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Abstract: Avian influenza outbreaks have been occurring on smallholder poultry farms in Asia 23 

for two decades. Farmer responses to these outbreaks can slow down or accelerate virus 24 

transmission. We used a longitudinal survey of 53 small-scale chicken farms in southern 25 

Vietnam to investigate the impact of outbreaks with disease-induced mortality on harvest rate, 26 

vaccination, and disinfection behaviors. We found that in small broiler flocks (≤16 birds/flock) 27 

the estimated probability of harvest was 56% higher when an outbreak occurred, and 214% 28 

higher if an outbreak with sudden deaths occurred in the same month. Vaccination and 29 

disinfection were strongly and positively correlated with the number of birds. Small-scale 30 

farmers – the overwhelming majority of poultry producers in low-income countries – tend to rely 31 

on rapid sale of birds to mitigate losses from diseases. As depopulated birds are sent to markets 32 

or trading networks, this reactive behavior has the potential to enhance onward transmission.  33 
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 34 

One sentence summary: Longitudinal monitoring of poultry farms in southern Vietnam reveals 35 

that when outbreaks occur with symptoms similar to highly pathogenic avian influenza, farmers 36 

respond by sending their chickens to market early. 37 

Keywords: epidemiology, poultry, avian influenza, Southeast Asia, behavioral epidemiology, 38 

health behavior, health economics, vaccination 39 

Abbreviations:  40 

AIC: Akaike Information Criterion 41 

AI: avian influenza 42 

CI: confidence interval 43 

CM-LPAH: Ca Mau sub-Department of Livestock Production and Animal Health 44 

HPAI: highly pathogenic avian influenza 45 

MGAM: mixed-effects general additive model 46 

ONS: outbreak with no sudden death 47 

OS: outbreak with sudden death 48 

OR: odds ratio  49 
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Introduction 50 

Livestock production systems have been a major driver of novel pathogen emergence events 51 

over the past two decades (Gao et al., 2013; Guan et al., 2002; Rohr et al., 2019). The conditions 52 

enabling the emergence and spread of a new disease in the human population partly depend on 53 

human behavioral changes, like hygiene improvements or social distancing, in the face of 54 

epidemiological risks (Funk, Salathe, & Jansen, 2010). The same observation applies to disease 55 

emergence and spread in livestock populations as farmers adapt their farm management to 56 

maximize animal production and welfare while limiting cost in a constantly changing ecological 57 

and economic environment (Chilonda & Van Huylenbroeck, 2001).  58 

Poultry farming generates substantial risk for emergence of novel infectious diseases. It is 59 

now the most important source of animal protein for the human population and the industry is 60 

changing rapidly (FAOSTAT, 2019). The link between poultry sector expansion and pathogen 61 

emergence is exemplified by the worldwide spread of the highly pathogenic form of avian 62 

influenza (AI) due to the H5N1 subtype of influenza A, after its initial emergence in China in 63 

1996 (Guan et al., 2002; Guan & Smith, 2013). Highly Pathogenic Avian Influenza (HPAI) 64 

causes severe symptoms in the most vulnerable bird species (including chicken, turkey, and 65 

quail), with mortality rates as high as 100% reported in broiler flocks (OIE, 2018).  Some 66 

subtypes of AI viruses have caused infection in humans, including H5N1, H5N6, H7N9 and 67 

H9N2, with potentially severe illness and, in the cases of H7N9 and H5N1, a high case-fatality 68 

rate (Chen et al., 2013; Claas et al., 1998; Peiris et al., 1999; Yang, Mok, Peiris, & Zhong, 2015). 69 

So far, reports of human-to-human transmission of these subtypes of influenza have been either 70 

absent or anecdotal, but the risk that they make the leap to a human pandemic is a persistent if 71 

unquantifiable threat to public health (Imai et al., 2012). While HPAI does not persist in poultry 72 
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populations in most affected countries, it has become endemic in parts of Asia and Africa and is 73 

periodically re-introduced into other areas like Europe and North America (Lai et al., 2016; Li et 74 

al., 2014). In affected countries, major factors influencing HPAI epidemiology appear to be farm 75 

disinfection, poultry vaccination, and marketing of potentially infected birds through trade 76 

networks, all of which depend on farmers’ management decisions (Biswas et al., 2009; Desvaux 77 

et al., 2011; Fasina, Rivas, Bisschop, Stegeman, & Hernandez, 2011; Henning et al., 2009; Kung 78 

et al., 2007). 79 

It is still unclear how and to what extent changes in outbreak risk or mortality risk affect 80 

the behavior of poultry farmers. An anthropological study in Cambodia showed that high levels  81 

of farmer risk awareness associated with HPAI did not translate into major changes in their 82 

farming practices (Hickler, 2007). Qualitative investigations conducted in Vietnam, Bangladesh, 83 

China, and Indonesia reported that farmers sometimes urgently sell or cull diseased poultry 84 

flocks as a way to mitigate economic losses, but evidence of this behavior’s onward 85 

epidemiological impact was not available (Biswas et al., 2009; Delabouglise et al., 2016; 86 

Padmawati & Nichter, 2008; Sultana et al., 2012; Zhang & Pan, 2008). Additionally, it is 87 

unknown whether poultry farmers increase application of disinfection practices or vaccination 88 

rates against avian influenza in response to disease outbreaks occurring in their flocks. Changes 89 

in farm management caused by variations in epidemiological risk have not been quantified for 90 

any livestock system that we are aware of, primarily because of the lack of combined 91 

epidemiological and behavioural data in longitudinal studies of livestock disease (Hidano, 92 

Enticott, Christley, & Gates, 2018). Ifft et al. compared the evolution of chicken farm sizes and 93 

disease prevention in administrative areas with different levels of HPAI prevalence in Vietnam 94 

(Ifft, Roland-Holst, & Zilberman, 2011), and Hidano et al. modelled the effect of cattle mortality 95 
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and production performance on the frequency of sales and culling in New Zealand dairy farms 96 

(Hidano & Gates, 2019). One limitation of these two studies is that the dynamics were observed 97 

over year-long time steps, which does not allow for a precise estimation of the timing of farmer 98 

response after the occurrence of disease outbreaks and the potential feedback effect of this 99 

response onto the resulting outbreaks or epidemics. 100 

Vietnam has suffered human mortality and economic losses due to HPAI. The disease has 101 

been endemic in the country since its initial emergence in 2003-2004 (Delabouglise et al., 2017). 102 

Small-scale poultry farming is practiced by more than seven million Vietnamese households, 103 

mostly on a scale of fewer than 100 birds per farm (General Statistics Office of Vietnam, 2017). 104 

In addition to HPAI, other infectious diseases severely affect this economic sector, including 105 

Newcastle disease, fowl cholera, and Gumboro, which are all endemic despite the availability of 106 

vaccines for their control (OIE, 2019).  107 

We present a longitudinal study of small-scale poultry farms where we aimed to 108 

characterize the effect of disease outbreaks on livestock harvest rate (i.e. rate of removal by sale 109 

or slaughter) and on two prevention practices, vaccination and farm disinfection. This 110 

longitudinal farm survey was conducted on small-scale poultry farms in the Mekong river delta 111 

region of southern Vietnam (Delabouglise et al., 2019).  112 

 113 

Results 114 

Fifty three farms were monitored from June 2015 to January 2017. Monthly questionnaires were 115 

used to collect farm-level information on poultry demographics (number, introduction, death and 116 

departure of birds), mortality (cause of death, observed clinical symptoms) and management by 117 

farmers. The main poultry species kept on these farms was chicken, with ducks and Muscovy 118 
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ducks as the other two primary relevant species held.  Farmers kept an average number of 79 119 

chickens, 53 ducks and 7 Muscovy ducks per farm over the 20-month study period. Each farm’s 120 

poultry were classified into “flocks”, defined as groups of birds of the same age, species, and 121 

production type. Figure 1 illustrates the farms’ structure and dynamics. Broiler chicken flocks 122 

were kept for 15.5 weeks on average after which most chickens were harvested and a minority 123 

was consumed or kept on the farm for breeding and egg production (Delabouglise et al., 2019).  124 

We fit mixed-effects general additive models (MGAM) with three different dependent 125 

variables: a "harvest model" of the probability of harvesting (i.e. selling or slaughtering) chicken 126 

broiler flocks at a particular production stage (data points are flock-months), an "AI vaccination 127 

model" of the probability of performing AI vaccination on chicken broiler flocks which had 128 

never received AI vaccination (data points are flock-months), and a "disinfection model" of the 129 

probability of disinfecting farm facilities (data points are farm-months). Disease outbreaks were 130 

included in each model as independent categorical variables. Disease outbreaks refer to the 131 

occurrence of poultry mortality attributable to an infectious disease in the corresponding farm at 132 

different time intervals before the corresponding month. Specifically, outbreaks were defined by 133 

the death of at least two birds of the same species with similar clinical symptoms in the 134 

corresponding farm in the same month, one month prior, and two months prior. For the harvest 135 

model, only outbreaks in chickens were considered. For the AI vaccination model, outbreaks in 136 

chickens and outbreaks in any other species were included as two separate covariates. For the 137 

disinfection model, outbreaks in any of the species present in the farm were considered. In 138 

chickens, outbreaks with “sudden deaths” (i.e. the death of chickens less than one day after the 139 

onset of clinical symptoms) are considered as being indicative of HPAI infection (Mariner et al., 140 

2014). Therefore, we created two sub-categorical variables for outbreaks in chickens, with 141 
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sudden deaths (OS, “outbreaks sudden”) and with no sudden deaths (ONS, “outbreaks not 142 

sudden”).  The three dependent variables are likely influenced by several other farm-, flock-, and 143 

time-related factors, justifying the inclusion of control covariates which are reported in Table 1 144 

and described in detail in the “Materials and Methods”. 145 

A total of 1656 broiler chicken flock-months were available for analysis. They belonged 146 

to 391 chicken flocks present on 48 farms. In 18.8% of flock-months non-sudden outbreaks 147 

(ONS) were observed in chickens on the same farm, 1.6% of flock-months saw sudden outbreaks 148 

(OS) in chickens on the same farm, and 7.2% of flock-months saw disease outbreaks in poultry 149 

of other species on the same farm (Table 1). The percentages are very similar for outbreaks 150 

occurring one month prior and two months prior since they are averaged over similar sets of 151 

months, with differences mostly related to outbreak frequency in the two first months and two 152 

last months of the study period. Additional descriptive statistics on control covariates are 153 

described in Table 1. Out of 1656 broiler chicken flock months, 1503 flock-months were 154 

selected for the harvest analysis after excluding data points with new-born chicks and flock-155 

months in which all the chickens had died (see Materials and Methods). No harvest occurred in 156 

995 flock-months, complete harvest occurred in 258 flock-months, and partial harvest occurred 157 

in 250 flock-months. The probability of harvest during a month, with partial harvests weighted 158 

appropriately, was 23.9%. Excluding flock-months of already vaccinated chickens (and some 159 

with missing data), 1318 flock-months were selected for the AI vaccination analysis (see 160 

Materials and Methods). AI vaccination was performed in 7.5% (99/1318) of flock-months. 161 

The 99 vaccinated flocks were from 29 different farms (out of 48 farms keeping broiler 162 

chickens). For the disinfection model, 858 farm-months belonging to 52 farms were included 163 

(see Materials and Methods). During 552 farm-months the farm was fully disinfected, during 164 
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259 farm-months the farm was not disinfected at all, and during 47 farm-months disinfection was 165 

performed for some (but not all) of the flocks present in the farm. The probability of disinfection 166 

during a month, with partial disinfections weighted appropriately, was 67.4%. The best fit 167 

statistical models and their parameter values are summarized in Table 2. Fitted spline functions 168 

cannot be elegantly summarized by their coefficients and are displayed graphically in Figures 2 169 

and 3.  170 

The harvest model showed support for associations between flock- and farm-level 171 

covariates, particularly the difference between flock age and age at maturity and the probability 172 

of harvesting broiler chickens. The model explained 34.2% of the observed deviance. There was 173 

no statistical support for a temporal auto-correlation of the probability of harvest of broiler 174 

chicken flocks on a given farm (Table 2). As the interaction term between flock size (n) and 175 

outbreak occurrence was significant (p < 0.01) but difficult to interpret (displayed in 176 

Supplementary File 1), we separated the flocks into large and small. A threshold value of 16 177 

birds per flock gave the lowest Akaike Information Criterion (AIC) (when using a categorical 178 

variable indicating small flock or large flock), and flocks of 16 birds or fewer (52% of all flocks) 179 

were designated as small while flocks of 17 or more (48% of all flocks) were designated as large. 180 

As expected, the probability of harvest was found to be strongly dependent on the difference (δt) 181 

between the flock age and the anticipated age at maturity, with older flocks being more likely to 182 

be sold. The probability of harvest was close to zero when δt < -15 weeks, i.e. flocks that are 183 

more than 15 weeks away from maturity. The probability of harvest increased steeply from δt = -184 

10 to δt = 0. For δt > 0 (flocks past their age at maturity), the probability of harvest was 185 

consistently high but lower than 100% and did not depend on age. Larger flocks had a steeper 186 

increase in harvest probability as a function of δt; once past the age at maturity (δt > 0), the 187 
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estimated probability of harvest for large flocks was higher (interquartile range: 41% – 61%) 188 

than for small flocks (interquartile range: 30% – 41%) (Figure 2). 189 

Disease outbreaks substantially affected the likelihood of harvest of broiler chickens. The 190 

probability of harvest of small flocks was significantly higher on farms that had experienced a 191 

non-sudden outbreak (ONS) in chickens in the same month (odds ratio (OR) = 2.06; 95% 192 

confidence interval (CI): 1.23 - 3.45) or the previous month (OR=2.06; 95% CI: 1.17 - 3.62) and 193 

was lower on farms that had experienced an ONS in chickens two months prior (OR=0.41; 95% 194 

CI: 0.19 - 0.92). The probability of harvest of small flocks was much higher on farms that had 195 

experienced a sudden outbreak (OS) in the same month (OR=9.34: 95% CI: 2.13 - 40.94). We 196 

used the fitted model to predict the mean harvest proportion in the study population with and 197 

without outbreak. Estimated mean harvest proportions of small flocks were 17% (no outbreak), 198 

28% (ONS), and 56% (OS) when considering outbreaks occurring in the same month; this 199 

corresponded to harvest increases of 56% and 214% for ONS and OS outbreaks, respectively. 200 

Estimated mean harvest proportion was 18% (no outbreak) and 28% (ONS) when considering 201 

outbreaks one month prior; this corresponded to a 56% increase in harvest in case of ONS one 202 

month prior. Mean harvest proportions were 20% (no outbreak) and 11% (ONS) when 203 

considering outbreaks two months prior, indicating a 47% decrease in harvest in case ONS two 204 

months prior. For large flocks, ONS in chickens (in any month current or previous) did not have 205 

any effect on the harvest of broiler chickens (the removal of ONS variables decreased the model 206 

AIC). The occurrence of OS in chickens one month prior may be positively associated with early 207 

harvest with an estimated 76% increase in harvest proportion (OR=3.89; 95% CI: 0.82 - 18.46; 208 

p=0.09). However we do not have sufficient statistical power to support this association. In the 209 

last six months of data collection, farmers were asked to indicate the destination of harvested 210 
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birds. Based on these partial observations, flocks harvested during or one month after outbreaks 211 

in chickens (OS or ONS) were more likely to be sold to traders and less likely to be slaughtered 212 

at home (Table 3). The likelihood of harvest was also positively correlated with the number of 213 

other broiler chickens present on the farm (Supplementary File 1, p < 0.01). It was not found to 214 

be affected by the concomitant introduction of other flocks, vaccination status, or calendar time 215 

(T). The farm random effect was significant for large flocks (σ = 0.74; 95% CI: 0.47 - 1.17) and 216 

not significant for small flocks. 217 

The number of outbreaks with sudden deaths is relatively small (11 small flock-months 218 

and 14 large flock-months occurred on farms experiencing an OS in the same month) and OS are 219 

potentially subject to misclassification, depending on how regularly farmers check on their 220 

chickens. Therefore, in order to ensure the robustness of our result, we conducted a separate 221 

analysis with merged OS and ONS categories. The results are displayed in Supplementary File 222 

2 and Figure 2-figure supplement 1. The probability of harvest of small flocks was 223 

significantly higher on farms that had experienced an outbreak in chickens in the same month 224 

(Odds ratio (OR) = 2.34; 95% CI: 1.43 - 3.81) or the previous month (OR=1.96; 95% CI: 1.14 - 225 

3.37) and was lower in farms that had experienced an outbreak in chickens two months prior 226 

(OR=0.45; 95% CI: 0.22 - 0.92). For large flocks, there was no statistical support for outbreaks 227 

in chickens having an effect on the harvest of broiler chickens. 228 

The AI vaccination model showed support for an effect of flock size on vaccination, 229 

while explaining 71.9% of the observations’ deviance. The likelihood of broiler chicken 230 

vaccination against AI strongly increased with flock size; probability of vaccination was almost 231 

zero for flocks of 16 birds or fewer and nearly 100% for flocks of more than 200 birds (Figure 232 

3.A). Vaccination was preferentially performed at 4.3 weeks of age (Figure 3.B). Flocks kept 233 
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indoors or in enclosures had a substantially higher chance of being vaccinated than flocks 234 

scavenging outdoors (OR = 24.6; CI: 6.32 - 95.6). Harvested flocks were less likely to receive an 235 

AI vaccination (OR = 0.01; CI: 0 - 0.37).  The likelihood of AI vaccination was dependent on 236 

calendar time: it increased over the September-January period and decreased during the rest of 237 

the year (Figure 3.C).  There was no statistical support for a temporal auto-correlation of the 238 

probability of vaccination of broiler chicken flocks against AI on a given farm. The farm random 239 

effect was significant (σ = 2.86; CI: 1.88 – 4.35). We failed to obtain convergence when fitting 240 

the specific effects of OS and ONS in chickens, so we used an aggregate variable “outbreak in 241 

chickens” instead (Table 2). Broiler chicken flocks were more likely to be vaccinated if an 242 

outbreak had occurred in the same month in other species (OR = 4.62; CI: 1.08 - 19.72; p=0.04) 243 

and less likely to be vaccinated if an outbreak had occurred two months prior in chickens (OR = 244 

0.27; CI: 0.08 - 0.89; p=0.03). These two effects were weakly significant and should be 245 

interpreted with caution (Table 2). The coefficients for interaction terms between outbreak 246 

occurrence and flock size were not significantly different from zero. The number of broiler 247 

Muscovy ducks present in the farm had a negative effect (p = 0.03) and the number of layer 248 

ducks and layer Muscovy ducks had a positive effect (both p = 0.03) on the probability of AI 249 

vaccination (Table 2). 250 

The disinfection model showed evidence that larger farms were more likely to report 251 

routine disinfection of their premises; the model explained 61.9% of the observations’ deviance. 252 

Probability of disinfection on farms was auto-correlated in time (likelihood ratio test for 1-month 253 

AR-model on residuals; p < 0.0001); this was not observed for the harvest or vaccination models 254 

(both p > 0.3). Consequently, the disinfection model was improved by fitting an AR-1 255 

autoregressive model using the "gamm" routine of the "mgcv" R package. The estimated AR-1 256 
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autoregressive coefficient was high (ρ = 0.71). The likelihood of disinfection of farm facilities 257 

increased with the number of layer-breeder hens (OR = 1.3; CI: 1.12 - 1.51; p = 0.001), layer-258 

breeder ducks (OR = 1.25; CI: 1.02 - 1.53; p = 0.03), and to a lesser extent broiler chickens 259 

(OR=1.07; CI: 1.01 - 1.13; p = 0.02) present on the farm (Table 2). Farm disinfection appeared 260 

to have a seasonal component. It was least likely in October-November and most likely in the 261 

January-April period (Figure 3D). It was not found to be affected by the occurrence of outbreaks 262 

(no decrease in AIC when including outbreak occurrence). 263 

 264 

Discussion 265 

Regions like the Mekong river delta combine high human population density, wildlife 266 

biodiversity, and agricultural development. As such, they are considered hotspots for the 267 

emergence and spread of novel pathogens (Allen et al., 2017). The high density of livestock 268 

farmed in semi-commercial operations with limited disease prevention practices further increases 269 

the risk of spread of emerging pathogens in livestock and their transmission to humans (Henning 270 

et al., 2009). In-depth studies of poultry farmers’ behavioral responses to disease occurrence in 271 

animals are needed to understand how emerging pathogens – especially avian influenza viruses – 272 

may spread and establish in livestock populations and how optimal management policies should 273 

be designed. To the best of our knowledge, this study is the first to provide a detailed and 274 

quantified account of the dynamics of livestock management in small-scale farms and its 275 

evolution in response to changing epidemiological risks shortly after disease outbreaks occur. 276 

While our analysis was performed on a geographically restricted area, the decision-making 277 

context of the studied sample of farmers is likely to be applicable to a wide range of poultry 278 

producers in low- and middle-income countries. Small-scale poultry farming, combining low 279 
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investments in infrastructure, no vertical integration, and subject to limited state control on 280 

poultry production and trade, is common in most regions affected by avian influenza, in 281 

Southeast Asia, Egypt, and West Africa (Burgos, Hinrichs, Otte, Pfeiffer, Roland-Holst, et al., 282 

2008; Hosny, 2006; Obi, Olubukola, & Maina, 2008; Sudarman, Rich, Randolph, & Unger, 283 

2010). Additional longitudinal surveys using a similar design should be carried out in other 284 

countries and contexts to assess the presence or absence of the behavioral dynamics observed 285 

here. 286 

In our longitudinal study, owners of small chicken broiler flocks resorted to early 287 

harvesting of poultry, also referred to as depopulation, as a way to mitigate losses from 288 

infectious disease outbreaks. The revenue earned from the depopulation of flocks might be low, 289 

either because birds are still immature or because traders use disease symptoms as an argument 290 

to decrease the sale price. Nevertheless, depopulation allows the farmer to avoid a large revenue 291 

loss resulting from disease-induced mortality or the costs of management of sick or dead birds. 292 

More importantly, farmers avoid the cost of feeding chickens at high risk of dying and prevent 293 

the potential infection of subsequently introduced birds. Our results also suggest that the 294 

depopulation period, which lasts approximately two months, is followed by a “repopulation” 295 

period during which farmers lower their harvest rate, possibly to increase their pool of breeding 296 

animals in order to repopulate their farm.  297 

The epidemiological effect of chicken depopulation is likely twofold: on the one hand it 298 

may slow the transmission of the disease on the farm, since the number of susceptible and 299 

infected animals is temporarily decreased (Boni, Galvani, Wickelgren, & Malani, 2013); on the 300 

other hand, since most poultry harvested during or just after outbreaks were sold to itinerant 301 

traders or in markets, depopulation increases the risk of dissemination of the pathogens through 302 
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trade circuits (Delabouglise & Boni, 2020). There is epidemiological evidence that poultry farms 303 

can be contaminated with HPAI through contact with traders who purchase infectious birds and 304 

that infectious birds can contaminate other birds at traders’ storage places and in live bird 305 

markets  (Biswas et al., 2009; Guillaume Fournié et al., 2016; Kung et al., 2007). Overall, 306 

chicken depopulation may reduce local transmission at the expense of long-distance 307 

dissemination of the pathogen. The rapid sale of sick birds also exposes consumers and actors of 308 

the transformation and distribution chain (traders, slaughterers, retailers) to an increased risk of 309 

infection with zoonotic diseases transmitted by poultry, like avian influenza (G. Fournié, Hoeg, 310 

Barnett, Pfeiffer, & Mangtani, 2017). Large flocks appear to be less readily harvested upon 311 

observation of disease mortality. Farmers may depopulate large flocks only upon observation of 312 

sudden deaths, but the number of observations in our study is too small to demonstrate statistical 313 

significance of this effect. The likely reason for this difference is that the sale and replacement of 314 

larger flocks incurs a higher transaction cost. While small flocks are easily collected and 315 

replaced by traders and chick suppliers in regular contact with farmers, the rapid sale of larger 316 

flocks probably requires the intervention of large-scale traders or several small-scale traders with 317 

whom farmers have no direct connection, and who may offer a lower price per bird. When farm 318 

production increases, farmers tend to rely on pre-established agreements with traders, 319 

middlemen, or hatcheries on the sale dates in order to reduce these transaction costs, giving them 320 

little possibility to harvest birds at an earlier time (Catelo & Costales, 2008).  321 

The timing of harvest of broiler chickens is also affected by farm-related factors, as 322 

shown by the significance of the farm random effect in large flocks. Indeed, farmers have 323 

different economic strategies, some aiming at optimizing farm productivity and harvesting 324 

broilers as soon as they reach maturity, and others using their poultry flocks as a form of savings 325 
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and selling their poultry whenever they need income or when prices are high (ACI, 2006). For 326 

the latter category, the sale of chickens presumably depends on variables which were not 327 

captured in this study, like changes in market prices, economic shocks affecting the household, a 328 

human disease affecting a member of the household, or celebrations. Those variables should be 329 

captured in future surveys in order to improve the predictive power of harvest models. Another 330 

limit of the model is the use of a proxy of the chicken weight combining age, age at maturity, 331 

and flock size, rather than the actual weight, which is difficult to monitor in a longitudinal study 332 

of this size. 333 

While government-supported vaccination programs have been proposed as a suitable tool 334 

to control AI in small scale farms with little infrastructure (FAO, 2011), in this survey AI 335 

vaccination was almost exclusively performed in large flocks kept indoors or in an enclosure. 336 

Vaccination against AI is believed to be inexpensive for farmers as vaccines are supplied for free 337 

by the sub-department of animal health of Ca Mau province and performed by local animal 338 

health workers. However, vaccination may still involve some fixed transaction cost as farmers 339 

have to declare their flocks to the governmental veterinary services beforehand. Also it is 340 

possible that small flocks, being less likely to be sold to distant larger cities (Tung & Costales, 341 

2007), are less likely to have their vaccination status controlled, making their vaccination less 342 

worthwhile from the farmers’ perspective. Crucially, it is these smaller flocks that are more 343 

likely to be sold into trading network during outbreaks. Finally, farmers' willingness to expand 344 

their production, invest in farm infrastructure, and implement AI prevention are likely correlated. 345 

Farms with a large breeding-laying activity tend to invest more in preventive actions 346 

(disinfection and vaccination) compared to farms specialized in broiler production. This may 347 
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reflect a higher individual market value of layer-breeder hens compared to broiler chicks, making 348 

their protection more worthwhile. 349 

While vaccination against AI and disinfection appear to depend on individual farmer 350 

attitude, as shown by the significance of the farm random effects, they still vary over time when 351 

viewed across all farms (Figure 1). Contrary to harvesting behavior, these preventive actions 352 

have a seasonal component (Figure 3.C and 3.D) indicating a willingness to maximize the 353 

number of vaccinated broiler chickens and the protection against other diseases during the 354 

January-March period. The January-March period is the period of lunar new year celebrations in 355 

Viet Nam, commonly associated with higher poultry market prices and an increased risk of 356 

disease transmission, as has been observed for avian influenza (Delabouglise et al., 2017; Durand 357 

et al., 2015). In response, farmers tend to invest more in disease prevention practices at this time 358 

and veterinary services provide more vaccines and disinfectant for free. Farm disinfection has a 359 

significant temporal autocorrelation component and is unaffected by disease outbreaks, 360 

indicating that farmers are slower at adapting this practice to changing conditions. Some events 361 

may affect the frequency of vaccination and disinfection on a long time frame. For example, the  362 

peak in AI vaccination observed at the end of 2015 can be interpreted as a part of a long-term 363 

response to the high HPAI incidence reported in early 2014 (Delabouglise et al., 2017). The time 364 

period of the present study is too short to provide a statistical support for these long term 365 

dynamics.  366 

The data from this study were recorded at farm level on monthly basis, which limits the 367 

risk of recall bias. It was an easy task for farmers participating in the survey to report the number 368 

of deaths and associated clinical symptoms. We cannot, however, totally exclude the risk of 369 

misclassification of disease outbreaks, especially the misclassification of outbreaks in chickens 370 
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as “sudden”, as it is influenced by the frequency of inspection of chickens flocks by farmers and 371 

other members of the households. 372 

The main result of the study is that, as poultry flock size decrease, farmers increasingly 373 

rely on depopulation rather than preventive strategies to limit economic losses due to infectious 374 

diseases. In the current context, depopulation mainly results in the rapid transfer of potentially 375 

infected chickens to trade systems, increasing the risk of pathogen dissemination. In response, 376 

governments may use awareness campaigns directed at actors of poultry production systems to 377 

communicate information on the public health risks associated with the trade of infected birds. 378 

However, if the economic incentives for depopulating are high enough, communication 379 

campaigns may fail to produce noticeable results. Small-scale farmers could play an active role 380 

in the control of emerging infectious diseases if they were given the opportunity to depopulate 381 

their farm upon disease detection without disseminating pathogens in trade circuits, as theoretical 382 

models predict that depopulation can maintain a disease-free status in farming areas 383 

(Delabouglise & Boni, 2020). Policymakers may be able to encourage the establishment of 384 

formal trade agreements enabling and encouraging “virtuous” management of disease outbreaks 385 

in poultry. For example, in some areas of Vietnam, poultry originating from farms experiencing 386 

disease outbreaks are partly used as feed for domestic reptiles (farmed pythons and crocodiles) or 387 

destroyed with the support of larger farms (Delabouglise et al., 2016).  388 

The last 23 years of emerging pathogen outbreaks and zoonotic transmissions failed to 389 

prepare us for the epidemiological catastrophe that we are witnessing in 2020. Multiple subtypes 390 

of avian influenza viruses have crossed over into human populations since 1997 (Gao et al., 391 

2013; Lai et al., 2016), all resulting from poultry farming activities. Small-scale poultry farming 392 

is likely to be maintained in low- and middle-income countries as it provides low-cost protein, 393 
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supplemental income to rural households, and is supported by consumer preference of local 394 

indigenous breeds of poultry (Burgos, Hinrichs, Otte, Pfeiffer, & Roland-Holst, 2008; Epprecht, 395 

2005; Sudarman et al., 2010). If we ignore the active role that poultry farmers play in the control 396 

and dissemination of avian influenza, we may miss another opportunity to curtail an emerging 397 

disease outbreak at a stage when it is still controllable. 398 

 399 

Materials and Methods 400 

1. Data collection 401 

An observational longitudinal study was conducted in Ca Mau province in southern Vietnam 402 

(Delabouglise et al., 2019; Thanh et al., 2017) with the collaboration of the Ca Mau sub-403 

Department of Livestock Production and Animal Health (CM-LPAH). Fifty poultry farms from 404 

two rural communes were initially enrolled and three additional farms were subsequently added 405 

to the sample in order to replace three farmers who stopped their poultry farming activity. The 406 

two communes were chosen by CM-LPAH based on (1) their high levels of poultry ownership, 407 

(2) their history of HPAI outbreaks, and (3) likelihood of participation in the study (Thanh et al., 408 

2017). Study duration was 20 months, from June 2015 to January 2017. Monthly Vietnamese-409 

language questionnaires were used to collect information on (1) number of birds of each species 410 

and production type, (2) expected age of removal from the farm, (3) number of birds introduced, 411 

removed, and deceased in the last month, (4) clinical symptoms associated with death, (5) 412 

vaccines administered, (6) type of poultry housing used, and (7) disinfection activity. Each 413 

farm’s poultry were classified into “flocks”, defined as groups of birds of the same age, species, 414 

and production type (Delabouglise et al., 2019). Because individual poultry cannot be given 415 

participant ID numbers in a long-term follow-up study like this, a custom python script was 416 
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developed to transform cross-sectional monthly data into a longitudinal data set on poultry flocks 417 

(Nguyen-Van-Yen, 2017). 418 

 Recruitment was designed to have a mix of small (20-100 birds) and large (>100 birds) 419 

farms and a mix of farms that were ‘primarily chicken’ and ‘primarily duck’. As multiple poultry 420 

species were present on most farms, the chicken and duck farm descriptors were interpreted 421 

subjectively.  The enrollment aim was to include 80% small farms among chicken farms and 422 

50% small farms among ducks farms; there was approximately equal representation of chicken 423 

and ducks farms, but many could have been appropriately classified as having both chickens and 424 

ducks. As the residents in the two communes were already familiar with CM-LPAH through 425 

routine outreach and inspections, all invitees agreed to study participation. The farm sizes and 426 

poultry compositions were representative of small-scale poultry ownership in the Mekong delta 427 

regions, but other potential selection biases in the recruitment process could not be ascertained. 428 

No sample size calculation was performed for the behavioral analysis presented here, as we had 429 

no baseline estimates of sale patterns or disease prevention activities. The duration and size of 430 

the study was planned to be able to observe about 1000 poultry flocks (all species and production 431 

types included). 432 

2. Selection of observations 433 

For the "harvest model" and "AI vaccination model", we focused our analysis on broiler chicken 434 

flocks, since chicken was the predominant species in the study population, the overwhelming 435 

majority of chicken flocks were broilers, and their age-specific harvest was easier to predict than 436 

the harvest of layer-breeder hens. Additionally, only six layer-breeder chicken flocks were 437 

vaccinated against AI during the study period. Observations made in the two first months of the 438 

study were discarded since, during these two months, it was unknown whether farms had 439 

previously experienced outbreaks. 440 
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In the “disinfection” model, observations were farm-months. A total of 876 farm-months 441 

were available for inclusion in the model. We removed farm-month with missing data on 442 

disinfection performed by farmers (18 farm-months) so 858 farm-months were used to fit the 443 

disinfection model. In the “harvest” and “AI vaccination” models, observations were chicken 444 

broiler flock-months. We selected all chicken flock-months more than 10 days old at the time of 445 

data collection and classified by farmers as "broilers". A total of 1656 flock-months were 446 

available for inclusion in the model. In the “harvest model we removed flock-months which were 447 

less than 20 days old at the time of data collection. This 20-day threshold was chosen because 448 

some newborn flocks below this age were partly sold, not for meat consumption but for 449 

management on other farms. Also, we removed flock-months where no chickens were available 450 

for harvest because they had all died in the course of the month (25 flock-months). In total, 153 451 

flock-months were removed and 1503 flock-months were used to fit the harvest model. In the 452 

“AI vaccination” model, we removed flock-months of flocks which had already been vaccinated 453 

against avian influenza in a previous month, since vaccination is usually performed only once 454 

(among the 338 vaccinated flocks, only 8 were vaccinated a second time). We also removed 455 

flock-months whose housing conditions were not reported (4 flock-months). In total, 338 flock-456 

months were removed and 1318 flock-months were used to fit the AI vaccination model. 457 

3. Selection of covariates 458 

A disease outbreak was defined as the death of at least two birds of the same species – on the 459 

same farm, in the same month, with similar clinical symptoms – as this may indicate the 460 

presence of an infectious pathogen on the farm. Our definition of outbreaks with sudden deaths 461 

encompassed all instances of outbreaks where chicken deaths were noticed without observation 462 

of any symptoms beforehand. Since farmers, or their family, check on their poultry at least once 463 
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per day, it was assumed that these “sudden deaths” corresponded to a time period of less than 464 

one day between onset of symptoms and death. For both the harvest and AI vaccination models, 465 

we assumed the effect of outbreaks on the dependent variable may be affected by the size of the 466 

considered flock (n). Consequently, we included this interaction term in the analysis.  467 

The three dependent variables are likely affected by several farm-, flock-, and time-468 

related factors, justifying the inclusion of several control covariates in the multivariable models, 469 

summarized in Table 1. For the harvest model, the main control variable is, logically, (1) the 470 

body weight of chickens, as broiler chickens are conventionally harvested after a fattening period 471 

upon reaching a given weight. Since the chicken weight was not collected during the survey, we 472 

used the difference between the current flock age t and the anticipated age at maturity t* 473 

indicated by farmers in the questionnaire. Hereafter we use δt = t – t* for this difference. The 474 

shape of the function linking δt and harvest may depart from linearity and is affected by the 475 

chicken breed, which determines the growth performance. Since information on chicken breed 476 

was not collected we used the age at maturity t* and the logarithm of flock size (log(n)) as proxy 477 

indicators of the growing performance of the breed and built a proxy body weight variable as a 478 

multivariate spline function of δt, t* and n (Burgos, Hinrichs, Otte, Pfeiffer, & Roland-Holst, 479 

2008). 20% of flock-months had missing value for t*. Since there was little within-farm variation 480 

in t* (2 months of difference at most between two flocks of the same farm), missing values were 481 

replaced by the median t* in the other flocks of the corresponding farm. (2) The calendar time T 482 

was included as an additional smoothing spline term, since harvest may also be influenced by 483 

market prices which vary from one month to the other. Control variables included as standard 484 

linear terms were (1) the number of chickens kept for laying eggs or breeding - famers with a 485 

large breeder-layer activity may want to keep some broilers chickens in the farm for replacing 486 
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the breeding-laying stock, making them less likely to harvest broilers; (2) the number of broiler 487 

chickens simultaneously present in the same farm in other flocks; (3) the number of chicken 488 

flocks introduced in the same month; (4) the number of chicken flocks introduced in the previous 489 

month – farmers with a high number of broilers chickens or many recently introduced broiler 490 

flocks may want to sell their current flocks faster in order to limit feeding expenses and 491 

workload; (5) the vaccination status of the flock against AI; (6) the vaccination status of the flock 492 

against Newcastle Disease (ND) – farmers may keep their vaccinated flocks for a longer period 493 

as they are at lower risk of being affected by an infectious disease.  We assumed the effect of 494 

outbreaks on the dependent variable may be affected by the size of the considered flock (n). 495 

Consequently, we included an interaction term between outbreaks and log(n) in the analysis. 496 

For the AI primo-vaccination model, control variables included as smoothing splines 497 

were (1) the logarithm of flock age (log(t)) - vaccination may be preferentially done early in the 498 

flock life, (2) the flock size n, and (3) the calendar time T - vaccination activities may be 499 

intensified at particular times of the year. Control variables included as standard linear terms 500 

were (1) the type of housing (free-range or confinement in pens or indoor) which affects the 501 

convenience of vaccination; (2) the proportion of the flock harvested in the same month - 502 

farmers might be less willing to vaccinate flocks being harvested; and the size of populations of 503 

(3) broiler chickens, (4) layer-breeder chickens, (5) broiler ducks, (6) layer-breeder ducks, (7) 504 

broiler Muscovy ducks and (8) layer-breeder Muscovy ducks kept in other flocks - farmers’ 505 

perceived risk of AI and attitude towards vaccination may be influenced by the size of the 506 

poultry population at risk for AI and production type;. We assumed the effect of outbreaks on the 507 

dependent variable may be affected by the size of the considered flock (n). Consequently, we 508 

included an interaction term between outbreaks and log(n) in the analysis. 509 
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For the disinfection model, control variables included as smoothing splines were (1) the 510 

calendar time T - disinfection activities may be intensified at particular times of the year. Control 511 

variables included as standard linear terms were the size of populations of (1) broiler chickens, 512 

(2) layer-breeder chickens, (3) broiler ducks, (4) layer-breeder ducks, (5) broiler Muscovy ducks 513 

and (6) layer-breeder Muscovy ducks - the farmers’ attitude towards prevention may be 514 

influenced by the size of the poultry population at risk of disease. 515 

4. Multivariable modelling 516 

We assumed that the events of interest, namely harvest, AI vaccination, and disinfection were 517 

drawn from a binomial distribution and used a logistic function to link their probability to a 518 

function of the independent covariates. Flocks were either fully vaccinated for AI or not at all, so 519 

the AI vaccination variable for flock-months took only the value 0 or 1 and was, therefore, 520 

treated as binary. Partial flock harvest (the harvest of only a fraction of the chickens in a given 521 

flock) and partial farm disinfection (the disinfection of facilities for only a fraction of the poultry 522 

flocks present in the farm) occurred in a minority of observations. Therefore, the number of 523 

chickens harvested per flock-month and the number of poultry flocks disinfected per farm-month 524 

were treated as binomial random variables with a number of trials equal to the flock size (for 525 

harvest) and the number of flocks per farm (for disinfection). To ensure that the model was not 526 

conditioned on the size of flocks and number of flocks per farm, prior weights equal to the 527 

inverse of the flock size and the number of flocks in the farm (i.e. the number of trials) were used 528 

in the binomial harvest model and disinfection model, respectively. The extent of over- or under-529 

dispersion in the data was investigated by fitting a quasi-binomial model in parallel (Papke & 530 

Wooldridge, 1996). The resulting dispersion parameters were 0.76 (harvest model) and 0.77 531 
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(disinfection model), indicating moderate underdispersion, and that the estimates of our analyses 532 

are conservative. 533 

Some of the included effects are non-linear in nature, and we needed to account for the 534 

intra-farm autocorrelation of the dependent variables. We therefore used a mixed-effects general 535 

additive model (MGAM) implemented in R with the "mgcv" package (Wood, Pya, & Säfken, 536 

2017). This enabled us to model the combined effect of δt, t*, and flock size (n) on harvest time; 537 

the effect of t and n on AI vaccination; and the effect of calendar time (T) on all the dependent 538 

variables, as penalized thin plate regression splines (Wood, 2017). We specifically chose these 539 

variables because they are presumably the most important factors influencing the dependent 540 

variables and their effect could possibly be highly non-linear. All other covariates were included 541 

as parametric regression terms. We also modelled the individual effects of farms on the 542 

dependent variables as random effects.  543 

The complete models linking the logit Yij of probability of realization of an event and the 544 

set of explanatory variables, for a flock-month i (harvest, vaccination for AI) or a farm-month i 545 

(disinfection) in a farm j, are described by the following set of equations: 546 

Harvest model (flock-month level): 547 

𝑌𝑖𝑗 = 𝛼 +∑ 𝛽𝑂𝑁𝑆−𝑚𝑋𝑖𝑗
𝑂𝑁𝑆−𝑚

2
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2
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𝑘
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AI vaccination model (flock-month level): 549 
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Disinfection model (farm-month level): 551 
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The model parameters are α the model intercept; β the parametric coefficients; f a thin-plate 553 

spline function; X
k
 the general notation for variables with linear effects; X

O-m
, X

OS-m
, X

ONS-m
 and 554 

X
OD-m

, categorical variables denoting presence or absence of an outbreak in the same farm m 555 

months prior in any species (O), in chickens with sudden deaths (OS), in chickens with no 556 

sudden deaths (ONS), and in different species (OD) respectively; n the flock size; t the current 557 

age of the flock; t* the age at maturity of the flock anticipated by the farmer; δt the difference 558 

between current age and age at maturity; T the calendar time; φ the farm random effect; ε the 559 

residual error term. Some variables with a highly skewed distribution (Table 1) were 560 

transformed. Current age (t) and flock size (n) being strictly positive, they were log-transformed. 561 

Farm populations of broiler and layer-breeders of different species being null or positive, they 562 

were square-root transformed. Covariates included in the multivariate spline function for body 563 

weight (δt, t*, log(n)) were centered and standardized. Interaction terms between outbreak 564 

categorical variables and flock size log(nij) were added in the Harvest and AI vaccination models. 565 

Excessive multi-collinearity between covariates was assessed by estimating their variance 566 

inflated factor using the "usdm" R package (Naimi, Hamm, Groen, Skidmore, & Toxopeus, 567 

2014). We fitted the complete models using the whole set of covariates using restricted 568 

maximum likelihood estimation. We then used a backward-forward stepwise selection, based on 569 

AIC comparison, to eliminate the variables with non-significant effects (Hosmer & Lemeshow, 570 

2000).   571 

Arguably, one farmer is likely to maintain the same farm management from one month to 572 

the next despite changes in influential covariates. Therefore, for each model, we tested the 573 

presence of farm-level temporal autocorrelation by fitting two linear regression models on the 574 

deviance residuals, with a fixed constant effect and with and without intra-farm AR-1 time 575 
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autocorrelation structure and comparing the two model fits with a log-likelihood ratio test.  For 576 

the “disinfection” model, the fit was significantly improved by including the autocorrelation term 577 

while foe the two other models it was not. Therefore, we implemented the same model fitting 578 

protocol for the “disinfection” model with an additional intra-farm AR-1 time autocorrelation 579 

term on the dependent variable. We used the "gamm" routine of the "mgcv" package for this 580 

purpose (Wood, 2017). Since "gamm" models for binomial data are fitted with the penalized 581 

quasi-likelihood approach, the AIC metric is not suitable to compare such models. Instead, we 582 

implemented a stepwise removal of covariates whose t-test returned the highest probability of 583 

type 1 error (p-value) until all remaining covariates had a p-value lower than 20%.  584 

All analyses and graphical representations were performed with R version 3.6.1 (R core 585 

team, 2014). 586 
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Table 1. Summary statistics of variables 603 

Continuous variable Min 
1

st
 

quartile 
Median 

3
rd

  

quartile 
Max 

Broiler chicken flocks (n = 391)      

Number of flocks of broiler chickens 

per farm 
2 22 36 44 75 

Number of observation months per 

broiler flock 
1 3 4 5 12 

Broiler chicken flock-months (n = 

1656) 
     

Flock size (n) (number of birds) 2 10 16 35 580 

Anticipated age at maturity (t*) 

(weeks) 
9.5 13.1 17.4 19.6 43.6 

Age at the time of observation (t) 

(weeks) 
1.6 6.3 12.3 19 53.6 

Difference t- t* (δt) (week) -37.2 -11.1 -5.2 1 36.1 

Calendar time (T) 3 7 11 16 20 

Proportion harvested (%) 0 0 0 33.3 100 

Number of chicken flocks introduced 

in the same month onto the same farm 
0 0 0 1 4 

Number of chicken flocks introduced 

in the month prior onto the same farm 
0 0 0 1 2 

Number of broiler chickens present on 

the same farm in other flocks (bird) 
0 10 25 61 900 

Number of broiler ducks present on 

the same farm (bird) 
0 0 0 25 3630 

Number of broiler Muscovy ducks 

present on the same farm (bird) 
0 0 0 6 80 

Number of layer chickens present on 

the same farm (bird) 
0 2 6 13 350 

Number of layer ducks present on the 

same farm (bird) 
0 0 0 0 11 

Number of layer Muscovy ducks 

present on the same farm (bird) 
0 0 0 2 30 

Farm-months (n = 876)      
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Number of broiler chickens (bird) 0 8 28 64 912 

Number of broiler ducks (bird) 0 0 4 31 3630 

Number of broiler Muscovy ducks 

(bird) 
0 0 0 6 80 

Number of layer chickens farm (bird) 0 0 4 10 358 

Number of layer ducks (bird) 0 0 0 0 500 

Number of layer Muscovy ducks 

(bird) 
0 0 0 2 30 

Proportion flocks farmed with 

disinfection (%) 
0 0 100 100 100 

Qualitative variable Proportion of observations 

Broiler chicken flock-months  

(n = 1656) 
     

Occurrence of outbreak with no 

sudden death in chickens on the same 

farm in the current month 

18.8% 

Occurrence of outbreak with sudden 

death in chickens on the same farm in 

the current month 

1.6% 

Occurrence of outbreak in other 

species on the same farm in the 

current month 

7.2% 

Confinement indoors or in enclosure 32.8% 

Previously vaccinated for AI 20.2% 

Previously vaccinated for Newcastle 

Disease 
7.1% 

Farm-months (n = 876)      

Occurrence of outbreak in any species 23.4% 

 604 

  605 
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Table 2. Fitted parameters of the broiler chicken flock harvest and AI vaccination and 606 

farm disinfection models 607 

Model Variable   
Odds-ratio 

(with 95% CI) 
p-value 

Harvest 

Flock 

size ≤ 

16 

chickens 

ONS chickens* 

Same 

month 
2.06 (1.23 ; 3.45) < 10−2 

-1 month 2.06 (1.17 ; 3.62) 0.02 

-2 months 0.41 (0.19 ; 0.92) 0.03 

OS chickens** 

Same 

month 
9.34 (2.13 ; 40.94) 

< 10−2 

-1 month 0.18 (0.01 ; 4.95) 0.32 

-2 months 0.88 (0.15 ; 5.04) 0.89 

Number of broiler chickens in 

the farm (square root) 
1.05 (1 ; 1.11) 0.06 

combined effect of the difference 

between current age and age at 

maturity (𝛿𝑡) and the age at 

maturity (𝑡∗) (spline 

transformation) 

Figure 2 < 10−3 

Flock 

size > 

16 

chickens 

OS chickens** 

Same 

month 

1.02 (0.23 ; 4.46) 0.98 

-1 month 3.89 (0.82 ; 18.46) 0.09 

-2 months 3.1 (0.51 ; 18.77) 0.22 

Number of broiler chickens in 

the farm (square root) 
1.05 (1 ; 1.11) 0.05 

combined effect of the difference 

between current age and age at 

maturity (𝛿𝑡) and the age at 

maturity (𝑡∗) (spline 

transformation) 

Figure 2 < 10−3 

AI vaccination 

Outbreak chickens 

Same 

month 
0.75 (0.29 - 1.92) 0.55 

-1 month 0.78 (0.29 - 2.11) 0.63 

-2 months 0.27 (0.08 - 0.89) 0.04 

Outbreak others 
Same 

month 
4.62 (1.08 - 19.72) 0.04 
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Variables with p value <0.1 are highlighted in gray 608 

*ONS: Outbreak with no sudden deaths 609 

**OS: Outbreak with sudden deaths 610 

  611 

-1 month 0.51 (0.09 - 2.89) 0.45 

-2 months 0.42 (0.06 - 2.91) 0.39 

Number of broiler chickens in 

the farm (square root) 
0.92 (0.82 - 1.03) 0.2 

Number of broiler Muscovy 

ducks in the farm (square root) 
0.74 (0.57 - 0.96) 0.03 

Number of layer ducks in the 

farm (square root) 
2.95 (1.15 - 7.57) 0.03 

Number of layer Muscovy ducks 

in the farm (square root) 
1.9 (1.07 - 3.36) 0.03 

Confinement 24.6 (6.32 - 95.6) < 10−3 

Proportion harvested  0.01 (0 - 0.37) 0.02 

Spline transform of the logarithm 

of the flock size (𝑛)  
Figure 3.A < 10−3 

Spline transform of the logarithm 

of the flock age (𝑡) 
Figure 3.B < 10−3 

Spline transform of the calendar 

time (𝑇) 
Figure 3.C < 10−3 

Disinfection 

Number of broiler Muscovy 

ducks in the farm (square root) 
1.07 (1.01 - 1.13) 0.02 

Number of layer ducks in the 

farm (square root) 
1.25 (1.02 - 1.53) 0.04 

Number of layer chickens in the 

farm (square root) 
1.3 (1.12 - 1.51) < 10−3 

Spline transform of the calendar 

time (𝑇) 
Figure 3.D < 10−3 
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Table 3. The destination of harvested broiler chicken flocks with or without occurrence of 612 

outbreaks of disease-induced mortality in chickens of the same farm in the same month or 613 

one month prior (%) 614 

Destination No outbreak 

Outbreak with no 

sudden death (ONS) 

Outbreak with 

sudden death (OS) 

Sale to traders 28% 45% 45% 

Sale at market 5% 16% 0% 

Sale to other farmers 2% 3% 0% 

Sale unspecified 12% 4% 11% 

Slaughter at home 36% 20% 11% 

Gift 5% 8% 11% 

Feed farmed pythons 5% 1% 22% 

Other 7% 3% 0% 

 615 

  616 



34 
 

Figures 617 

 618 

Figure 1. History of chicken flocks present in four of the observed farms over the study 619 

period. Each colored line represents the period over which a single chicken flock was present on 620 

the farm, with the color code indicating the production type, which may vary during the course 621 

of the flock production period. The major events affecting the flocks are located with specific 622 

symbols on the corresponding lines and months. 623 

 624 

Figure 2. Graphical representation of the relationship between the difference δt (current 625 

flock age - flock age at maturity) and the proportion of broiler flocks harvested in the 626 

absence (NO, green) or presence of outbreaks with disease-induced mortality, either with 627 

sudden deaths (OS, red) or with no sudden deaths (ONS, orange).  Three different 628 

outbreak timings are considered: same month (left), one month prior (middle), and two 629 

months prior (right). Two different classes of flock size are considered: small, <17 chickens 630 

(top) and large, ≥17 chickens (bottom). Points are the observed proportions (estimated from at 631 

least two flock-months) and lines are the predictions of the fitted Harvest model, along with 90% 632 

confidence bands. Model predictions with outbreaks are only displayed when fitted outbreak 633 

effects have some statistical significance (p<0.10) (see Table 2). Blue histograms correspond to 634 

the number of observed flock-months in the different classes of δt (scaled to their maximum, 139 635 

in the top graphs and 157 in the bottom graphs). 636 

 637 

Figure 3. Graphical representation of predictions of the AI vaccination and disinfection 638 

models as functions of covariates whose effect is modeled with thin plate smooth splines. 639 



35 
 

For the AI vaccination model (green) these covariates are flock size (n) (A), age (t) (B) and 640 

calendar time (T) (C). For the disinfection model (orange), the covariate is calendar time (T) (D). 641 

Points are the observed proportions and lines are the predictions along with the 90% confidence 642 

band. In graphs C and D the proportions are displayed on the logit scale. Blue histograms 643 

correspond to the number of observed flock-months in the different classes of log (n) (A) and t 644 

(B) (scaled to their maximum, 402 in A and 345 in B). 645 

  646 
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Supplementary materials 647 

Supplementary File 1. Fitted parameters of the original broiler chicken harvest model 648 

Supplementary File 2. Fitted parameters of the broiler chicken harvest model with aggregated 649 

effects of outbreaks with and without sudden deaths 650 

Figure 2-figure supplement 1. Graphical representation of the relationship between the 651 

difference δt (current flock age - flock age at maturity) and the proportion of broiler flocks 652 

harvested in the absence (green color - NO) or presence of outbreaks with disease-induced 653 

mortality (dark orange color).  Three different outbreak timings are considered: same month 654 

(left), one month prior (middle), and two months prior (right). Two different classes of flock size 655 

are considered: small (top) and large (bottom). Points are the observed proportions (estimated 656 

from at least two flock-months) and lines are the predictions of the fitted Harvest model, along 657 

with 90% confidence bands. Model predictions with outbreaks are only displayed when fitted 658 

outbreak effects have some statistical significance (p<0.10) (see Supplementary File 2). Blue 659 

histograms correspond to the number of observed flock-months in the different classes of δt 660 

(scaled to their maximum, 139 in the top graphs and 157 in the bottom graphs).  661 
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