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Species mapping is an essential tool for conservation programmes as it provides clear pictures of the distribution of marine resources. However, in
fishery ecology, the amount of objective scientific information is limited and data may not always be directly comparable. Information about the dis-
tribution of marine species can be derived from two main sources: fishery-independent data (scientific surveys at sea) and fishery-dependent data
(collection and sampling by observers in commercial vessels). The aim of this paper is to compare whether these two different sources produce
similar, complementary, or different results. We compare them in the specific context of identifying the Essential Fish Habitats of three elasmobranch
species (S. canicula, G. melastomus, and E. spinax). Similarity and prediction statistics are used to compare the two different spatial patterns obtained by
applying the same Bayesian spatio-temporal modelling approach in the two sources. Results showed that the spatial patterns obtained are similar,
although differences are present. In particular, models based on fishery-dependent data are better able to identify temporal relationships between
the probability of presence of the species and seasonal environmental variables. In contrast, fishery-independent data better discriminate spatial loca-
tions where a species is present or absent. Besides the spatial and temporal differences of the two datasets, the consistency of habitat results highlights
the inclusion in each dataset of most of the environmental envelope of each species, both in time and space. Consequently, sampling data should be
adapted to each species to reasonably cover their environmental envelope, and a combination of datasets will likely provide a better habitat estimation
than using each dataset independently. These findings can be useful in helping fishery managers improve definition of survey design and analyses.
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Introduction
There is an increasing demand from marine ecologists for more
effective protection of essential fish habitats (EFHs) to help restor-
ation of fish stocks and sustainable exploitation of marine fish (e.g.
Schmitten, 1999; Mumby et al., 2004). EFHs have been defined as
the habitats necessary for a species to spawn, breed, feed, and grow
to maturity (US Sustainable Fisheries Act, 1996, Public Law 104–
297), particularly for vulnerable species and fish size.

Mapping is an essential tool with which to identify EFHs, as it
provides a clear picture of the distribution and extent of marine

resources (Pennino et al., 2014). However, in fishery ecology,
while the importance of spatial management of marine resources
is widely recognized, the amount of objective scientific information
is limited and the data may not always be directly comparable due to
habitat variations between sampling periods.

Information about the distribution of marine species can essential-
ly be derived from two main sources, namely, fishery-independent
data (scientific surveys at sea) and fishery-dependent data (collec-
tion and sampling by observers in commercial vessels). These two
sources may provide different types of information with additional
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details, and should be carefully selected according to the nature of
the study and the objectives pursued.

Fishery-independent surveys mainly rely on expensive research
programmes at sea carried out over relatively short periods of
time. Survey data are considered to be of higher quality because sam-
pling and collection are scientifically designed and standardized.
In addition, both sampling statistics and the biological information
on target species are taken into consideration during survey design
(Board, 2000). However, they generally have a limited coverage in
space and time (in terms of seasonality as well as the number of
years of available data), which could lead to biased and imprecise
estimations (Hilborn and Walters, 2013). According to Hilborn
and Walters (2013), there are two main deficiencies in fishery-
independent surveys: timing in relation to the seasonal cycle and
location of the target species, and the fact that only a limited
amount of data can be collected. Both deficiencies lead to unrepre-
sentative sampling.

Fishery-dependent surveys can provide a long time-series, wide
spatial coverage all year-round, and information on a large variety
of target species, gear types, landing sites, and distribution channels
(Lunn and Dearden, 2006). Data of this kind sometimes lack par-
ticular details such as the location of fishing grounds and species
identity (catches are mostly identified to a higher taxonomic level),
and also to be taken into consideration are issues of bias due to con-
straints imposed by management and the deliberate misreporting of
catches. Some of the disadvantages of fishery-dependent surveys can
be overcome by using on-board observers but inevitably only a small
fraction of fishing activity can be covered in this way. Another issue
arises because the sampled fishing locations are often repeated and
samples are collected using preferential sampling because fishing
fleets are commercially driven, unlike the systematic random selec-
tion of a scientific survey.

Within this context, our study makes use of two different sources
of fishery data to test similar, complementary, or different spatial
patterns of species EFHs in the two different datasets. We considered
information gathered by on-board observers and data from the
MEDIterranean Trawl Survey (MEDITS) of three of the main
elasmobranch species (Scyliorhinus canicula, Galeus melastomus,
and Etmopterus spinax) in the western Mediterranean Sea. Bayesian
hierarchical spatio-temporal models were then used to identify
EFHs and develop probabilistic spatial scenarios of the three species.
Finally, similarity and prediction statistics were used to compare the
resulting predictive spatial structures obtained with the two different
fishery data sources.

This approach can help fishery managers to better define survey
designs and analyses. The approach applied in this study also
improves the understanding of species distribution and demon-
strates the spatial needs for the management of any biologically im-
portant vulnerable species under threat.

Additionally, this research is useful for any study with different
data sources and sampling schemes. Combining the different data
sources into a robust and consistent statistical framework will
provide a better insight into the study case, in this paper the EFH
of three elasmobranch species in the western Mediterranean Sea.

Material and methods
The selected species
Because of their high level of vulnerability, cartilaginous fish are
considered a priority in fishery research and management. In
1999, the FAO developed an International Plan of Action for the

Conservation and Management of Sharks (IPOA-Shark); in 2003
the United Nations Environment Programme (UNEP) launched
the Mediterranean action plan for cartilaginous fish, and in
February 2009, the European Commission adopted the first EU
Action Plan for the Conservation and Management of Sharks. The
aim of the European Commission plan is to ensure that effective
steps are taken to help rebuild threatened stocks, and to set down
guidelines for the sustainable management of the fisheries con-
cerned. The plan also includes measures to improve scientific
knowledge about their stocks and fisheries (Mendoza et al., 2014).

For these reasons, for this study we selected the three elasmo-
branch species with the highest catches, and that are a significant re-
presentation of the elasmobranch community in the studied area
(Pennino et al., 2013), namely, Scyliorhinus canicula, Galeus mela-
stomus, and Etmopterus spinax.

Study area
The study area was Southeast Spain (western Mediterranean Sea),
extending from the area of Cartagena and the Gulf of Alicante,
between 37815.6′ and 39818.6′N, and 1839.0′W and 1852.2′E
(Figure 1).

Fishery-dependent data
Fishery-dependent data were extracted from the Spanish
Oceanographic Institute (Instituto Español de Oceanografı́a, IEO)
observers’ database, from a sampling fleet of 27 trawler boats, for
the period 2006–2011. This sampling usually involves two to three
expert observers, comprising a total of 400 hauls for the 6-year
study period. From this database, we used the geographical location
(latitude and longitude) and occurrence of the elasmobranch
species for each sampled haul. An average point between the starting
and finishing point of each haul was used as the geographical location.

The entire bottom trawl fleet operating in the area of study com-
prises 169 vessels landing an average of 8000 t per year. Bottom
trawling of the seabed usually takes place on the shelf, harvesting a
multi-specific catch with European hake (Merluccius merluccius)
as the main target species. Because elasmobranchs are not target
species of this commercial fishery, their occurrences are unbiased
indicators of their presence/absence patterns. This also means
that the selection of the sampling locations does not depend on
the values of the spatial variable and so they are stochastically inde-
pendent of the field process. Indeed, in studies aiming to model the
distribution of the target species, the sampling process that deter-
mines the data locations and the species observations is not inde-
pendent (Diggle et al., 2010). Data from commercial fisheries are
a clear example of preferential sampling since fishing fleets are
likely to fish in areas where they are also likely to find target
species. In all these cases, a preferential-sampling model is required
to model the species distribution.

Fishery-independent data
Fishery-independent data were collected during the MEDITS
(EU-funded MEDIterranean Trawl Survey) carried out from spring
to early summer (April to June) across the whole Mediterranean
Sea since 2000 (Bertrand et al., 2002). The MEDITS survey uses a
stratified sampling design based on depth (5 bathymetric strata:
10–50, 51–100, 101–200, 201–500, and 501–700 m). Sampling sta-
tions were placed randomly within each stratum at the beginning of
the project. In all subsequent years, sampling was performed in
similar locations. Specifically, 99 trawl hauls were extracted from
the MEDITS database for the entire time series.
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Data of the occurrence of the elasmobranch species were
extracted from the same time series as the fishery-dependent data
(2006–2011) and spatial area (Gulf of Alicante) (Figure 1).

Environmental data
We considered three oceanographic variables: sea surface tempera-
ture (SST), chlorophyll a concentration (Chl a), and salinity, and
four bathymetric features: bathymetry, type of substratum, slope,
and distance to shore. These variables were selected as they are
known to impact on the habitat selection of elasmobranch species
across the Mediterranean Sea and in particular in the studied area
(Pennino et al., 2013; Lauria et al., 2015).

The oceanographic satellite data (SST, Chl a, and salinity) were
extracted as the monthly mean from the aqua-MODIS sensor
(http://oceandata.sci.gsfc.nasa.gov/).

Bathymetry and type of substratum data were obtained from the
IEO geoportal, accessible from the website of the Spanish Institute of
Oceanography (www.ieo.es). The bathymetric map of the study area
was interpolated using GRASS GIS (www.grass.fbk.eu) to obtain the
depth value at any precise location. Specifically, first we rasterized
contours with a resolution of 500 m then extracted specific values
using the function r.surf.contour (www.grass.osgeo.org/wiki/
Contourlines_to_DEM).

The slope and distance to shore information were derived from
the bathymetric map using Slope Spatial Analyst and the Near
(World Equidistant Cylindrical coordinate system) tools of
ArcGis 9.2 (ESRI Inc., 2008; Redlands, CA, USA).

The original type of substratum polygon shapefile used in the
model includes a classification of 10 levels of sediment granulometry
categories. These categories covered mixed substrata that are
mid-way between gravel and rocky seabeds (i.e. coarse gravel);
they were aggregated in one group labelled hard substrata. Finally,
to reduce variability in the analyses, and as we do not have observa-
tions for all 10 categories, we combined them into three groups:
sand, mud, and hard substrata (Figure 2).

All environmental data were aggregated at a resolution of
0.058 × 0.058 (�5500 m) using the “raster” package (Hijmans
2014) in R (R Development Core Team, 2015).

Collinearity between explanatory environmental variables was
tested using a draftsman’s plot and the Pearson correlation index.
The variables were not highly correlated (r , 0.5), so all variables
were considered in further analyses.

Modelling species occurrence
Species distribution models (SDMs) allow researchers to predict
quantities of interest at unsampled locations based on measured

Figure 1. Map of the study area with sampling locations. In grey dots, fishery-dependent data and in black dots fishery-independent data.
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values at nearby sampled locations, within the range of sampled
environments, and within the same general time frame as the
sampled environmental variables (Elith and Leathwick, 2009).
Many approaches have been proposed to predict the spatial distri-
bution of species; however, these approaches do not always
provide accurate results if they are run without taking into
account the large amount of variability in the measurements of re-
sponse and environmental variables. Our approach to solve this
issue is to use the Bayesian statistical methodology.

Bayesian methods have several advantages over traditional ones
and are increasingly being used in fishery research (i.e. Punt and
Hilborn, 1997; Millar and Meyer, 2000; Colloca et al., 2009;
Vermard et al., 2010; Paradinas et al., 2015). They provide a more
realistic and accurate estimation of uncertainty because they can
consider both the observed data and the model parameters as
random variables (Banerjee et al., 2004).

But the main reason for using the Bayesian approach is the way
it deals with this kind of data, namely, geostatistical or point-
referenced data. Bayesian modelling provides a way to incorporate
the spatial component to model the residual spatial autocorrelation
(Gelfand et al., 2006). Moreover, it also allows us to deal with typical
extensions of SDM models in which estimation and prediction can

be computationally difficult. Note that these models can also be con-
sidered to be a spatial extension of generalized linear models because
the modelling process describes the variability in the response vari-
able as a function of the explanatory variables with the addition of a
stochastic spatial effect. Finally, hierarchical Bayesian structures can
also be used to identify additional covariates that can improve the
model fit or the existence of area effects that can affect species occur-
rence (Paradinas et al., 2015).

We used a hierarchical Bayesian spatio-temporal approach to
estimate the probability of occurrence of the three elasmobranch
species (S. canicula, G. melastomus, and E. spinax). The response
variable Zij is a binary variable that represents the presence (1) or
absence (0) of the species in each fishing location identified in the
fishing landings. Consequently, the conditional distribution of the
data is Zij � Ber(pij), where pij is the probability of occurrence at
location i (i ¼ 1, . . . n) and year j ( j ¼ 1, . . . 6), assuming that obser-
vations are conditionally independent givenpij. These probabilities
were modelled using the following hierarchical model:

Zij � Ber(pij),

logit(pij) = Xijb+ Yj + Wi,

Figure 2. Map of the seabed type of the study area with three different categories: (a) hard substratum, (b) muddy substratum, and (c) sandy
substratum.
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whereb is the vector of regression parameters, Xij is the matrix of the
explanatory covariates at location i and year j, Yj is the component of
the temporal random effect at year j and Wi represents the spatially
structured random effect at location i. The latter effect represents
unaccounted local environmental factors which introduce a positive
spatial autocorrelation in the latent probabilities of occurrence.

A vague zero-mean Gaussian prior distribution with a variance of
100 was used forall of the parameters involved in the fixed effects, while
for the spatial effect a zero-mean prior Gaussian distribution with a
Matérn covariance structure was assumed (see Muñoz et al., 2013
for more detailed information about how to express the prior knowl-
edge on spatial effects). Finally, avague Gamma prior distributionwith
shape and scale parameters of 1 and 5e205, respectively, was assumed
on the precision parameter ly of the temporal component.

Estimation and prediction were performed using the Integrated
Nested Laplace Approximation methodology (Rue et al., 2009) and
the package (www.r-inla.org) implemented in R software.

Variables were selected beginning with all possible interac-
tion terms based on the deviance information criterion (DIC)
(Spiegelhalter et al., 2002) and on the cross-validated logarithmic
score (LCPO) measure (Roos and Held, 2011). Specifically, DIC
was used as a measure of goodness of fit, while LCPO was used as
a measure of the predictive quality of the models. DIC and LCPO
are inversely related to the compromise between fit, parsimony,
and predictive quality.

Model validation
Model validation was performed through 10 times cross validation
based on randomly selected training and test datasets created by a
random selection of 80 and 20% of each dataset, respectively
(Fielding and Bell, 1997), using the “PresenceAbsence” package in
R (Freeman and Moisen, 2008). The model performance was
assessed using the area under the receiver-operating characteristic
curve (AUC) (Fielding and Bell, 1997) and the true skill statistic
(TSS) (Allouche et al., 2006).

AUC has been widely used in the species distribution modelling
literature (Elith et al., 2006). It measures the model’s ability to dis-
criminate between sites in which the species is present and those in
which it is absent. The values for AUC range from 0 to 1, where 0.5
indicates a performance no better than random, values between 0.7
and 0.9 are useful to indicate results of presence/absence different
from random, and values .0.9 are excellent to ensure that the
results are different from random.

TSS corrects AUC for the dependence of prevalence on specificity
(i.e. ability to correctly predict absences) and sensitivity (i.e. ability
to correctly predict presence) (Allouche et al., 2006).

Comparison of model predictions
The spatial structure of predictions derived from the two different
data sources were compared using the similarity statistics Schoener’s
and Warren’s described by Warren et al. (2008). These statistics
range from 0, which indicates no overlap between areas, to 1,
which means that the distributions are identical. Both statistics
assume probability distributions defined over geographic space, in
which pXi (or pYi) denotes the probability assigned by the SDM
for species X (or Y) to cell i. Specifically, Schoener’s statistic for
niche overlap is

D( pX, pY ) = 1 − 1

2

∑

i

|pXi − pYi|

while Warren’s statistic is

I( pX, pY ) = 1 − 1

2
H2( pX − pY )

which is based on the Hellinger distance, defined as follows:

H( pX, pY ) =
√∑

i

(√pXi −
√

pYi)2
.

These analyses were carried out using the nicheOverlap function of
the dismo package (Hijmans et al., 2013) in R software.

Results
From fishery-dependent data
A total of 400 trawl fishery operations were observed over a period of
6 years. The presence of S. canicula was recorded in 204 of these 400
hauls, while the frequency was 135 for G. melastomus and 54 for
E. spinax. The main predictors of elasmobranch habitats in the
western Mediterranean Sea were depth, slope, and type of substra-
tum and a stochastic spatial component that accounted for the
residual spatial autocorrelation (Table 1).

Specifically, results showed a positive relationship between
bathymetry, slope, and the probability of occurrence of the three
species (Table 1). The SST and Chl a concentration showed a nega-
tive relationship with the species occurrence but affected only the
distribution of S. canicula. The final models with the best fits of
G. melastomus and E. spinax did not include the SST and Chl a con-
centration as relevant variables.

No important yearly differences were found in this area for the
occurrence of these species. All models with the temporal effect
show higher DICs and LCPO than those without this effect.

Finally, distance to shore and salinity were not selected as relevant
in any final model.

Figure 3 shows the median posterior probability of occurrence of
the three species. In particular, S. canicula shows a greater probabil-
ity of occurrence over high slope gradient, in deeper waters where
Chl a and SST values are higher, and where there are sandy
seabeds (Figure 3a).

For G. melastomus and E. spinax the probability of occurrence is
higher in habitats associated with muddy substrata and sandy beds,
mainly from deeper waters and high slope gradient (Figure 3b and c).

From fishery-independent data
From 2006 to 2011, 99 trawl hauls were sampled across the Gulf of
Alicante during the MEDITS surveys. The presence of S. canicula
was recorded in 75 of these hauls, G. melastomus in 21, and E.
spinax in 11.

The main predictors of elasmobranch species were similar to the
ones found with the fishery-dependent data, namely depth, slope,
and type of substratum, plus a stochastic spatial component (Table 2).

Salinity, SST, Chl a concentration and distance to shore were not
relevant to the occurrence of the studied species. In addition, as with
the fishery-dependent data, no yearly differences were found in this
area.

Results showed a positive relationship between bathymetry, slope,
and the probability of occurrence of the three species (Table 2).

The type of substrata has a different influence on each elasmo-
branch species. The S. canicula species showed a higher probability
of occurrence in sandy seabeds, while G. melastomus and E. spinax
are more likely to be found in muddy substrata.
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Table 1. Numerical summary of the posterior distributions of the fixed effects for the best model of the three studied species using the
fishery-dependet data.

Species Predictors Mean s.d. Q0.025 Q0.5 Q0.975

S. canicula Intercept 0.23 2.14 24.23 0.73 4.32
Log Depth 1.06 0.63 20.32 1.04 2.05
Seabed(Mud) 20.32 0.42 21.16 20.33 0.51
Seabed(Hard) 21.91 0.95 23.87 21.88 20.12
Slope 0.21 0.11 20.51 0.22 0.74
Chlorophyll a 213.96 7.83 229.96 213.82 1.24
SST 20.52 0.27 20.22 20.51 1.05

G. melastomus Intercept 21.72 2.91 7.53 21.89 4.94
Log Depth 0.33 0.27 0.25 0.35 0.85
Seabed(Mud) 0.41 0.50 0.40 0.42 1.29
Seabed(Hard) 20.72 1.28 23.36 20.68 1.69
Slope 0.19 0.02 20.06 0.20 0.33

E. spinax Intercept 22.35 12.76 232.34 22.72 28.65
Log Depth 5.45 3.63 2.70 5.35 10.39
Seabed(Mud) 0.08 0.85 21.61 0.09 1.73
Seabed(Hard) 20.73 1.28 23.36 20.68 1.70
Slope 0.09 0.03 20.06 0.08 0.10

This summary contains the mean, the standard deviation (s.d.), the median (Q0.5), and a 95% credible interval, which is a central interval containing the 95% of
the probability under the posterior distribution.

Figure 3. Median of the posterior probability of the presence of the studied elasmobranchs using fishery-dependent data: S. canicula (a),
G. melastomus (b), and E. spinax (c). Sampling locations for the presence (in grey) and the absence (in black) were plotted.

Table 2. Numerical summary of the posterior distributions of the fixed effects for the best model of the three studied species using the
fishery-independent data.

Species Predictors Mean s.d. Q0.025 Q0.5 Q0.975

S. canicula Intercept 0.55 0.65 0.12 0.47 1.13
Log Depth 1.26 0.53 0.34 1.12 2.25
Seabed(Mud) 20.22 0.02 21.54 20.12 20.01
Seabed(Hard) 21.34 0.58 22.97 21.14 20.10
Slope 0.34 0.05 0.03 0.15 0.98

G. melastomus Intercept 1.23 0.98 0.78 1.12 1.89
Log Depth 1.21 0.32 0.34 1.10 1.67
Seabed(Mud) 0.87 0.50 0.23 0.76 1.15
Seabed(Hard) 20.97 0.57 22.99 20.87 20.12
Slope 0.67 0.02 0.24 0.59 1.01

E. spinax Intercept 0.96 0.67 0.21 0.88 1.87
Log Depth 4.67 0.78 1.89 4.46 6.78
Seabed(Mud) 0.58 0.01 0.12 0.42 1.02
Seabed(Hard) 20.56 0.97 22.98 20.48 20.02
Slope 0.87 0.04 0.04 0.76 0.98

This summary contains the mean, the standard deviation (s.d.), the median (Q0.5), and a 95% credible interval, which is a central interval containing the 95% of
the probability under the posterior distribution.
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The posterior median probability of occurrence of the species is
shown in Figure 4. Specifically, G. melastomus and E. spinax
(Figure 4a and c) show a more marked probability of occurrence
in deeper waters than S. canicula (Figure 3a).

Model prediction performance statistics
With both fishery-dependent and -independent data, all models
achieved AUC values .0.80, which indicates excellent discrimin-
ation between locations where a species is present and those where
it is absent (Table 3). Although the results are remarkably similar
between the two data sources, AUC values for G. melastomus and
E. spinax are slightly higher using the fishery-independent dataset.
In contrast, fishery-dependent data for S. canicula showed higher
AUC values (0.88 vs 0.85).

For all the models and both datasets, TSS values ranged between
0.60 and 0.80, also reflecting a good ability of the models to make
true negative and true positive predictions (Table 3). Higher values
of TSS are achieved with fishery-dependent data for both S. cani-
cula and G. melastomus, while for E. spinax the opposite occurs.

Overall, the largest recorded difference is for the TSS values of the
G. melastomus species with a difference of 0.26 between the two
datasets.

Model comparison statistics
Overall, similarity statistics highlight a good level of overlapping of
predictions from the two datasets. Indeed, for the three species
Schoener’s D ranged approximately from 0.7 to 0.9 while Warren’s
I was always .0.9.

Specifically, S. canicula was the species for which predictions
from the two statistics were most similar (I ¼ 0.98; D ¼ 0.87). In
contrast, the G. melastomus species had the lowest statistical
values (I ¼ 0.91; D ¼ 0.72). Finally, the I value for E. spinax was
0.93, and for D, 0.74.

Discussion
Information on the mesoscale distribution patterns of species is
lacking in fisheries research. This is particularly important to
know the spatial and temporal mesoscale resolution for many com-
mercial species and ecosystems (Mackinson, 2001). Hence, studies
are required to develop spatially explicit predictive models needed
for fishery management and to allow us to respond to change in
fishery ecosystems (Mackinson, 2001). Despite recent awareness
of the profound importance of properly identifying EFHs to more
effective spatial fisheries management, much of our current

understanding of species distribution and behaviour remains quali-
tative or highly uncertain (Moreno et al., 2014).

Comparing and combining observations from different fishery
data sources could provide a useful tool with which to bridge
some gaps in our knowledge. Indeed, although the comparison of
data sources is common in the context of stock assessment
models, it has never been done for EFHs. In this study, we try to
fill this gap by applying Bayesian spatial-temporal models to identify
the EFHs of three elasmobranch species using data from two differ-
ent fishery sources (fishery-independent and fishery-dependent
surveys). We then compared the results using similarity and predic-
tion statistics.

First, it should be noted that there are differences in the sampling
design between these two sources that could influence the results. In
particular, there is a considerable difference in sampling size
between the two datasets: for the same period, fishery-dependent
data have 400 observations compared with the 99 of the fishery-
independent data. In addition, the observations from the two data-
bases do not cover the same area. While fishery-independent data
cover the whole study area, the fishery-dependent data cover only
the southern part of the study area. Finally, the temporal coverage
is not the same: fishery-dependent data are collected yearly while
fishery-independent data are sampled only seasonally.

Despite these differences in sampling design, results show
very similar spatial patterns between the two sources, although
some discrepancies are present. In particular, fishery-dependent
data revealed relationships with environmental variables,
namely monthly SST and Chl a, that are not identified by
fishery-independent data. This could be because the latter are
always collected in a restricted period as we mentioned above,
and thus can only capture a narrow picture of the distribution
of the species. In support of this theory, fishery-independent

Figure 4. Median of the posterior probability of the presence of the studied elasmobranchs using fishery-independent data: S. canicula (a),
G. melastomus (b), and E. spinax (c).

Table 3. Model prediction performance statistics for three species
studied.

Species AUCFD TSSFD AUCFI TSSFI

S. canicula 0.88 0.68 0.85 0.66
G. melastomus 0.84 0.85 0.89 0.59
E. spinax 0.90 0.76 0.95 0.89

AUC, area under the receiver-operated characteristic curve; TSS, true skill
statistic. AUCFD and TSSFD indicate the measures obtained using the
fishery-dependent dataset, while AUCFI and TSSFI with the
fishery-independent one.
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data are able to identify the relationship with bathymetric features
and the occurrence of the species, possibly because the bathymet-
ric features change less than the oceanographic variables. This
could be useful information for researchers about which kind of
dataset to use for studies that focus more on understanding the
relationships between species and oceanographic variables.

However, although the observations of the MEDITS survey were
less than one-quarter of those in the fishery-dependent dataset, the
Bayesian spatial-temporal models yielded similar predictions. This
could also be influenced by the Bayesian approach which allows
researchers to achieve accurate estimations and predictions even
with smaller observed datasets (Martı́nez-Abraı́n et al., 2014).

From a biological point of view results are consistent with studies
that explore the elasmobranchs distribution in similar and other
habitats (Damalas et al., 2010; Pennino et al., 2013; Lauria et al.
2015), especially for bathymetric features.

Fishery-dependent data show greater ability to correctly predict
temporal absences and presences than fishery-independent data. In
contrast, fishery-independent data better discriminate locations
where a species is present or absent, as shown by the AUC values.
This could be an effect of the fact that a larger fishery-dependent
dataset (400 observations vs 99 in fishery-independent data)
could improve the overall predictive power of the model, while
the more homogeneous sample design of MEDITS surveys could
result in better assessments of the spatial distribution of the species.

It is worth stressing that we selected non-target species of com-
mercial fishing, so sampled locations are an unbiased indicator of
species occurrence as they are independently selected. In the oppos-
ite case where target species are selected, the sampling processes that
determine the data locations and the species observations are sto-
chastically dependent. Fishing vessels obviously go to areas where
they are likely to find target species. To identify the EFHs of target
species, fishery-independent data are the best option. In cases
where only fishery-dependent data are available, a preferential-
sampling model must be applied (Diggle et al., 2010).

Maps of the predicted probability of occurrence for the three
species show similar spatial patterns and this is also confirmed by
similarity statistics. The similarity in species distributions between
fishery-dependent data and fishery-independent data suggest that,
overall, the commercial fleet sampled the study area in a similar
fashion as did research vessels. As Fox and Starr (1996) point out,
it therefore follows that fishery-dependent data can be used to evalu-
ate or augment research data, and they may become the only cost-
effective way to increase the amount of information available in spe-
cific areas.

In conclusion, these findings suggest that the two sources could
have additional information and complementary results that can be
jointly used for fishery management purposes, to better define the
survey design and analyses as well to increase our knowledge
about vulnerable species. For example, the restricted time coverage
of fishery-independent data could be integrated using yearly fishery-
dependent data, and the spatial uncertainty of fishery-dependent
locations may be corrected using fishery-independent data.

Besides the spatial and temporal differences of the two datasets,
the consistency of habitat results highlights the inclusion in each
dataset of most of the environmental envelope of the species, both
in time and space. Consequently, sampling data should be
adapted to each species to reasonably cover their environmental en-
velope, and a combination of datasets will likely provide a better
habitat estimation than using each dataset independently. The inte-
gration of multiple sources of information into science and

management is a potentially invaluable tool that should not be over-
looked. This research provides good results for data analysis of two
different sources with a different sampling design. Sampling design
usually restricts the statistical method to be used. Indeed, further
analyses are required to develop a single model that can take into
account all the variability that can arise from combining different
sources of data collected with different sampling techniques and
temporal and spatial coverage. The Bayesian approach may
provide the answer to combine datasets from different sampling
schemes and at the same time, maintain a sound statistical frame-
work, which is especially useful in ecological studies.
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