Agritrop
Home

COVID-19 and Media datasets: Period- and location-specific textual data mining

Roche Mathieu. 2020. COVID-19 and Media datasets: Period- and location-specific textual data mining. Data in Brief, 33:106356, 5 p.

Journal article ; Data paper ; Article de revue à comité de lecture Revue en libre accès total
[img]
Preview
Version Online first - Anglais
License Licence Creative Commons.
DIB_Roche_MOOD_2020.pdf

Télécharger (240kB) | Preview

Url - jeu de données : https://doi.org/10.18167/DVN1/ZUA8MF

Abstract : The vocabulary used in news on a disease such as COVID-19 changes according the period. This aspect is discussed on the basis of MEDISYS-sourced media datasets via two studies. The first focuses on terminology extraction and the second on period prediction according to the textual content using machine learning approaches.

Mots-clés Agrovoc : fouille de données, Analyse de données, Terminologie, moyen de communication de masse, temps, épidémie, COVID-19, Localisation

Mots-clés complémentaires : fouille de texte, Analyse spatiale

Mots-clés libres : Text Mining, Data mining, Terminology extraction, Classification, Epidemic intelligence

Classification Agris : U10 - Computer science, mathematics and statistics
L73 - Animal diseases
C30 - Documentation and information

Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes

Auteurs et affiliations

Source : Cirad-Agritrop (https://agritrop.cirad.fr/596745/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-06-12 ]