	of	the	
fitted	models.	A	practical	application	assessing	the	spatial	distribu‐
tion	 of	 blue	 and	 red	 shrimp	 (Aristeus antennatus, Risso 1816)	 from	
fishing	data	in	the	Gulf	of	Alicante	(Spain)	is	provided	as	a	tutorial,	
while	simulated	data	are	used	to	demonstrate	performance	issues	of	
standard	methods	which	do	not	account	for	preferential	sampling.

2  | MATERIAL AND METHODS

Preferentially	collected	data	consist	of	two	pieces	of	information:	(a)	
sampling	locations,	and	(b)	measured	abundance	(or	occurrence)	of	
target	species	in	these	locations,	where	the	intensity	of	sampling	lo‐
cations	is	positively	or	negatively	correlated	with	abundance,	that	is,	
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(a)	and	(b)	are	not	independent.	Predicting	the	distribution	of	target	
species	using	this	type	of	data	implies	that	the	sampling	distribution	
is	not	uniformly	random	as	it	tends	to	have	more	observations	where	
abundance	 is	higher,	 and	 thus,	basic	 statistical	model	assumptions	
are	violated.

In	 order	 to	 overcome	 this	 problem,	 Diggle	 et	al.	 (2010)	 pro‐
posed	to	 interpret	the	preferential	sampling	process	as	a	marked 
point processes model.	This	approach	uses	the	information	on	sam‐
pling	locations	and	models	them	along	with	the	measured	values	
of	the	variable	of	interest	in	a	joint	model.	In	particular,	sampling	
locations	are	interpreted	as	a	spatial point pattern,	accounting	for	
a	 higher	 point	 intensity	where	measured	 values	 are	 higher.	 The	
measurements	taken	in	each	of	the	points	(the	mark	in	point	pro‐
cess	terminology)	are	modeled	along	with	and	assumed	to	be	po‐
tentially	dependent	on	the	point‐pattern	intensity	in	a	joint	model.	
This	approach	accounts	for	preferential	sampling	while	still	mak‐
ing	predictions	for	the	variable	of	 interest	 in	space.	 In	particular,	
in	the	fishery	example	discussed	here,	fishing	locations	are	inter‐
preted	as	a	point	pattern,	while	the	species	catch	at	each	location	
is	interpreted	as	a	mark.

2.1 | Statistical model

Formally,	a	spatial	point	pattern	consists	of	the	spatial	 locations	of	
events	or	objects	in	a	defined	study	region	Illian,	Penttinen,	Stoyan,	
and	Stoyan	 (2008).	Examples	 include	 locations	of	species	 in	a	par‐
ticular	area,	or	parasites	in	a	microbiology	culture.	Spatial	point	pro‐
cesses	are	mathematical	models	(random	variables)	used	to	describe	
and	analyze	 these	 spatial	patterns.	A	 simple	 theoretical	model	 for	
a	spatial	point	pattern	 is	 the	Poisson	process,	usually	described	 in	
terms	of	its	intensity	function	Λx.	This	intensity	function	represents	
the	distribution	of	locations	(“points”)	in	space.	In	a	Poisson	process,	
the	number	of	points	follows	a	Poisson	distribution	and	the	locations	
of	these	points	independent	of	any	of	the	other	points.	The	homoge‐
neous	Poisson	process	represents	complete	spatial	randomness	and	
serves	as	a	reference	or	null	model	in	many	applications.

The	intensity	of	a	point	process,	that	is,	the	number	of	points	per	
unit	area,	may	either	be	constant	over	space,	resulting	in	a	homoge‐
neous	or	stationary	pattern,	or	vary	in	space	with	a	spatial	trend,	re‐
sulting	in	a	non‐homogeneous	pattern.	However,	the	assumption	of	
stationarity	is	generally	unrealistic	in	most	SDM	applications	as	the	
intensity	function	varies	with	the	environment,	making	non‐homo‐
geneous	Poisson	processes	potentially	a	better	choice	 to	describe	
species	distribution	based	on	a	trend	function	that	may	depend	on	
covariates.	Nonetheless,	in	applications	covariates	may	not	explain	
the	entire	spatial	structure	in	a	spatial	pattern.	In	contrast,	the	class	
of	Cox	processes	provides	the	flexibility	to	model	aggregated	point	
patterns	 relative	 to	 observed	 and	 unobserved	 abiotic	 and	 biotic	
mechanisms.	Here,	 spatial	 structures	 in	an	observed	point	pattern	
may	reflect	dependence	on	known	and	measured	covariates,	as	well	
as	 on	 unknown	 or	 unmeasurable	 covariates	 or	 biotic	mechanisms	
that	 cannot	be	 readily	 represented	by	 a	 covariate,	 such	as	disper‐
sal	limitation.	Indeed,	the	spatial	structure	of	both	abiotic	and	biotic	

variables	can	 impact	on	ecological	processes	and	consequently	be	
reflected	in	the	species	distribution.

Log‐Gaussian	Cox	processes	(LGCPs)	are	a	specific	class	of	Cox	
process	models	in	which	the	logarithm	of	the	intensity	surface	is	a	
Gaussian	random	field.	Given	the	random	field,	More	formally:	

where Vs	 is	 a	Gaussian	 random	 field.	Given	 the	 random	 field,	 the	
observed	locations	s = (s1,	…,	sn)	are	independent	and	form	a	Poisson	
process.

In	the	case	of	preferentially	sampled	species,	the	observed	abun‐
dance	Y = (y1,	…,	yn)	is	also	linked	to	the	intensity	of	the	underlying	
spatial	 field.	 In	practice,	only	very	 few	samples	might	be	available	
in	some	areas	if	 it	 is	assumed	that	abundance	is	particularly	low	in	
these	 areas.	 The	 LGCP	model	 fitted	 to	 the	 sampling	 locations	 re‐
flects	areas	with	low	species	abundance	that	have	resulted	in	areas	
with	 fewer	 sampling	 locations.	To	 incorporate	 such	 information	 in	
the	 SDM	 abundance	 model	 we	 apply	 joint	 modeling	 techniques,	
which	allow	fitting	shared	model	components	in	models	with	two	or	
more	linear	predictors.	Here,	we	consider	two	dependent	predictors	
with	two	responses,	that	is,	the	observed	species	abundances	(the	
marks)	and	the	intensity	of	the	point	process	reflecting	sampling	in‐
tensity	through	space.

This	 results	 in	 a	preferential	 sampling	model	 that	 consists	of	
two	 levels,	where	 information	 is	 shared	between	 the	 two	 levels,	
the	mark	model	and	the	pattern	model.	 In	particular,	 the	mark	Y 
is	assumed	to	follow	an	exponential	family	distribution	such	as	a	
Gaussian,	 lognormal	 or	 gamma	 distribution	 for	 continuous	 vari‐
ables	or	a	Poisson	distribution	 for	count	data.	 In	all	 these	cases,	
the	mean	μs	 is	related	to	the	spatial	term	through	an	appropriate	
link	function	η: 

where �′
0
	 is	the	intercept	of	the	model,	the	coefficients	�′

n
	quantify	

the	effect	of	some	covariates	Xn	on	the	response,	and	Ws	is	the	spa‐
tial	effect	of	the	model,	that	is,	the	Gaussian	random	field.	The	co‐
variates	in	the	additive	predictor	are	environmental	features	linked	
to	habitat	preferences	of	a	species.

In	the	second	part	of	the	model,	an	LGCP	model	with	intensity	
function	Λs	reflecting	the	sampling	locations:	

 where β0	is	the	intercept	of	the	LGCP,	the	coefficients	βn	quantify	the	
effect	of	some	covariates	Xn	on	the	intensity	function,	and	Ws	is	the	
spatial	term	shared	with	the	LGCP	but	scaled	by	α	to	allow	for	the	dif‐
ferences	in	scale	between	the	mark	values	and	the	LGCP	intensities.

Bayesian	inference	turns	out	to	be	a	good	option	to	fit	spatial	
hierarchical	models	because	it	allows	both	the	observed	data	and	
model	 parameters	 to	 be	 random	 variables	 ([Banerjee,	 Carlin,	 &	
Gelfand,	2004),	resulting	in	a	more	realistic	and	accurate	estima‐
tion	of	uncertainty.	An	important	issue	of	the	Bayesian	approach	
is	that	prior	distributions	must	be	assigned	to	the	parameters	(in	
our	case,	β0	and	�

′

0
)	and	hyperparameters	(in	our	case,	those	of	the	

(1)log(Λs)=Vs,

(2)�(�s)=��
0
+��

n
Xn+Ws,

(3)Λs=exp
{

�0+�nXn+�Ws

}

,
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spatial	effect	W )	involved	in	the	models.	Nevertheless,	as	usual	in	
this	kind	of	models,	 the	resulting	posterior	distributions	are	not	
analytically	known	and	so	numerical	approaches	are	needed.

2.2 | Fitting models with INLA

Model‐fitting	 methods	 based	 on	 Markov	 chain	 Monte	 Carlo	
(MCMC)	can	be	very	 time‐consuming	 for	 spatial	models,	 in	par‐
ticular	LGCPs.	Nevertheless,	LGCPs	are	a	special	case	of	the	more	
general	class	of	 latent	Gaussian	models,	which	can	be	described	
as	 a	 subclass	 of	 structured	 additive	 regression	 (STAR)	 models,	
(Fahrmeir	 &	 Tutz,	 2001).	 In	 these	 models	 the	 mean	 of	 the	 re‐
sponse	variable	is	 linked	to	a	structured	predictor,	which	can	be	
expressed	in	terms	of	linear	and	non‐linear	effects	of	covariates.	
In	a	Bayesian	framework,	by	assigning	Gaussian	priors	to	all	ran‐
dom	terms	in	the	predictor,	we	obtain	a	latent	Gaussian	model.	As	
a	result,	we	can	directly	compute	LGCP	models	using	Integrated	
nested	 Laplace	 approximation	 (INLA).	 INLA	provides	 a	 fast,	 yet	
accurate	 approach	 to	 fitting	 latent	Gaussian	models	 and	makes	
the	 inclusion	 of	 covariates	 and	marked	 point	 processes	mathe‐
matically	tractable	with	computationally	efficient	inference	(Illian	
et	al.,	2013;	Simpson,	Illian,	Lindgren,	Sørbye,	&	Rue,	2016).

2.3 | Preferential and non‐preferential models

As	mentioned	above,	the	resulting	preferential	model	can	be	ex‐
pressed	as	a	two‐part	model	as	follows.	Assuming	that	the	ob‐
served	locations	s = (s1,	…,	sn)	come	from	a	Poisson	process	with	
intensity	Λs=exp

{

�0+�Ws

}

,	we	have	to	assign	a	distribution	for	
the	abundance.	Based	on	the	fact	that	the	abundance	is	usually	
a	positive	outcome,	we	have	 considered	a	 gamma	distribution,	
although	 clearly	 other	 options	 could	 be	 possible	 (exponential,	
lognormal,	or	Poisson	for	counts).	This	yields:	

	where	the	Gaussian	random	field	Ws	links	the	LGCP	and	the	abundance	
process	scaled	by	α	 in	the	Poisson	process	predictor	to	allow	for	dif‐
ferences	in	scale.	The	matrix	Q(�,�)	 is	estimated	implicitly	through	an	
approximation	 of	 the	 Gaussian	 random	 field	 through	 the	 stochastic	
partial	differential	equation	(SPDE)	approach	as	in	Lindgren,	Rue,	and	
Lindström	(2011)	and	Simpson	et	al.	(2016).

It	is	worth	noting	that	not	taking	account	of	preferential	sampling	
leads	 to	 biased	 results.	 This	 can	 be	 easily	 seen	 by	 comparing	 the	
preferential	sampling	approach	with	the	following	simpler	model:	

	Note	that	the	model	 in	Equation	5	assumes	that	 for	 the	random	
fields	we	have	Z≠W,	whereas	the	preferential	sampling	model	assumes	
a	single,	shared	random	field	for	both	the	point	pattern	and	the	mark.	
For	both	models,	prior	distributions	have	to	be	chosen	for	to	all	the	pa‐
rameters	and	hyperparameters.	We	have	assigned	vague	priors,	that	is,	
used	the	default	in	R‐INLA	due	to	a	general	lack	of	prior	information.	
Another	approach	that	could	be	used	here	is	penalized	complexity	pri‐
ors	 (hereafter	pc.priors)	 as	described	 in	Fuglstad,	Simpson,	 Lindgren,	
and	Rue	(2017)	and	readily	available	in	R‐INLA.

As	mentioned	above,	both	models	in	4	and	5	may	include	covari‐
ates,	the	significance	of	which	may	be	tested	through	model	selection	
procedures.	There	is	very	little	literature	available	on	model	selection	
for	point	process	models;	however,	criteria	like	the	deviance	informa‐
tion	criterion	(DIC)	(Spiegelhalter,	Best,	Carlinm,	&	Van	Der	Linde,	2002)	
are	sometimes	used.

2.4 | Simulated example

In	 order	 to	 illustrate	 the	 effectiveness	 of	 the	 preferential	 sampling	
method	and	to	emphasize	the	misleading	results	we	would	obtain	if	we	
do	not	take	it	into	consideration,	we	initially	consider	a	simulation	study	
(Figure	1).	One	hundred	realizations	of	a	Gaussian	spatial	random	field	
with	Matérn	covariance	 function	were	generated	over	a	100‐by‐100	
grid	 using	 the	RandomFields	 package	 (Schlather,	Malinowski,	Menck,	
Oesting,	&	Strokorb,	2015).

For	each	of	the	100	simulated	Gaussian	spatial	random	fields	that	
represent	the	distribution	of	a	species	 in	 the	study	area,	 two	sets	of	
100	samples	were	reproduced,	one	distributed	preferentially	and	one	
distributed	 randomly.	 In	 particular,	 preferentially	 locations	 were	 se‐
lected	using	relative	probabilities	proportional	to	the	intensity	function	
Λs.	Abundance	estimates	were	extracted	at	the	selected	locations,	as	a	
simulation	of	the	observations	for	this	experiment.

Both	 preferential	 and	 non‐preferential	 models	 were	 fitted	 to	
each	of	 the	sample	sets	and	compared	 in	 their	performance	using	

(4)

Ys∼Ga (�s,�)

log (�s)=��
0
+Ws

W∼N (0,Q (�,�))

(2 log �, log �)∼MN(�w,�w)

(5)

Ys∼Ga(�s,�)

log(�s)=���
0
+Zs

Z∼N(0,Q(�,�))

(2 log �, log �)∼MN(�z,�z)

F I G U R E  1  Representation	of	one	of	the	one	hundred	Gaussian	
field	simulated	and	the	respective	preferentially	sampling	locations	
generated
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three	 different	 criteria:	 the	 deviance	 information	 criterion	 (DIC)	
(Spiegelhalter	et	al.,	2002),	the	 log‐conditional	predictive	ordinates	
(LCPO)	(Roos	&	Held,	2011),	and	the	predictive	mean	absolute	error	
(MAE)	(Willmott	&	Matsuura,	2005).	Specifically,	the	DIC	measures	
the	compromise	between	 the	 fit	 and	 the	parsimony	of	 the	model,	
the	LCPO	is	a	“leaveoneout”	cross‐validation	index	to	assess	the	pre‐
dictive	power	of	 the	model,	and	the	MAE	 indicates	 the	prediction	
error.	 Lower	 values	of	DIC,	 LCPO	and	MAE	 suggest	better	model	
performance.	 Finally,	 a	 sensitivity	 analysis	with	different	 pc.priors	
was	 carried	out	 to	 assess	 their	 influence	on	 the	 final	 inference	of	
the	range	and	variance	of	a	simulated	Gaussian	spatial	random	field.

2.5 | Spatial distribution of blue and red shrimp 
in the Western Mediterranean Sea

In	 this	 section,	 we	 illustrate	 how	 preferential	 sampling	 can	 be	
accounted	 for	 in	 the	concrete	data	example	 from	the	context	of	
fishery	data.	Fishery‐dependent	data	derived	from	opportunistic	
sampling	on	boats	 from	the	commercial	 fleet	present	a	standard	
example	 of	 preferential	 sampling,	 since	 clearly	 fishers	 preferen‐
tially	fish	in	areas	where	they	expect	to	find	large	amounts	of	their	
target	species.

We	consider	data	on	blue	and	 red	shrimp	 (Aristeus antennatus, 
Risso 1816)	(Carbonell	et	al.,	2017;	Deval	&	Kapiris,	2016;	Lleonart,	
2005),	one	of	the	most	economically	important	deep‐sea	trawl	fish‐
ery	in	the	Western	Mediterranean	Sea.	The	data	were	collected	by	
observers	onboard	a	number	of	fishing	boats	in	the	Gulf	of	Alicante	
(Spain)	from	2009	to	2012.	The	dataset	includes	77	hauls	from	nine	
different	trawling	vessels	(Figure	2)	and	was	provided	by	the	Instituto 
Español de Oceanografía	(IEO,	Spanish	Oceanographic	Institute).

As	mentioned,	the	fitted	effects	for	the	abundance	of	blue	and	
red	shrimp	(Y)	are	corrected	by	jointly	fitting	a	model	for	the	abun‐
dances	and	the	sampling	(fishing)	locations,	reflecting	fishers’	(poten‐
tially)	imprecise	knowledge	of	the	distribution	of	blue	and	red	shrimp.	
We	also	assume	that	the	observed	locations	s = (s1,	…,	sn)	come	from	
a	Poisson	process	with	intensity	Λs=exp

{

�0+�df(d)+�wWs

}

,	where	
f(d)	 represents	 the	not	necessarily	 linear	 relationship	with	one	co‐
variate,	 in	this	case	bathymetry.	The	reason	underneath	this	selec‐
tion	was	that	exploratory	analysis	revealed	non‐linear	relationships	
between	depth	and	blue	and	red	shrimp	abundance.	The	remaining	
second	part	of	the	model,	that	is,	the	one	explaining	the	abundance,	
also	contains	the	relationship	with	the	bathymetry:	

 where s	 indexes	 the	 location	of	each	haul	and	 j	 indexes	different	
depths	(dj,	representing	the	different	values	of	bathymetry	observed	
in	the	study	area	from	d1	=	90	m	tp	dm =	40	=	920	m).

We	use	a	Bayesian	smoothing	spline	Fahrmeir	and	Lang	(2001)	
to	model	non‐linear	effects	of	depth,	using	a	second‐order	random	
walk	(RW2)	latent	model.

As	no	prior	information	on	the	parameters	of	the	model	was	avail‐
able,	we	 used	 a	 vague	 zero‐mean	Gaussian	 prior	 distribution	with	 a	
variance	of	100	for	the	fixed	effects.	Regarding	the	spatial	effect,	pri‐
ors	on	μκ	and	μτ	were	selected	so	that	the	median	prior	range	of	this	
component	was	half	of	 the	study	area	and	 its	prior	median	standard	
deviation	was	1.	It	was	only	in	the	case	of	the	bathymetry	that	a	visual	
pre‐selection	of	priors	was	made,	to	avoid	overfitting,	by	changing	the	
prior	of	the	precision	parameter	while	the	models	were	scaled	to	have	
a	generalized	variance	equal	to	1	(Sørbye	&	Rue,	2014).	In	any	case,	all	
resulting	posterior	distributions	concentrated	well	within	the	support	
of	the	priors	selected.

Note	that	each	predictor	has	its	own	intercept	(�0,�′0)	but	bathy‐
metric	f(d)	and	spatial	effects	Ws	are	shared	in	both	predictors.	Also,	
both	the	bathymetric	and	the	spatial	effects	are	scaled	by	αd	and	αw,	
respectively,	to	allow	for	the	differences	in	scale	between	blue	and	
red	shrimp	abundances	and	the	LGCP	intensities.

It	is	also	worth	noting	that	ρ	is	a	parameter	of	the	entire	model	
that	 reflects	 the	 global	 variability	 of	 the	 response	 variable.	 As	 al‐
ready	mentioned	before,	in	a	preferential	sampling	situation,	obser‐
vations	are	more	frequent	where	abundance	values	are	likely	to	be	
higher	and	this	fact	could	affect	the	 inference	about	the	ρ	param‐
eter.	 In	 line	with	 this,	 a	possible	extension	 to	our	 global	modeling	
approach	could	be	a	model	that	could	take	into	account	this	type	of	
variability	by	linking	ρ	to	the	abundance	measurements.

Model	comparison	was	performed	using	the	DIC	and	LCPO	cri‐
teria.	Finally,	in	order	to	test	the	prediction	performance	of	the	final	
preferential	and	non‐preferential	models,	we	calculated	the	Pearson	
correlation	 (r)	 index	 between	 the	 predicted	 abundance	 estimates	
and	 an	 external	 database	 of	 observed	 abundance	 values	 in	 the	
same	time	period	 (2009–2012).	This	 independent	dataset	 includes	

(6)

Ys∼Ga(�s,�)

log(�s)=��
0
+ f(d)+Ws

W∼N(0,Q(�,�))

(2 log �, log �)∼MN(�w,�w)

Δdj=dj−dj+1∼N(0,�d), j=1,… ,m

�d∼LogGamma(4,0.0001)

F I G U R E  2  Study	area	and	sampling	locations	(hauls)	of	blue	and	
red	shrimp	(Aristeus antennatus).	The	size	of	the	dots	represents	the	
amount	caught	in	each	of	the	locations
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fishery‐independent	data	collected	during	the	MEDITS	(EU‐funded	
MEDIterranean	 Trawl	 Survey).	 The	 MEDITS	 is	 carried	 out	 from	
spring	to	early	summer	(April	to	June)	every	year	in	the	area,	and	it	
uses	a	random	sampling	(Pennino	et	al.,	2016).

3  | RESULTS

3.1 | Simulated example

Results	obtained	in	this	simulation	study	show	that	not	taking	into	
consideration	preferential	sampling	leads	to	misleading	results,	spe‐
cially	at	low‐abundance	areas.

Figure	3	shows	the	difference	in	DIC,	LCPO,	and	MAE	scores	
between	preferential	and	non‐preferential	models	 for	both	sam‐
ples,	 the	 ones	 distributed	 preferentially	 and	 the	 one	 distributed	
randomly.	In	particular,	more	than	75%	of	the	DIC,	LCPO,	and	MAE	
values	obtained	in	the	100	simulated	Gaussian	fields	using	prefer‐
ential	models	were	 lower	than	the	ones	obtained	with	non‐pref‐
erential	models.

In	 addition,	 as	 it	 can	 be	 appreciated	 in	 the	 example	 shown	 in	
Figure	4,	which	presents	the	results	of	one	of	the	one	hundred	sim‐
ulations	for	explanatory	purposes,	even	if	none	of	the	models	was	

able	 to	make	 optimal	 predictions	 at	 low	 abundance	 locations,	 the	
non‐preferential	model	performed	significantly	worse.

Similarly,	 Figure	5,	which	 shows	 the	 posterior	 predictive	mean	
of	one	of	the	simulated	abundance	processes	without	and	with	the	
preferential	sampling	correction	((a)	and	(b),	respectively)),	illustrates	
that	although	both	models	have	similar	predictive	spatial	patterns,	
the	preferentially	corrected	model	predicts	better	at	moderate‐to‐
low	abundance	areas.

Finally,	Figure	6	shows	how	all	different	priors	of	the	hyperpa‐
rameters	 of	 the	 spatial	 field	 end	 up	 fitting	 posterior	 distributions	
that	are	all	concentrated	within	the	real	values.	Results	clearly	indi‐
cate	that	slight	changes	in	the	priors	are	not	an	issue	when	dealing	
with	the	preferential	sampling	models.

3.2 | Distribution of blue and red shrimp in the 
Western Mediterranean Sea

All	 possible	models	 derived	 from	 6	were	 run.	 Among	 them,	 the	
most	 relevant	 results	 are	 presented	 in	 Table	1.	While	 analyzing	
the	data,	we	observed	that	both	the	bathymetric	and	the	spatial	
terms	of	 the	 LGCP	accounted	 for	 approximately	 the	 same	 infor‐
mation.	 As	 a	 consequence,	 full	 models	 did	 not	 converge	 in	 the	

F I G U R E  3   Improvement	of	the	preferential	model	against	a	conventional	model	in	model	fit	scores	(DIC,	LCPO,	and	MAE).	Comparison	is	
based	on	100	preferentially	and	randomly	sampled	datasets.	Note	that	positive	values	represent	an	improvement	on	model	fit	and	vice	versa
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point‐pattern	process,	which	restricted	the	model	comparison	 in	
Table	1	to	correcting	only	one	of	the	effects,	either	the	bathymet‐
ric	or	the	spatial	effect.

The	best	model	 (based	on	 the	DIC	and	LCPO)	was	 the	prefer‐
ential	 one	 with	 an	 shared	 spatial	 effect	 (i.e.,	Model	 5	 in	 Table	1).	
The	second	most	relevant	model	in	term	is	DIC,	and	LCPO	was	the	

F I G U R E  4  Simulated	abundance	against	predicted	abundance	in	the	non‐preferential	model	(left)	and	in	the	model	with	the	preferential	
correction	(right)	for	one	of	the	one	hundred	simulations	performed.	The	non‐preferential	model	predicts	worse	than	the	preferential	model	
at	low‐abundance	areas
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F I G U R E  5  Posterior	predictive	mean	maps	of	one	of	the	one	hundred	simulated	abundance	processes	without	(left)	and	with	(right)	the	
preferential	sampling	correction
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preferential	 one	 that	 included,	 in	 addition	 to	 the	 spatial	 effect,	 a	
shared	bathymetric	effect	(i.e.,	Model	8	in	Table	1).

Figure	7	shows	the	mean	of	the	posterior	distribution	of	the	spa‐
tial	effect	in	the	model	without	and	with	preferential	sampling,	while	
Figure	8	illustrates	the	posterior	predictive	mean	of	the	blue	and	red	
shrimp	 distribution	 without	 and	 with	 the	 preferential	 correction.	
Both	figures	show	a	similar	pattern.	Indeed,	it	is	clear	that	the	spatial	
outputs	obtained	with	the	preferential	model	better	absorb	the	vari‐
ability	of	the	species	habitat	providing	a	more	natural	pattern	of	the	
blue	and	red	shrimp	distribution.

Finally,	 for	model	 validation,	 the	 final	 preferential	model	 ob‐
tained	 a	 reasonably	 high	 value	 for	 Pearson's	 r (r	=	0.47)	 in	 the	
cross‐validation	with	the	MEDITS	dataset	with	respect	to	the	non‐
preferential	 one	 (r	=	0.22).	 It	 is	worth	mentioning	 that	MEDITSs	
are	performed	only	in	spring/summer	and	few	samplings	are	car‐
ried	out	in	the	study	area.	These	findings	further	highlight	how	the	

correction	of	the	preferential	model	is	important	to	reflect	the	real	
distribution	of	a	species.

4  | DISCUSSION

In	this	paper,	we	presented	a	modeling	approach	that	could	be	very	
useful	for	modeling	the	distribution	of	species	using	opportunistic	
data	and	acquiring	in‐depth	knowledge	that	could	be	essential	for	
the	correct	management	of	natural	resources.	Spatial	ecology	has	
a	direct	applied	relevance	to	natural	resource	management,	but	it	
also	has	a	broad	ecological	significance.	Although	it	may	be	compli‐
cated	to	define	the	boundaries	of	species	habitats	combined	with	
an	efficient	management	that	recognizes	the	importance	of	such	
areas,	this	represents	the	first	step	toward	facilitating	an	effective	
spatial	management.	 However,	 as	 shown	 by	 our	 results,	 using	 a	
non‐accurate	 approach	 could	 culminate	 in	misidentification	 of	 a	
species	habitat	and	uncertain	predictions	and	so	in	inappropriate	
management	measures	which	can	sometimes	be	irreversible.

The	results	of	the	practical	application	on	blue	and	red	shrimp,	
included	here	as	a	real	world	scenario,	show	that	predictive	maps	
significantly	 improve	 the	 prediction	 of	 the	 target	 species	when	
the	model	accounts	for	preferential	sampling.	Indeed,	it	is	known	
that	the	suitable	bathymetric	range	of	the	blue	and	red	shrimp	in	
the	Mediterranean	sea	is	between	200	and	200	meters	(Guijarro,	
Massutí,	Moranta,	&	Díaz,	2008)	that	is	reflected	by	the	preferen‐
tial	model	prediction	map.	In	contrast	the	non‐preferential	model	
prediction	was	not	able	to	capture	the	real	distribution	of	the	spe‐
cies.	In	addition,	if	a	management	measure,	such	as	creation	of	a	
marine	conservation	area,	should	be	applied	on	the	basis	of	 the	
non‐preferential	model,	 it	 is	clear	that	 it	would	not	be	appropri‐
ate.	This	could	result	in	extremely	large	area	being	recommended	

TA B L E  1  Model	comparison	for	the	abundance	of	the	blue	and	
red	shrimp	(Aristeus antennatus)	based	on	DIC,	LCPO	and	
computational	times

Model DIC LCPO Times (s)

1 Intc	+	Depth +19 +0.05 3

2 Intc	+	Spatial +9 − 24

3 Intc	+	Depth	+	Spatial +11 +0.01 57

4 Intc	+	Depth +52 +0.24 21

5 Intc	+	Spatial − − 171

6 Intc	+	Spatial	+	Depth +5 +0.02 212

7 Intc	+	Depth	+	Spatial +10 +0.01 2,275

8 Intc	+	Depth	+	Spatial +3 +0.03 3,470

Notes.	DIC	and	LCPO	scores	are	presented	as	deviations	from	the	best	
model.	Intc:	Intercept;	Bold	terms:	shared	components.

F I G U R E  6  Sensitivity	analysis	of	the	pc.prior	distributions	for	the	range	and	variance	of	a	simulated	spatial	field.	Dashed	lines	represent	
prior	distributions,	solid	lines	posterior	distributions	and	vertical	lines	the	real	values	of	each	of	the	hyperparameters	of	the	spatial	field:	
range	in	the	left	panel	and	variance	in	the	right	panel.	Range	priors	were	set	so	that	the	probability	of	having	a	range	smaller	than	10%,	20%,	
30%,	40%	and	50%	of	the	maximum	distance	of	the	study	area	was	0.25.	Similarly,	priors	over	the	variance	of	the	spatial	field	were	set	so	
that	the	probability	of	having	a	variance	higher	than	2,	3,	4,	5	and	6	was	0.1
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for	 protection,	 which	 is	 usually	 difficult	 to	 implement	 in	 most	
contexts,	 especially	 given	 the	 social	 and	 economic	 relevance	of	
fishing	 (Reid,	Almeida,	&	Zetlin,	 1999).	Moreover,	 the	 results	 of	
the	cross‐validation	with	an	external	independent	dataset	further	
highlighted	 how	 the	 correction	 of	 the	 preferential	model	 is	 im‐
portant	to	reflect	the	real	distribution	of	a	species.

Nevertheless,	even	if	the	preferential	model	improves	the	es‐
timation	of	 the	bathymetric	 effect,	 new	observations	 at	deeper	
waters	could	further	improve	this	relationship	and	better	under‐
stand	 the	 blue	 and	 red	 shrimp	 distribution	 in	 this	 area	 (Gorelli,	
Sardà,	&	Company,	2016).

Similarly,	 the	simulated	example	showed	 that	not	 taking	 into	ac‐
count	the	preferential	sampling	model	could	lead	to	misleading	results.

Consequently,	 we	 conclude	 that	 this	 approach	 could	 suppose	
a	major	step	forward	in	the	understanding	of	target	fished	species	
mesoscale	ecology	given	that	most	of	the	available	data	today	are	
fishery‐dependent	data.	In	addition,	using	a	non‐preferential	model	
with	opportunistic	data	 in	a	SDM	context	 is	not	correct	as	 spatial	
SDMs	assume	that	the	selection	of	the	sampling	locations	does	not	
depend	on	the	values	of	the	observed	species.

Another	advantage	is	undoubtedly	the	use	of	INLA	in	this	con‐
text,	which	might	be	a	key	geostatistical	tool	due	to	its	notable	flex‐
ibility	 in	 fitting	 complex	 models	 and	 its	 computational	 efficiency	
(Paradinas	et	al.,	2015).

This	 modeling	 could	 be	 expanded	 to	 the	 spatiotemporal	 do‐
main	by	incorporating	an	extra	term	for	the	temporal	effect,	using	

F I G U R E  7  Maps	of	the	mean	of	the	posterior	distribution	of	the	spatial	effect	in	the	model	without	(left)	and	with	(right)	preferential	
sampling.	Black	dots	represent	sampling	locations
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F I G U R E  8  Posterior	predictive	mean	maps	of	the	blue	and	red	shrimp	(Aristeus antennatus)	species,	without	and	with	the	preferential	
sampling	correction.	Black	dots	represent	sampling	locations
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parametric	 or	 semiparametric	 constructions	 to	 reflect	 linear,	
non‐linear,	 autoregressive	 or	more	 complex	 behaviors	 that	 could	
be	very	important	to	describe	the	distribution	of	a	particular	spe‐
cies.	 Moreover,	 although	 we	 presented	 a	 case	 study	 related	 to	
abundance	data,	this	approach	could	be	also	extended	for	species	
presence–absence	 data	 that	 are	 more	 common	 when	 SDMs	 are	
performed.	 In	 particular,	 using	 occurrences	 the	modeling	 frame‐
work	will	be	the	same	as	 the	one	described	 in	our	study,	but	 the	
Gaussian	 field	will	 be	 an	 approximation	 of	 the	 probability	 of	 the	
species	presence.

Finally,	 it	 is	 worth	 to	 be	 noting	 that,	 as	 shown	 by	 Howard,	
Stephens,	 Pearce‐Higgins,	 Gregory,	 and	 Willis	 (2014),	 even	 using	
coarse‐scale	 abundance	data,	 large	 improvements	 in	 the	ability	 to	
predict	species	distributions	can	be	achieved	over	their	presence–
absence	model	counterparts.	Consequently,	where	available,	it	will	
be	better	to	use	abundance	data	rather	than	presence–absence	data	
in	order	to	more	accurately	predict	the	ecological	consequences	of	
environmental	changes.
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