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Abstract 23 

The prediction of clonal genetic value for yield is challenging in oil palm (Elaeis guineensis Jacq.). 24 

Currently, clonal selection involves two stages of phenotypic selection (PS): ortet preselection on traits 25 

with sufficient heritability among a small number of individuals in the best crosses in progeny tests, 26 

and final selection on performance in clonal trials. The present study evaluated the efficiency of 27 

genomic selection (GS) for clonal selection. The training set comprised almost 300 Deli × La Mé 28 

crosses phenotyped for eight palm oil yield components and the validation set 42 Deli × La Mé ortets. 29 

Genotyping-by-sequencing (GBS) revealed 15,054 single nucleotide polymorphisms (SNP). The 30 

effects of the SNP dataset (density and percentage of missing data) and two GS modeling approaches, 31 

ignoring (ASGM) and considering (PSAM) the parental origin of alleles, were assessed. The results 32 

showed prediction accuracies ranging from -0.03 to 0.70 for ortet candidates without data records, 33 

depending on trait, SNP dataset and modeling. ASGM was better (more robust over traits and SNP 34 

datasets, and simpler), although PSAM could slightly improve prediction accuracies for the two traits 35 

defining the heterotic groups. The number of SNPs had to reach 7,000, while the percentage of 36 

missing data per SNP was of secondary importance. GS prediction accuracies were higher than those 37 

of PS for most of the traits. Finally, this makes possible two practical applications of GS, that will 38 

increase genetic progress by improving ortet preselection before clonal trials: (1) preselection at the 39 

mature stage on all yield components jointly using ortet genotypes and phenotypes, and (2) genomic 40 

preselection on more yield components than PS, among a large population of the best possible crosses 41 

at nursery stage. 42 

Keywords Elaeis guineensis, genomic selection, ortets, clonal selection, genotyping-by-sequencing, 43 

prediction accuracy  44 



1. Introduction 45 

The annual yield of palm oil is around four tons per hectare and world production is currently 46 

above 75 million tons of crude palm oil [1]. Most cultivated oil palms (Elaeis guineensis Jacq.) are 47 

hybrid cultivars, mainly due to their high yield per hectare. Two parental and heterotic groups are 48 

involved in the production of hybrid cultivars, namely group A, consisting essentially of the Deli 49 

population (Asia) and, to a lesser extent, the Angola population, and group B, involving the other 50 

African breeding populations. Group A produces a small number of large bunches and group B 51 

produces a lot of small bunches. This complementarity and the resulting heterosis expressed on 52 

hybrids through sexual crosses explains why they were widely adopted in the 1960s, leading to a 30% 53 

yield increase [2]. In addition, commercial oil palm material is of tenera (T) (thin-shelled) fruit type, 54 

resulting from the cross between the thick-shelled dura (D) of group A and the shell-less and usually 55 

female sterile pisifera (P) of group B. Selection of hybrids is carried out through progeny tests in a 56 

modified reciprocal recurrent selection (MRRS) breeding scheme [3,4]. The best hybrids are primarily 57 

selected based on the parental general combining abilities (GCA). Although the annual increase of the 58 

oil palm hybrids’ yield obtained through genetic improvement reached 1-1.5% over the past decades 59 

[5], this remains insufficient to face the expected increase in the demand. 60 

An additional yield increase of 20-30% compared to sexual crosses can be obtained by using 61 

clones (ramets) obtained from the micropropagation of top-ranking commercial hybrid T individuals 62 

(ortets) [6]. This allows taking advantage of the within hybrid crosses variability that results from 63 

parental heterozygosity. However, this approach has been hampered for a long time by a floral 64 

epigenetic abnormality producing mantled fruits, which could result in severe production loss. This 65 

abnormality is a somaclonal variation arising during tissue culture due to hypomethylation of the 66 

retrotransposon Karma in mantled variants, leading to homeotic transformations and parthenocarpy 67 

[7–9]. The recent understanding of the molecular mechanism involved in the mantled disorder has led 68 

to the possibility of early detection of mantled ramets during the first stages of seedling growth [8], 69 

thus arousing a new impetus for oil palm clonal selection. The evaluation of ortets on their phenotypic 70 

value is possible, but some of the oil palm yield components have a low heritability (e.g. [10] found a 71 



broad-sense heritability (H²) of 0 and 0.1 for bunch number and total bunch production, respectively), 72 

the estimation of their genetic values is thus of low reliability. As a consequence, breeders set clonal 73 

trials where they evaluate samples of ramets of candidate ortets that are preselected on the few yield 74 

traits with high heritability, i.e. usually the percentage of pulp per fruit (PF) and of oil per pulp (OP), 75 

for which, e.g., Nouy et al. [10] found H² values of 0.84 and 0.63, respectively. These trials give 76 

accurate estimations of the genetic value of the ortets but also extend, by around 10 years, the time 77 

required for the selection process for clone production, setting of trials and collection of phenotypic 78 

data. This considerably reduces the interest of clonal selection as, during this time, conventional 79 

hybrids were also improved. Another drawback of the clonal trials is that their cost means that only a 80 

small number of ortet candidates can be evaluated, thus limiting the selection intensity. There is, 81 

therefore, a need to optimize clonal selection in the oil palm. 82 

Genomic selection (GS) [11] is a marker-assisted selection (MAS) method with a high density 83 

of markers on the entire genome, so that at least one marker can be in linkage disequilibrium with each 84 

quantitative trait locus (QTL) [12]. Compared to the previous MAS approach based on QTL detection, 85 

GS takes into account all the markers jointly and without any test of significance. In this way, even 86 

markers capturing small QTL effects are used in the model predicting the genetic values, thus 87 

improving the efficiency of selection. GS is, therefore, the most appropriate MAS method for yield 88 

traits which are usually quantitative, i.e. controlled by many loci with small effect. The GS model is 89 

calibrated (or trained) on individuals genotyped and phenotyped (training set), and predicts the genetic 90 

value of a set of related individuals that are genotyped with the same markers. Before its practical 91 

application, the GS method must be evaluated and the prediction model that gives the highest accuracy 92 

(i.e. the correlation between the predicted and the true genetic values) is retained [13]. The GS 93 

accuracy is estimated in a validation set, made of individuals genotyped and phenotyped and 94 

representative of the population that will be used for application. Oil palm is one of the pioneer 95 

perennial crops on which GS studies have been carried out. The oil palm GS studies provided 96 

prominent results, such as the superiority of GS over both QTL-based MAS and phenotypic selection 97 

[14], and the possibility of increasing the performance of sexual hybrid crosses by genomic 98 

preselection before progeny-tests [15]. The main advantages of GS for the oil palm are its ability to 99 



enhance selection intensity and/or to shorten the generation interval, thus increasing the annual genetic 100 

gain [16]. A recent study using a large training set estimated the GS accuracy when predicting the 101 

phenotypes of hybrid individuals [17]. Phenotypes are estimates of the total genetic values but they 102 

often have low reliability, and therefore, when evaluating GS for clonal selection, it would be better to 103 

use clonal values as the target values predicted by the GS models. This has not yet been done in the oil 104 

palm, although the potential benefits of genomic clonal selection have already been shown in other 105 

perennial crops such as the eucalyptus [18] and the rubber tree [19]. 106 

Given that ortets come from a cross between two oil palm origins, the genomic prediction of 107 

their genetic values can be done by two modeling approaches [20], which are the genomic extensions 108 

of the modeling approach developed by Stuber and Cockerham [21] for interpopulation hybrids. The 109 

first one, the population-specific effects of single nucleotide polymorphism (SNP) alleles model 110 

(PSAM, or BSAM in the animal breeding literature, for breed instead of population), considers that 111 

alleles of the same marker have different effects in the hybrids depending on their population of origin, 112 

whereas the second approach, the across-population SNP genotype model (ASGM), considers that 113 

alleles of a marker have the same effect regardless of their population of origin. Studies in livestock 114 

showed that BSAM can outperform ASGM in terms of accuracy with a low number of SNPs, a large 115 

training set and slightly related or unrelated individuals [20]. However, to our knowledge, in the 116 

context of plant hybrids, these types of models were only compared in simulated maize populations 117 

[22].  118 

The goals of this empirical study were: (1) to evaluate the efficiency of GS for clonal 119 

selection, using ortets of known clonal value to validate genomic predictions, (2) to compare ASGM 120 

and PSAM approaches, and (3) to evaluate the possibility of using GS instead of the current 121 

phenotypic selection to select the hybrid individuals to test in the clonal trials. The training set was 122 

composed of almost 300 Deli × La Mé crosses and the validation set of 42 Deli × La Mé ortets. The 123 

parents of the training crosses and the validation ortets were genotyped using genotyping-by-124 

sequencing (GBS). Predictions were made for eight yield components, with three bunch production 125 

traits, i.e. bunch number (BN), average bunch weight (ABW) and total bunch production (FFB, for 126 

fresh fruit bunch), and five bunch quality traits, i.e. average fruit weight (AFW), fruit to bunch (FB), 127 



pulp to fruit (PF) and oil to pulp (OP) ratios and number of fruits per bunch (NF). The effect of the 128 

SNP dataset (SNP density and percentage of missing data) was studied by filtering SNPs with 129 

different maximum percentages of missing data.  130 

 131 

2. Materials and methods 132 

 Plant materials and experimental designs 133 

The plant material used to train the GS model comes from controlled crosses between Deli and 134 

La Mé (LM) individuals. Deli material comes from four ancestors of an unknown area of Africa 135 

planted in Indonesia in 1848. The La Mé material used here comes from three founders collected in 136 

Ivory Coast between 1924 and 1930 [15,23]. For bunch production predictions, the training set was 137 

composed of 295 progeny-test crosses planted from 1995 to 2000 at Aek Loba Timur (ALT) and 138 

involving 108 Deli and 102 La Mé. For bunch quality predictions, a sample of 279 crosses involving 139 

103 Deli and 100 La Mé parents were used (Table 1). The pedigrees of these populations are known 140 

over several generations (see Cros et al. [12]). ALT is located at 2° 39′ N – 99° 42′ E in North 141 

Sumatra, on the SOCFINDO estate (Indonesia) and is constituted of 28 trials planted on deep loamy 142 

sand soils, with low water deficit and high insolation, and benefiting from standard cultural practices 143 

[24]. The experimental design used in these trials was either a balanced lattice of four to five ranks or 144 

randomized complete block designs (RCBD), described in detail by Cros et al. [15].  145 

The validation set was composed of 42 Deli × La Mé tenera ortets, evaluated in clonal trials 146 

involving on average 69 ramets per clone for production traits and a subset of 34 ramets per clone for 147 

quality traits. The ramets were established in three out of the 28 trials of ALT and were planted in 148 

1995 and 1998 (Table 1). The 42 ortets were chosen among individuals from various hybrid crosses 149 

planted on seven trials of an earlier set of progeny tests, located at Aek Kwasan 1 (AK1), which was 150 

also located on the SOCFINDO estate and benefited from the same agricultural practices. The 151 

plantation of the seven trials of AK1 took place between 1975 and 1979. The 42 ortets come from 17 152 

families of full sibs with 16 La Mé parents and 12 Deli parents. These families were composed of one 153 

to five ortets each, with four families having five ortets each. 154 



 155 

 Phenotyping 156 

All the individuals, i.e. the training hybrid crosses, the 42 hybrid ortets and their ramets, were 157 

phenotyped for eight traits. Five traits were assessed for bunch quality: average fruit weight (AFW), 158 

fruit to bunch (FB), pulp to fruit (PF), and oil to pulp (OP) ratios, and number of fruits per bunch 159 

(NF); and three traits for bunch production: bunch number (BN), average bunch weight (ABW), and 160 

total bunch production (FFB). For quality traits, data were collected when plants were from five to 161 

nine years old at ALT and from six to nine years old at AK1. For production traits, data were collected 162 

when the plants were from three to seven years old in both sites. 163 

The coefficients of variation (��) of the 42 clonal values (i.e. estimated from the ramet 164 

phenotypes) and of the 42 ortet phenotypic values adjusted for effects related to the experimental 165 

design (see below) were computed for each trait as: �� � �
� � 100, with 	 the standard deviation and 166 

μ the mean value.  167 

 168 

 Genotyping 169 

Molecular data were obtained by GBS [25,26] for the 42 ortets, 93 Deli and 91 La Mé parents 170 

of the training hybrid crosses (Table 1). Ortets genotypes were obtained from two or three samples 171 

collected on different ramets (thus allowing controlling the legitimacy of the ramets). DNA extraction 172 

and GBS were performed as described in Cros et al. [15], using the PstI and HhaI restriction enzymes. 173 

The raw fastq sequence data were processed with Tassel GBS v. 5.2.44 [27], using the Bowtie2 174 

software for alignment [28], and VCFtools 0.1.14 [29]. The indels were discarded, the datapoints with 175 

depth below five were set to missing, the SNPs that were not biallelic, with more than 75% of missing 176 

data or on the unassembled part of the genome were discarded (see Cros et al. [15] for more details 177 

about SNP calling and filtering). This resulted in a dense genome covering with 15,054 SNPs. The 178 

average percentage of missing data was 23.08% (3.64% - 43.42% per individual). To explain the 179 

differences in accuracy between ASGM and PSAM, the distribution of the minor allele frequency 180 



(MAF) and of the frequency of the alternate allele (i.e. that was not present on the reference genome) 181 

were computed in Deli and La Mé, as well as the correlation among populations for each of these two 182 

parameters.  183 

 184 

 Imputation of missing SNP data and phasing 185 

Imputation of missing SNP data and phasing were carried out with Beagle 4.0 [30]. This 186 

software can consider the family relationships (i.e. parent-offspring) and infers missing genotypes 187 

using genotype likelihood computed from the pedigree. The process followed to impute and phase the 188 

SNP data is given in Fig. 1. The pedigree of the population involved in this study is available over 189 

several generations. For imputation, the initial SNP dataset containing all the genotyped individuals 190 

was divided into three distinct SNP datasets containing the Deli parents, the La Mé parents and the 191 

ortets, respectively. The Deli and La Mé SNP datasets were imputed separately giving to the software 192 

their respective pedigrees, and were then merged with the unimputed SNP dataset of ortets. The 193 

resulting global dataset was imputed and phased, providing the software with the pedigree file 194 

indicating the Deli and La Mé parent of each ortet. Nine ortets had one parent for which the DNA was 195 

unavailable but, as the missing parents were obtained through selfing, the selfed grandparent was used 196 

in the pedigree instead of the actual parent. For the other steps of the analysis that required a pedigree, 197 

the real pedigree was used. 198 

 199 

 Definition of SNP datasets 200 

To quantify how the characteristics of the SNP dataset (i.e. maximum percentage of missing 201 

data allowed per SNP, pmax, and resulting number of SNPs, nsnp) affected the GS accuracy, we made 202 

genomic predictions using different SNP datasets with varying maximum percentage of missing data 203 

per SNP, as shown in table 2. Thereby, for the rest of the study, the SNP dataset will refer to an SNP 204 

matrix with a given number of SNPs resulting from the filtering made on the maximum percentage of 205 

missing data allowed per SNP. 206 



 207 

 Prediction models and computation of genetic values of unobserved clones 208 

Two approaches were implemented to predict the genetic value of the validation clones: the 209 

across-population SNP genotype model (ASGM) and the population-specific effects of SNP alleles 210 

model (PSAM). In addition, for both approaches, two models were tested: a purely additive model 211 

(ASGM_A and PSAM_A) and a model combining additive and dominance effects (ASGM_AD and 212 

PSAM_AD). The ASGM_A approach used a model with a single random genetic effect, 213 

corresponding to the additive genetic value of the parents of the training hybrid crosses and of the 214 

validation clones. The ASGM_AD and PSAM_AD model also included a random dominance effect of 215 

crosses and ortets. The PSAM_A approach used two random effects partitioning the additive genetic 216 

values of each individual into two parts originating from Deli and La Mé alleles. All these four models 217 

were implemented separately on each trait (univariate models). For GS, the GBLUP statistical 218 

approach was used [31,32], and the corresponding models were termed G_ASGM_A, G_ASGM_AD, 219 

G_PSAM_A, and G_PSAM_AD. In addition, to evaluate the usefulness of the SNP data, these four 220 

models were implemented with pedigree data instead of SNPs (control PBLUP models, termed 221 

P_ASGM_A, P_ASGM_AD, P_PSAM_A, and P_PSAM_AD).  222 

In all cases, the models were trained with the phenotypic data of ALT hybrids and the genomic 223 

data of their parents, and the genetic values of the 42 validation clones were predicted. For all the 224 

models mentioned above, no phenotypic data of the validation clones were provided to the prediction 225 

models. This corresponds to a breeding situation where predictions are made for immature individuals 226 

(e.g. nursery plantlets belonging to crosses that were not evaluated in progeny-tests but were produced 227 

by mating the best parents selected at the end of the progeny-tests). However, ortet selection can also 228 

be made within the crosses evaluated in progeny tests. In this case, the ortet candidates have 229 

phenotypic data records, which should be taken into consideration along with their SNP data when 230 

predicting their clonal value. This was evaluated with the G_ASGM_A model, simply including the 231 

adjusted phenotypic value of the validation ortets (see below) to the phenotypic dataset used to train 232 

the model, and is referred to as the G_ASGM_A+pheno approach. 233 



All GS analyses were run on a server of the CIRAD-UMR AGAP HPC data center of the 234 

South Green bioinformatics platform (http://www.southgreen.fr/), using a homemade R script. 235 

 236 

2.6.1. Across-population SNP genotype models (ASGM) 237 

 The model used for the G_ASGM_AD approach was as follows: 238 

� �  � + ���� +  ������� � ��  + ��� + ��� +  � 239 

with: � the observed phenotypes of the training hybrid individuals, � the vector of fixed effects 240 

(phenotypic mean, trial effects, block effects and, for bunch production traits, age), 241 

�� ~ N(0, � 	!"
# ) the individual additive genetic effects, ����� � �� ~ N(0, ����� � ��	$%&'" � ()

# ) the 242 

genetic dominance effects, � ~ N(0, *	+2 ) the incomplete block effect, and � ~ N(0, *	-2 ) the 243 

elementary plot effects. , ��, ��, �� and �� are the incidence matrices associated to �, ��, 244 

����� � ��, � and � respectively. � 	!"
#  and ����� � ��	$%&'" � ()

#  are the variance-covariance matrices 245 

associated with �� and ����� � ��, respectively. 	!"
#  and 	$%&'" � ()

#  are the additive and dominance 246 

variances, respectively. � ~ N(0, *	.#) is the vector of residual effects and * the identity matrix. To 247 

implement this model in practice, two specificities of our dataset had to be taken into account. First, a  248 

few parents of the training crosses were not genotyped (Table 1), and the �. matrices had therefore to 249 

be made with the genealogical data of hybrid crosses with ungenotyped parents and with the SNP data 250 

of hybrid crosses with genotyped parents (computed with the SNP data of their parents, see below) 251 

and of the ortets. All �. matrices subsequently in this paper will refer to matrices combining 252 

genealogical and genomic information. � 0� is the inverse of � , computed according to Misztal et al. 253 

[33] as: � 0� � 1 0� + 20 0
0 3 0� − 1 ��

0�5, where 3 0� and 1 ��
0�  are the inverse of the realized and the 254 

genealogical additive relationship matrices, respectively, of the 42 ortets and the hybrid crosses with 255 

genotyped parents, and 1 0� is the inverse of the genealogical relationship matrix of all hybrid crosses 256 

(i.e. the few with ungenotyped parents and the ones with genotyped parents) and the 42 ortets. Second, 257 

the phenotyped individuals constituting the hybrid crosses were not genotyped while they had to be 258 



connected to the validation ortets through their genomic relationships (only the parents of the hybrids 259 

were genotyped, except a few parents that were not genotyped and for which the genealogical 260 

relationships were used, as explained above). To get genotypes for the hybrid crosses with genotyped 261 

parents, we computed for each cross the mean genotypes expected from the parental genotypes (i.e. for 262 

SNP j in cross i, the mean number of copies of the minor allele of SNP j expected to be found in the 263 

hybrid individuals of i), assuming this was relevant considering the relatively large number of 264 

individuals per cross (Table 1). The genomic additive relationship matrix G was obtained as: 3 �265 

    ′
2 ∑ �8(1−�8)nSNP8�1

, with  � � − ?, ’ the transpose of matrix X, Z the SNP matrix containing the 266 

number of copies of the minor allele at an SNP (ranging from 0 to 2), P a matrix given by ? � 2(�� −267 

0.5), and �� the frequency of the minor allele at SNP 8 [34]. ����� � �� is the dominance relationship 268 

matrix combining genomic dominance relationships between crosses with parents and clones, and 269 

genealogical dominance relationships between the few crosses with ungenotyped parents. 270 

�ABC  � DE0�  was computed following the same method as � 0� except that the additive relationship 271 

matrices were replaced by the dominance relationship matrices. The realized dominance relationship 272 

matrix 3A was computed according to Su et al. [35] as: 3A �  FFG
# ∑ -'H'(I0#-'H'), with F the n × m 273 

matrix (n: number of hybrid crosses and clones and m: number of SNPs) of heterozygosity coefficients 274 

with element FJ� � 0 − ��K� if clone or ortet L is homozygous and FJ� � 1 − ��K� if it is 275 

heterozygous at locus l, and �� and K� the frequencies of the first and the second allele at locus 8. The 276 

purely additive approach ASGM_A used the same model without the dominance effect. 277 

For the P_ASGM_A and P_ASGM_AD, �  was replaced by the additive genealogical 278 

relationship matrix 1  and, for P_ASGM_AD, �ABC  � DE was replaced by the genealogical dominance 279 

relationship matrix. 280 

The estimated genetic value for the validation clones was �M� and, for G_ASGM_AD and 281 

P_ASGM_AD, �M� + �M���� � ��. 282 

  283 



2.6.2. Population-specific effects of SNP alleles models (PSAM) 284 

The model used for G_PSAM_AD was as follows: 285 

� �  � + �������  + �����  +  ������� � �� + ��� + �N� +  � 286 

with ����� ~ N(0, �ABC 	O%&'"
# ) and ��� ~ N(0, �DE	O()

# ) the additive effects inherited by the parents 287 

of the hybrid crosses and the ortets from the Deli and La Mé populations, respectively, and 288 

����� � �� ~ N(0, ����� � ��	$%&'" � ()
# ) the dominance effects of the crosses and clones. , ��, ��, ��, 289 

��, �N are the incidence matrices associated to �, �����, ���, ����� � ��, b and p, respectively. 290 

�ABC 	O%&'"
# , �DE	O()

#  and �ABC  � DE	$%&'" � ()
#  are the variance-covariance matrices associated to 291 

�����, ��� and ����� � ��, respectively. 	O%&'"
#  and 	O()

#  are the additive genetic variances of the Deli 292 

and La Mé populations, respectively, and 	$%&'" � ()
#  is the genetic dominance variance of crosses and 293 

clones. �ABC  is the matrix combining the additive realized relationships of the clones and the 294 

genotyped Deli parents of the crosses and the additive genealogical relationships of the few 295 

ungenotyped Deli parents of the hybrid crosses. �DE is defined similarly for the La Mé population. 296 

�ABC  and �DE were created following the same procedure as � . For each parental population, the 297 

required realized relationship was computed according to VanRaden [34] (see above) except that in 298 

the SNP matrices (�ABC  and �DE) containing the number of copies of minor allele inherited from the 299 

considered parental population, the genotypes of clones were coded into 0 and 1, as indicated by the 300 

phase information provided by Beagle 4.0, while the genotypes of the hybrid’s parents were coded 301 

into 0, 1, and 2, as in �. �ABC  � DE is the dominance relationship matrix containing both realized 302 

dominance relationships between clones and crosses implying genotyped parents, and genealogical 303 

dominance relationships between the crosses implying ungenotyped parents, computed as: 304 

�ABC  � DE  �  �ABC  ⊗  �DE, with ⊗ the Kronecker product. 305 

For P_PSAM_A and P_PSAM_AD, �ABC  and �DE were replaced by the additive 306 

genealogical relationship matrices 1ABC  and 1DE and, for P_PSAM_AD, �ABC  � DE was replaced by 307 

the genealogical dominance relationship matrix. 308 



The estimated genetic value for the validation clones was calculated as the sum of the additive 309 

genetic values inherited from the two parents, i.e. �M���� + �M�� and, for G_PSAM_AD and 310 

P_PSAM_AD, of its dominance value, i.e. �M���� + �M�� + �M���� � ��. 311 

 312 

 Prediction accuracies 313 

The ability of each model to predict the reference clonal value of the 42 validation clones (see 314 

below) was evaluated through their prediction accuracy, computed as the correlation between the 315 

reference value and the predicted clonal values. 316 

Pairwise comparisons of prediction accuracies among models were made for each trait using 317 

the Hotelling–Williams t-test [36]. This test compares two non-independent correlations, i.e. having 318 

one variable in common, which in our case is the reference value of the 42 clones. This test was 319 

applied using the R package psych [37].  320 

 321 

 Determination of the reference clonal values predicted by the models 322 

In order to validate the different prediction models, clonal genetic values were obtained for 323 

each clone from the phenotypic data collected on their ramets. Subsequently in this paper, they will be 324 

referred to as reference genetic values. They were computed using a simple linear mixed model to 325 

adjust the phenotypic values of the ramets for the effects of experimental design, i.e. clonal trials, 326 

blocks, incomplete blocks, elementary plots and, for bunch production traits, age. In this model, clones 327 

were included as a fixed effect. 328 

 329 

 Accuracy of phenotypic selection before clonal trials 330 

To evaluate the possibility of using GS instead of the current phenotypic selection (PS) to 331 

select the hybrid individuals to test in the clonal trials, the PS accuracy was computed for each trait. It 332 

was defined as the correlation between the ortet adjusted phenotypes and the reference clonal genetic 333 



values. The adjusted phenotype was obtained for each ortet from its phenotypic data collected in AK1, 334 

using a simple linear mixed model with individuals as random effect and hybrid crosses and all the 335 

effects related to the experimental design, i.e. trials, blocks, incomplete blocks, elementary plots and, 336 

for bunch production traits, age, as fixed effects. Finally, each ortet had for each trait an adjusted 337 

phenotype that was equal to the sum of the individual effect of the ortet, the effect of its cross and the 338 

mean residual effect over its phenotypic data records. 339 

 340 

3. Results 341 

 Distribution of frequencies of minor and alternate alleles across population 342 

The distribution of MAF in both Deli and La Mé populations showed a reduction in the 343 

number of SNPs with the increase of MAF (Fig. 2). The MAF ranged from 0 to 0.5 for both La Mé 344 

and Deli populations and the average was 0.1 for La Mé (Fig. 2a) and 0.07 for Deli (Fig. 2b). Most 345 

SNPs had low MAF values (<0.05) in both populations. La Mé populations had 65.6% SNPs with 346 

MAF<0.05, against 73.3% SNPs in Deli (i.e. 11.7% more SNPs with low MAF in Deli). In contrast, 347 

fewer SNPs had high MAF (>0.40) in both populations, and they were higher in proportion in La Mé 348 

(8.2% SNPs) than in Deli (4.8%). This showed the lower genetic diversity of Deli parents compared to 349 

La Mé, which resulted from their contrasted history with more generations of selection, drift and 350 

inbreeding in Deli than in La Mé. 351 

Correlation between La Mé and Deli MAF (Fig. 2c) shows SNPs largely concentrated 352 

alongside x and y axes, demonstrating that most SNPs have distinct segregation patterns among Deli 353 

and La Mé, i.e. being fixed or almost fixed in one population while segregating, and in many cases 354 

with a high MAF, in the other population. Thus, 31.5% of the SNPs were fixed or almost fixed in one 355 

population (MAF<0.05) while segregating with MAF≥0.05 in the other population. This is the result 356 

of the high genetic difference between Deli and La Mé populations, for which the Fst fixation index 357 

reaches 0.55 [38]. In detail, for these SNPs, MAF<0.05 was more often observed in Deli (19.6% of all 358 

SNPs had MAF<0.05 in Deli and MAF>=0.05 in La Mé) than in La Mé (11.9% of all SNPs had 359 

MAF<0.05 in La Mé and MAF>=0.05 in Deli), again as a result of the lower genetic diversity of the 360 



Deli population. Also, the number of SNPs segregating with MAF>0.05 in both populations was low 361 

(14.8% of all SNPs). Despite these differences, a large number of SNPs (53.7% of all SNPs) had 362 

MAF<0.05 in both populations, showing segregation with rare alleles in both Deli and La Mé. 363 

However, correlation of the frequency of the alternate allele between La Mé and Deli (Fig. 2d) over all 364 

SNPs showed that 62.8% of SNPs have a frequency of alternate allele smaller than 0.05 in one 365 

population and greater than 0.95 in the other population, i.e. fixed or almost fixed in the two 366 

populations but for different alleles. Hence, given that most of the SNPs (85.2%) have either 367 

MAF<0.05 in one population and MAF>=0.05 in the other population (31.5%), or MAF<0.05 in both 368 

populations but for different alleles (53.7%), the use of PSAM is justified. 369 

 370 

 Effect of GS prediction model and SNP dataset on prediction accuracy 371 

Prediction accuracies of GS methods ranged from -0.03 to 0.70 depending on prediction 372 

model, trait and SNP dataset (Fig. 3) for additive models (G_ASGM_A and G_PSAM_A). Indeed, in 373 

a preliminary analysis, inconsistent differences or similar accuracies were observed between additive 374 

models and additive + dominance models, depending on marker dataset and trait (see Supplementary 375 

Fig. S. 1). Henceforward, we will only refer to additive models. 376 

On average over traits and SNP datasets, G_ASGM_A was more accurate (0.45) than 377 

G_PSAM_A (0.37), with the mean prediction accuracy per trait over SNP datasets ranging from 0.14 378 

(PF) to 0.65 (FB) for G_ASGM_A and from 0.09 (PF) to 0.58 (FB) for G_PSAM_A. G_ASGM_A 379 

obtained a mean prediction accuracy greater than G_PSAM_A for six traits out of eight, with 380 

G_PSAM_A being on average slightly more accurate than G_ASGM_A for ABW and equal for BN 381 

(Table 3). Considering the maximum accuracy over all SNP datasets, the prediction accuracy ranged 382 

from 0.18 (PF) to 0.70 (FB) for G_ASGM_A and from 0.16 (PF) to 0.65 (FB) for G_PSAM_A (Table 383 

3), and, here, G_PSAM_A was more accurate for both BN and ABW, although slightly. Considering 384 

the different SNP datasets and traits, large differences in prediction accuracy between G_ASGM_A 385 

and G_PSAM_A were observed, up to +0.36 in favour of G_ASGM_A with OP at pmax = 45%-nSNP = 386 

11,707 (Fig. 3 and Table 4). The differences in prediction accuracies between G_ASGM_A and 387 



G_PSAM_A were significant for three traits in four cases (Table 4). Prediction accuracies of 388 

G_ASGM_A were significantly greater than G_PSAM_A for OP with two SNP datasets (pmax=45%-389 

nSNP=11,707 and pmax=75%-nSNP=15,054), FB and FFB in one dataset each, pmax=10%-nSNP=6,898 and 390 

pmax=5%-nSNP=5,620 respectively. In rare cases, low and non-significant differences (up to +0.16) were 391 

observed in favor of G_PSAM_A. G_ASGM_A, therefore, appeared to be a better approach (i.e. more 392 

accurate and easier to implement) for predicting clonal values for oil palm yield components.  393 

Prediction accuracies were broadly improved for three traits (FB, BN and ABW) when 394 

relationship matrices were computed using SNPs (G_ASGM_A and G_PSAM_A) instead of 395 

genealogical data (control pedigree-based models P_ASGM_A and P_PSAM_A). The maximum 396 

prediction accuracies of GS over all SNP datasets outperformed pedigree-based models for seven traits 397 

out of eight (except for AFW) (Table 5). The largest difference was observed in BN for pmax=75%-398 

nsnp=15,054, with G_ASGM_A accuracy being 0.67 higher than P_ASGM_A. Accuracies of pedigree-399 

based models exceeded GS in almost every SNP dataset for AFW (Fig. 3 and Table 5). The 400 

differences between GS models and their pedigree-based control models were significant for five 401 

traits, with four traits (FB, OP, BN and ABW) where GS was the best and one trait (AFW) where 402 

pedigree-based models were more accurate (Table 5). 403 

The SNP dataset affected the prediction accuracy differently according to the trait and the 404 

model. However, the use of a different SNP dataset for each combination of trait and model seems 405 

unrealistic for the practical application of GS. Therefore, in order to identify the optimal SNP 406 

dataset(s) that would maximize GS accuracy, we computed for each SNP dataset the mean 407 

G_ASGM_A prediction accuracy over the traits. This value increased with the SNP density (0.41 with 408 

SNP dataset pmax=0%-nsnp=2,447 and 0.43 with pmax=5%-nsnp=5,620), before plateauing at 0.46 with 409 

the subsequent SNP datasets. Mean prediction accuracy over the SNP datasets forming the plateau 410 

ranged from 0.17 (PF) to 0.66 (FB), and were close to the highest accuracies achieved over all the 411 

SNP datasets (Table 3). There was therefore a minimum of 6,898 SNPs required to reach maximum 412 

prediction accuracy on average over all traits.  413 

Accuracies were more variable among SNP datasets and traits with G_PSAM_A than with 414 

G_ASGM_A.  With G_ASGM_A, prediction accuracies tended to increase with SNP density before 415 



plateauing (except for AFW) and slightly decreasing in some cases. This suggested that more useful 416 

information was captured for prediction purposes when using more SNPs (to a certain limit) and, 417 

again, that the percentage of missing data was of lesser importance. On the other hand, a reduction of 418 

accuracies was observed with SNP density for AFW. For G_PSAM_A, prediction accuracies 419 

increased, and usually plateaued, for only four traits (FB, PF, NF and ABW). For the other traits, 420 

prediction accuracies remained stable or tended to decrease with increasing marker density and 421 

maximum percentage of missing SNP data. Thus, the accuracy of OP, for instance, decreased around 422 

59.6% from pmax=0%-nsnp=1,497 to pmax=45%-nsnp=11,425 (Fig. 3). 423 

 Comparison of prediction accuracies of PS and GS 424 

Figure 4 presents the prediction accuracies of PS and the mean prediction accuracy of 425 

G_ASGM_A over the best datasets (i.e. with pmax from 10% to 75% and nsnp from 6,898 to 15,054), 426 

with (G_ASGM_A+pheno) and without phenotypic data of the ortets. Variation of PS accuracy was 427 

large between traits, going from -0.03 for ABW to 0.63 for OP. Very low PS accuracies (<0.1) were 428 

obtained for ABW and FFB, meaning that PS would have been inefficient for these two traits. The 429 

highest PS accuracies were achieved in OP (0.63) and PF (0.59) (Table 6 and Fig. 4). These two traits 430 

are known to have moderate to high heritability in the oil palm [2] and are consequently routinely used 431 

for preselection before clonal trials. This was the case here, as indicated by the intensity of PS for 432 

these two traits, which was the highest among the eight traits studied (Table 6).  433 

The GS prediction accuracy obtained with the best SNP datasets was generally higher with 434 

G_ASGM_A+pheno than with G_ASGM_A (except for AFW, where a slight decrease was found) 435 

(Fig. 4). On average over all the traits, G_ASGM_A+pheno thus reached 0.53, against 0.46 for 436 

G_ASGM_A (i.e. +15.2%). The prediction accuracy of G_ASGM_A and G_ASGM_A+pheno 437 

obtained with the best SNP datasets was above PS prediction accuracies for six and seven traits, 438 

respectively, out of eight. On average over all traits, the prediction accuracies of G_ASGM_A and 439 

G_ASGM_A+pheno were, respectively, 64.3% and 89.3% greater than PS (0.28). The case where GS 440 

outperformed PS the most was ABW with the G_ASGM_A+pheno model, with an accuracy of 0.62 441 



against -0.03. PS only surpassed G_ASGM_A for two traits (PF and OP) and G_ASM_A+pheno for 442 

one trait (PF). 443 

 444 

4. Discussion 445 

In this paper, we evaluated the possibility of predicting the genetic value of oil palm ortet 446 

selection candidates, using GS models and high throughput SNP genotyping (GBS). We considered 447 

two breeding situations consisting of candidate ortets with or without phenotypic values. We assessed 448 

the effect on prediction accuracy of marker datasets and of two approaches for modeling the parental 449 

origin of marker alleles (across-population SNP genotype models, ASGM, and population-specific 450 

effects of SNP alleles models, PSAM).  451 

 452 

 Improving the genetic progress of clonal breeding with GS 453 

In the current clonal breeding methodology, ortets that will be evaluated in clonal trials are 454 

selected on the few traits with high H² value among a limited number of phenotyped candidates at the 455 

mature stage and belonging to the best crosses evaluated in progeny tests. Based on the results 456 

presented here, annual genetic progress can be improved by selecting ortets (1) among a large 457 

population of the best possible crosses (produced based on the results of the progeny tests) at the 458 

juvenile (e.g. nursery) stage with GS models on most of the yield components or, (2) at the mature 459 

stage on all the yield components, using jointly the genomic and phenotypic data of the ortet selection 460 

candidates. 461 

In detail, in the first GS approach that is now possible, the best crosses identified based on the 462 

results of the progeny test (i.e. with the best performance expected from the parental GCAs and the 463 

crosses’ specific combining abilities [SCAs]) would be produced to generate a large number of 464 

seedlings, that would be submitted to GS on the traits with satisfactory GS accuracy. This would 465 

improve the genetic progress at three levels. First, most of the breeding programs consider that there 466 

are six traits of interest for palm oil yield breeding (FB, PF, OP, ABW, BN and FFB), and PS before 467 



clonal trials is usually applied to PF and OP, as they have the highest H² [39]. In our dataset, these 468 

traits indeed had high H², with PS prediction accuracy >0.5 (Fig. 4) (although it was not clear why FB 469 

had a similar H², while it is usually among the traits with low H²). Therefore, considering that breeders 470 

use 0.5 as the minimum prediction accuracy for applying PS before clonal trials, they would now 471 

apply GS to four traits (FB, OP, FFB and ABW) (Fig. 4), with a similar mean prediction accuracy over 472 

these traits with GS (0.56) compared to PS (0.60 over FB, PF and OP). Interestingly, the two traits that 473 

had a prediction accuracy lower with G_ASGM_A than with PS, i.e. PF and OP, were the ones for 474 

which the 42 ortets were submitted to the strongest phenotypic selection before clonal trials. In 475 

particular, PF had the highest intensity of phenotypic selection (0.68) and also had much lower 476 

prediction accuracy with G_ASGM_A than with PS. We hypothesized this occurred as the phenotypic 477 

preselection led to the fixation of many genes controlling these traits, and in particular PF, in the 42 478 

ortets, thus making that the relationships computed over the genome-wide SNPs no longer matched 479 

with the relationships at the genes. This hypothesis could be investigated using a validation set that 480 

was not submitted to phenotypic preselection. Such a study would be of great interest as, in case our 481 

hypothesis could be confirmed, the breeders would likely get in practice a higher GS accuracy for PF 482 

and OP, as the seedlings comprising the population of application would not be preselected. In this 483 

case, GS before the clonal trials would be even more useful. Second, a GS-based approach would also 484 

increase the genetic progress by higher selection intensity compared to PS: GS would be applied to 485 

nursery individuals, i.e. possibly in the thousands, while PS is currently applied to the small number of 486 

individuals planted in the progeny tests trials (i.e. normally 10 to 50 per cross) [9]. Third, making the 487 

selection in the best possible crosses instead of the best crosses evaluated would be an improvement in 488 

terms of genetic progress, as the best possible crosses were likely not present in the progeny tests, due 489 

to the high degree of incompleteness of the mating designs. It is also possible to make these crosses in 490 

the context of phenotypic clonal selection, but in this case, the selection process would require around 491 

10 more years of phenotypic evaluations in these elite crosses to identify the candidate ortets for the 492 

clonal trials [16]. 493 

In the second GS approach, i.e. the selection of ortets among mature hybrid individuals, it is 494 

now possible to apply this selection to all the yield components. Indeed, for individuals at the mature 495 



stage, which thus may have phenotypic records, for each of the six commonly selected oil yield 496 

components it is possible to reach a prediction accuracy of 0.5 (or almost, in the case of BN), using 497 

conventional PS for PF and G_ASGM_A+pheno for the other traits. In practice, increasing the number 498 

of traits on which ortets are selected before clonal trials will increase selection intensity and thus the 499 

genetic progress.  500 

Another possible approach to improve the genetic progress would be to use genomic 501 

predictions to identify, before the progeny tests, the best possible crosses, and to use them to 502 

implement the first approach of clonal GS suggested here. For that purpose, progeny tests from the 503 

previous cycle could be used as a training population, and genomic ortet selection would be applied at 504 

the nursery stage in the best possible crosses. This approach would, therefore, have the additional 505 

advantage of shortening the breeding cycle (as it makes it possible to run the clonal trials 506 

simultaneously with the progeny tests), but it should be investigated in greater details as its efficiency 507 

also depends on the accuracy of the genomic estimated breeding values of the parents.  508 

 509 

 Effects of prediction model and SNP dataset on prediction accuracies 510 

G_PSAM_A can model genetic differences between Deli and La Mé populations, as it 511 

considers population-specific SNP variances and SNP effects. For that reason, we expected 512 

G_PSAM_A to perform better than G_ASGM_A for many traits, considering the marked genetic 513 

difference between Deli and La Mé, with Fst around 0.55 [38]. However, G_PSAM_A only performed 514 

better than G_ASGM_A for BN and, to a lesser extent, ABW. We hypothesized that this was the 515 

consequence of stronger differences among Deli and La Mé populations in terms of QTLs for BN and 516 

ABW than of QTLs controlling the other traits. This makes sense when considering that Deli and La 517 

Mé belong to different heterotic groups defined based on their phenotypic values for BN and ABW, in 518 

which they have opposite and complementary characteristics. This is in agreement with the results of 519 

Tisné et al. [40], who found a large majority of distinct significant QTLs among groups A and B on 520 

bunch production traits, i.e. six in group A and ten in group B, against only one common QTL. This is 521 

also in agreement with the fact that a large part of the SNPs in the two populations have opposite 522 

minor alleles, with differences as extreme as having one allele fixed in one population and the other 523 



allele fixed in the other population (Fig. 2b, c). However, not all SNPs showed these types of 524 

differences and similar segregation patterns among populations were also observed, which is likely 525 

related to the similar performance of G_ASGM_A and G_PSAM_A for the other traits. In order to 526 

help to understand the results obtained here, it would be useful to investigate whether the QTLs 527 

identified in other studies for the different traits are located in regions of the genome where SNPs have 528 

similar or contrasted segregation. Also, it would be interesting to compare, across the Deli and La Mé 529 

populations, the linkage phases between SNP markers and the SNP effects, as it was previously done 530 

in cattle and maize [41] 531 

Although G_PSAM_A has the potential to model genetic differences between parental 532 

populations, it also has a drawback, which is that it has to estimate more parameters than G_ASGM_A 533 

(i.e. more genetic variances and, because additive effects are split into two parts inherited from the two 534 

parental populations, more genetic effects) [42]. For example, while for a given clone a single genetic 535 

effect is estimated with G_ASGM_A, two genetic effects, i.e. one for each of the hybrid parents, are 536 

estimated with P_ASGM_A. Our results corroborate those of Zeng et al. [42] who attributed low 537 

accuracies in many scenarios of PSAM in animal studies to the complexity of the model caused by the 538 

segregation of SNP in the two parental breeds, and the resulting need to estimate two substitution 539 

effects per SNP instead of one. 540 

Ibánez-Escriche et al. [20] obtained a significant advantage of G_PSAM_A over G_ASGM_A 541 

on accuracy for a low marker density (400 markers), a large number of records in the training 542 

population (4,000) and a relationship between breeds that was weak (i.e. common origin 550 543 

generations ago) or absent. Similarly, Esfandyari et al. [43] found that G_PSAM_A outperformed 544 

G_ASGM_A for genetically distant hybrid parents, i.e. having diverged 300 to 400 generations ago, 545 

and a large training population with 2,000 to 8,000 individuals. The small advantage of G_PSAM_A 546 

over G_ASGM_A obtained in our study might, therefore, result from the fact that the genetic 547 

difference between the Deli and La Mé populations was actually not large enough (the Deli also 548 

having African ancestors, planted in Indonesia in 1848) and/or because of our training population was 549 

too small. Technow et al. [22] found higher accuracy while using G_PSAM_A+D than when using 550 

G_ASGM_A+D, with the gain in accuracy being larger with low SNP density (from 0.3 to 1 SNP per 551 



megabase pair, Mbp) than with high marker density (10 SNP per Mbp). Here, considering the length 552 

of the oil palm genome is 1.8 Gb [44], the investigated range of SNP density was similar, going from 553 

0.8 to 8.4 SNP per Mbp. Moreover, Lopes et al. [45] obtained similar prediction accuracies between 554 

G_ASGM_A and G_PSAM_A with high SNP density (31,930 SNPs). We did not find SNP density to 555 

have such an effect on the prediction accuracy of G_PSAM_A or on the relative performance of 556 

G_PSAM_A and G_ASGM_A. This likely results from the fact that, in our study, SNP density varied 557 

with SNP quality, with higher SNP numbers meaning a higher percentage of missing data. These two 558 

parameters, therefore, seem to interact on the prediction accuracy of the two models investigated. 559 

However, the fact that the mean GS accuracy over the traits increased with the number of SNPs and 560 

plateaued from 6,898 SNPs indicated that SNP density was of greater importance for the prediction 561 

accuracy than the percentage of missing data per SNP.  562 

We found that, in order to maximize the efficiency of GS, the prediction of the genetic values 563 

must be done using G_ASGM_A with an SNP density ranging from around 7,000 to 15,000 for all 564 

traits. Another possibility would be to use a different SNP dataset for each trait, maximizing the 565 

accuracy for the considered trait. However, as previously mentioned, this does not seem convenient for 566 

the practical application of GS. The variation in prediction accuracy among SNP datasets might also 567 

have been exacerbated by the small size of our validation population (due to the difficulty of obtaining 568 

a large number of clones in trials, mainly because of the mantled anomaly [8]), and therefore so far it 569 

seems wiser to identify the best SNP datasets on average over several traits. 570 

GS prediction models (G_ASGM_A and G_PSAM_A) were usually more accurate than their 571 

respective control pedigree-based models (P_ASGM_A and P_PSAM_A). The superiority of GS 572 

models shows that, even for unobserved individuals, GS models can account for both Mendelian 573 

sampling terms of siblings in a family and for family effects, while pedigree-based models can only 574 

account, at best, for family effects, as already found in previous oil palm GS studies [16]. 575 

However, G_ASGM_A outperformed its control pedigree-based model more often than 576 

G_PSAM_A. Thus, G_PSAM_A remained less accurate than P_PSAM_A for all the SNP datasets in 577 

three traits, while that never happened with G_ASGM_A. Also, the overall inferiority of G_PSAM_A 578 



to G_ASGM_A occurred while P_PSAM_A was actually better than P_ASGM_A for five traits out of 579 

eight. This looks contradictory and suggests that the performance of G_PSAM_A could have been 580 

reduced by phasing errors. Also, many studies comparing G_ASGM_A and G_PSAM_A were carried 581 

out by simulation with known phases [22,42,43], and therefore possible phasing errors in our study 582 

could also be the cause of the discrepancies observed between our results and the results obtained in 583 

simulation studies. Investigating other phasing approaches seems therefore of interest in the oil palm 584 

context. 585 

 586 

 Genotyped individuals for training 587 

In this study, to make GS predictions more cost-effective, the genotypes of the phenotyped 588 

hybrid individuals constituting the training set were reconstructed using the molecular data of their 589 

parents, with G_ASGM, or not used in the model, with G_PSAM. Both modeling approaches 590 

therefore assume that the mean genotype in a hybrid family (i.e. the mean number of copies of the 591 

minor allele over the individuals making the family) expected from the parental genotypes is the same 592 

as the actual mean genotype. Nevertheless, in the case of allele segregation distortion at a locus, the 593 

mean genotype in a hybrid family would significantly deviate from the mean genotype expected from 594 

the parental genotypes, and this could reduce the GS accuracy. Indeed, high numbers of distorted 595 

markers can be found in plants: Zuo et al. [46] and Li et al. [47] found more than 10% of markers 596 

(SNP and SSR) significantly distorted. For future studies, it would be of great interest to compare the 597 

approach used here with predictions made using real hybrid genotypes, and to measure the differences 598 

in terms of GS accuracy and cost.  599 

 600 

 Prediction of dominance effects 601 

GS prediction accuracies were not significantly enhanced by adding dominance effects. 602 

Including dominance effects in the statistical model sometimes slightly increased or reduced 603 

accuracies, depending on the traits and the SNP datasets, revealing a negligible genetic dominance 604 

variance captured by the model compared to the total genetic variance, as already observed with 605 



genomic predictions for performances of oil palm hybrid crosses [15] We assume this was a 606 

consequence of reciprocal recurrent selection, which generated the contrasted allele frequencies we 607 

observed across Deli and La Mé populations (Fig. 2), thus decreasing the ratio of SCA variance to 608 

GCA variance [48] and making dominance effects absorbed by the GCAs or the population mean [41] 609 

 610 

5. Conclusion 611 

This work showed that GS can largely improve clonal selection in oil palm (Elaeis 612 

guineensis). GS prediction accuracies for ortets without phenotypic data records extended from -0.03 613 

to 0.7 according to the trait, GS model and SNP dataset. The G_ASGM_A approach was better for 614 

predicting clonal values than G_PSAM_A (more robust over traits and SNP datasets, easier to 615 

implement), although G_PSAM_A could, in some cases, slightly improve prediction accuracies for the 616 

two traits defining the heterotic groups. G_ASGM_A gave higher prediction accuracies than current 617 

phenotypic selection for six traits out of eight. GS models required at least 7,000 SNPs to perform 618 

best, with the percentage of missing data per SNP being of secondary importance. 619 

The annual genetic progress of clonal oil palm breeding for yield can be increased by 620 

replacing the current phenotypic ortet preselection before clonal trials by (1) genomic ortet 621 

preselection on most of the yield components among a large population of the best possible crosses 622 

(produced based on the results of the progeny tests) at the juvenile stage or, (2) ortet preselection at the 623 

mature stage on all the yield components using jointly the genomic and phenotypic data of the ortet 624 

selection candidates. GS can, therefore, enhance oil palm production. Further studies should be 625 

conducted, for example considering other traits (vegetative growth, resistance to diseases) and using a 626 

different phasing approach. 627 
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Tables 779 

Table 1 780 

Characteristics of the datasets used for training and validation. 781 

 Hybrid crosses (training set) Hybrid clones (validation set) 

bunch production bunch quality  bunch production bunch quality  

Number of crosses or ortets 295 279 42 42 

Number of individuals or 

ramets 

19,668 12,341 2,908 1,439 

Average number of 

individuals per cross or 

ramets per clone (min–max) 

67 (17-503) 44 (21-274) 69 (5-138) 34 (4-74) 

Number of Deli parents 

(genotyped) 

108 (93) 103 (90) 16 16 

Number of La Mé parents 

(genotyped) 

102 (91) 100 (89) 12 12 

Age at time of data collection 

(years) 

3-7 5-9 3-7 5-9 

  782 



Table 2  783 

Characteristics of the SNP datasets defined based on a threshold in terms of maximum percentage of 784 

missing data per individual. 785 

 Maximum percentage of missing data allowed per SNP pmax (resulting 

average) 

0 (0) 5 (1.03) 10 (2.19) 25 (5.92) 45 (12.10) 75 (23.08) 

Average percentage of missing 

data per individual in La Mé 

0 1.49 3.20 8.81 15.31 23.95 

Average percentage of missing 

data per individual in Deli 

0 0.87 1.83 4.76 10.62 22.56 

Number of SNPs nsnp 2,447 5,620 6,898 9,205 11,707 15,054 

  786 



Table 3  787 

Mean prediction accuracies according to trait and prediction model. 788 

Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production 789 

(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to 790 

pulp (OP) ratios, and number of fruits per bunch (NF); genomic prediction models: across-population 791 

SNP genotype models (ASGM_A), population-specific effects of SNP alleles models (PSAM_A). 792 

Values in brackets indicate the corresponding SNP dataset, defined on its maximum percentage of 793 

missing data 794 

 795 

  796  

Traits 

Mean accuracies over all 

SNP datasets 

Maximum accuracies over all 

SNP datasets 

G_ASGM_A G_PSAM_A G_ASGM_A  G_PSAM_A 

AFW 0.48 0.41 0.57 (0%) 0.49 (10%) 

FB 0.65 0.58 0.70 (25%) 0.65 (75%) 

PF 0.14 0.09 0.18 (45%) 0.16 (10%/75%) 

OP 0.52 0.35 0.55 (45%) 0.47 (0%) 

NF 0.47 0.43 0.54 (75%) 0.49 (75%) 

FFB 0.47 0.30 0.55 (10%) 0.31 (10%) 

BN 0.31 0.31 0.37 (75%) 0.40 (0%) 

ABW 0.53 0.54 0.58 (75%) 0.60 (25%) 

Mean  0.45 0.37 0.51 0.45 



Table 4  797 

Pairwise comparison of prediction accuracies among genomic selection and pedigree-based models, 798 

according to SNP dataset and trait. For any pair of models, the values indicate the difference in 799 

prediction accuracy between the two models (model1 – model2).  SNP datasets are defined based on 800 

the maximum percentage of missing data allowed per SNP pmax and the resulting number of SNPs nSNP 801 

and are labeled pmax%-nSNP. Significance of pairwise comparisons by Hotelling–Williams t-test: *0.05 802 

> P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001. 803 

SNP dataset Compared 

models 

AFW FB PF OP NF FFB BN ABW 

 P_ASGM_A – 

P_PSAM_A 

-0.06 0.15* 0.06 -0.03 -0.04 0.03 -0.25** -0.04 

0%-2,447 G_ASGM_A – 

G_PSAM_A 

0.15 0.08 0.12 0.07   0.16 0.01 -0.16 0.06 

5%-5,620 G_ASGM_A – 

G_PSAM_A 

0.06   0.06   0.06 0.04 -0.02 0.24* 0.01 -0.02 

10%-6,898 G_ASGM_A - G 

PSAM_A 

0.02 0.12* 0.00 0.06    0.02 0.23 -0.02 -0.02 

25%-9,205 G_ASGM_A - G 

PSAM_A 

0.11   0.09   0.10   0.14   0.02   0.22 0.08 -0.05 

45%-11,707 G_ASGM_A – 

G_PSAM_A 

0.01   0.12   0.05   0.36** 0.01   0.19 0.08 -0.02 

75%-15,054 G_ASGM_A - G 

PSAM_A 

0.10 -0.05   0.01   0.33* 0.04 0.16 -0.02 0.00 

  804 



Table 5 805 

Pairwise comparison of prediction accuracies among genomic selection and pedigree-based models, 806 

according to SNP dataset and trait. For any pair of models, the values indicate the difference in 807 

prediction accuracy between the two models (model1 – model2).  SNP datasets are defined based on 808 

the maximum percentage of missing data allowed per SNP pmax and the resulting number of SNPs nSNP 809 

and are labeled pmax%-nSNP. Significance of pairwise comparisons by Hotelling–Williams t-test: *0.05 810 

> P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001. 811 

SNP dataset Compared 

models 

AFW FB PF OP NF FFB BN ABW 

0%-2,447 P_ASGM_A – 

G_ASGM_A 

-0.04 -0.12 0.00 -0.17 -0.01 0.07 -0.53** -0.19 

P_PSAM_A – 

G_PSAM_A 

0.16 -0.18 0.06 -0.07 0.19 0.05 -0.45* -0.08 

5%-5,620 P_ASGM_A – 

G_ASGM_A 

0.03 -0.14 -0.01 -0.09 -0.01 -0.18 -0.56** -0.28* 

P_PSAM_A – 

G_PSAM_A 

0.14 -0.22* -0.01 -0.02 0.03 0.04 -0.30 -0.25 

10%-6,898 P_ASGM_A – 

G_ASGM_A 

0.02 -0.20* -0.07 -0.13 -0.01 -0.18 -0.59** -0.30* 

P_PSAM_A – 

G_PSAM_A 

0.09 -0.23* -0.13 -0.04 0.05 0.02 -0.36* -0.28* 

25%-9,059 P_ASGM_A – 

G_ASGM_A 

0.08 -0.20* -0.08 -0.15 -0.02 -0.16 -0.64*** -0.30** 

P_PSAM_A – 

G_PSAM_A 

0.24 -0.26* -0.04 0.03 0.04 0.04 -0.30* -0.31* 

45%-11,425 P_ASGM_A – 

G_ASGM_A 

0.11 -0.15 -0.09 -0.18* 0.03 -0.13 -0.62*** -0.30** 

P_PSAM_A – 0.17 -0.19 -0.10 0.22 0.08 0.04 -0.29 -0.28* 



G_PSAM_A 

75%-15,054 P_ASGM_A – 

G_ASGM_A 

0.10* -0.11 -0.08 -0.17 -0.08 -0.09 -0.67*** -0.34*** 

P_PSAM_A – 

G_PSAM_A 

0.26 -0.31** -0.13 0.19 0.01 0.05 -0.44* -0.30* 

  812 



Table 6 813 

Intensity and accuracy of phenotypic selection before clonal trials according to trait. 814 

Traits Intensity of selection Phenotypic prediction accuracies 

AFW 0.11   0.18 

FB 0.32 0.59 

PF 0.68    0.59 

OP 0.58 0.63 

NF -0.27 0.46 

FFB 0.19 0.09 

BN 0.23 0.25 

ABW -0.01 -0.03 

  815 



Figures 816 
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 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

Fig. 1. Imputation and phasing scheme for the production of the SNP datasets used for genomic 834 

predictions with the two models PSAM (population-specific effects of SNP alleles model) and ASGM 835 

(across-population SNP genotype model). pA, pB, A×B: Deli parents, La Mé parents and Deli×La Mé 836 

hybrid ortets, (I) denotes imputed data. 837 
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                                     839 

Fig. 2. Distribution of minor allele frequency (MAF) in La Mé (a) and Deli (b) populations, and 840 

correlation of MAF (c) and frequency of alternate alleles between La Mé and Deli (d). In (c) and (d) 841 

panels, each dot represents an SNP.  842 
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Fig. 3. Prediction accuracies according to traits, SNP datasets and prediction models.  845 
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 848 

Fig. 4. Prediction accuracies of phenotypic selection (PS) and of the G_ASGM_A model without 849 

phenotypic data (G_ASGM_A) and with phenotypic data (G_ASGM_A+pheno) of ortets, on average 850 

over the best SNP datasets, and according to trait. 851 
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Supplementary data 854 



 855 



Supplementary Fig. S. 1 Prediction accuracies according to traits, SNP datasets and prediction 856 

models with additive+dominance models. 857 




