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Preface

This volume contains all the papers of the 26th International Workshop on
Statistical Modelling. Many things have changed since in 1986 an enthusi-
astic group of statisticians interested in statistical modelling started these
series of workshops within a friendly and supportive academic atmosphere.
New technologies, more attendants, but always with the same initial spirit:
to promote and develop the use of statistical modelling in research and
applications.

We are glad to present you these Proceedings, which clearly reflect the
aliveness of that spirit. One the one hand, the five invited papers show
new advances in theoretical research but always keeping an eye in their
applied interest. One the other hand, the great amount of contributions
(a total of 140) and their quality demonstrate that the workshop is in
good shape. Authors should receive most of the credit for the quality of
these Proceedings. Nevertheless, all submissions were carefully reviewed by
the members of the Scientific Committee. Their detailed work has been
reflected in a big improvement of the preliminary versions jointly with the
final selection of contributions.

This 26th edition of the IWSM will be held in Valencia (Spain) in an
informal environment (ADEIT- FUNDACIÓ UNIVERSITAT-EMPRESA
of the Universitat de València) to encourage discussion and exchange of
ideas which could result in future research. Valencia has a great tradition
in Statistics and in particular in Bayesian Statistics. This why we are so
happy to see that this way of thinking and doing statistics is quite present
in these Proceedings reflecting its important role in the Society. We will
also like to comment, that many of the contributions in these Proceedings
are due to students, which clearly have the future in their hands.

Finally, we wish to acknowledge Carmen Armero, the chair of the local
Committee for putting together all the pieces needed in the process of
organising this event. Without her interest and passion it would have been
impossible.

So welcome to Valencia. Enjoy the city and surroundings and have a great
conference.

David Conesa, Anabel Forte, Antonio López-Qúılez, Facundo Muñoz
Valencia, June 2011



Contents

Part 1. Invited papers

Berger et al. Risk Assessment for Pyroclastic Flows: Combining
Deterministic and Statistical Modeling . . . . . . . . . . . . . . . . . . . . . . . 3

Firth Quasi-variances and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Oller and Gómez Testing against ordered alternatives with
interval-censored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Palarea-Albaladejo and Mart́ın-Fernández Examining
distance-based grouping on the simplex sample space: the
fuzzy clustering case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
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Risk Assessment for Pyroclastic Flows:
Combining Deterministic and Statistical
Modeling
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Abstract: Risk assessment of volcanic pyroclastic flows is considered, using a
combination of computer modeling, statistical modeling, and extreme-event prob-
ability analysis. A computer model of pyroclastic flow is used to allow extrap-
olation to not-yet-observed pyroclastic flows. Statistical modeling is needed to
determine the initial input distributions of the computer model. Direct simula-
tion of rare events using the computer model would be prohibitively expensive.
Thus we carry out the analysis using a combination of emulators of the computer
model and rare event simulation.

Keywords: Bayesian analysis; Catastrophic events; Emulators; Extreme events;
Inverse Problems.

1 Introduction

The talk will discuss the assessment of risk for volcanic pyroclastic flows, as
introduced in Bayarri et. al. (2009). Important modifications of the method-
ology will also be discussed, although the formal implementations of these
modifications will not be available until the talk at the conference.
Let {Ei} denote individual volcanic pyroclastic flows. We wish to assess the
probability that at least one catastrophic event C will occur in the next
T years – for instance, the probability that a pyroclastic flow event in the
next T years will significantly damage a town.
A modern approach to the problem begins with the development of a deter-
ministic computer model model of pyroclastic flows. The computer model
can be run under conditions that have not yet been observed, in order to
do risk assessment. The computer model considered here is TITAN2D, de-
veloped for modeling the process of volcanic flow. TITAN2D can predict
the maximum thickness of a pyroclastic flow at any location (such as the
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center of a town) – Patra et.al. (2005). If the flow thickness exceeds one
meter, we will call that flow a catastrophic event.
TITAN2D requires inputs to run. The most crucial are the volumes of vol-
canic flow that can be expected, the initial directions in which the flows
proceed down the mountain, and the friction of the flow with the mountain
surface. In determining the distributions of these inputs, having available
data concerning pyroclastic flows is crucial, as is the development of sta-
tistical models of the data.
Computing the probability of rare catastrophic events is also a challenge.
Direct simulation is generally impossible, because of the time needed to
run the computer model. This challenge is addressed by using emulators
(approximations) for the computer model to identify the threshold inputs
that define the catastrophic event; development of such emulators is an-
other modeling challenge. It is then possible to compute the desired risk
probabilities.
The methodology is illustrated on the Soufrière Hills Volcano (to be abbre-
viated SHV ) on the island of Montserrat, which has been erupting since
1995 and has generated hundreds of pyroclastic flows with runouts exceed-
ing 2 km. On over 50 occasions, these pyroclastic flows consisted of volumes
of material exceeding 106m3.

2 Risk Assessment and Emulation

The inputs to the computer model will be denoted x ∈ X and the computer
model prediction of the characteristic of interest by yM (x). For the SHV
in Montserrat, x = (V, ϕ, b), where V is the volume of the flow, ϕ is the
initialization angle of flow, and b is the basal friction of the flow, i.e., the
friction of the flow with the ground. Also, yM (x) = the maximum height
at the center of the target area of a pyroclastic flow from an eruption with
characteristics x. A catastrophic event occurs (by definition for this paper)
if x is such that yM (x) ≥ 1m.
We desire to find the contour that separates catastrophic events from be-
nign events. This contour, which we will call Ψ, can be represented by
finding, for each angle ϕ ∈ [0, 2π) and basal friction value b, the mini-
mum volume V that causes catastrophic damage (all larger volumes will
cause even worse damage). Thus we will write Ψ = Ψ(ϕ, b) = inf{V :
yM (V, ϕ, b) ≥ 1m}.
To find Ψ we ran 256 TITAN2D simulations at design points in a large
region of the input space. These design points were chosen according to
a Latin hypercube design. Initially the emulator was based on a subset
of these design points, which were then augmented in an adaptive way to
improve the estimated frontier Ψ. We used the familiar Gaussian process
emulator (GaSP) (see Santner et.al. (2003)) to approximate TITAN2D.
Figure 1 shows the mean surfaces of the emulated max-height GaSP’s at
one of the sites on Montserrat under consideration – the former capitol of
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Plymouth – as a function of the volume and angle inputs (and a fixed value
of b), along with dots indicating the actual heights at the design-points that
were obtained from the computer model runs.

FIGURE 1. Max-height surfaces are the mean of the GaSP emulators at Ply-
mouth. Dark points represent the max-height simulation output at design points.

We approximate the catastrophic event contour Ψ by determining the ap-
propriate contour numerically from the emulated GaSP surface. For Ply-
mouth, Ψ(ϕ) is shown in Figure 2 (at a specified value of b) for the emulator
obtained by fitting a GaSP to log(yM (·) + 1) and transforming back.
The emulators are only approximations to the computer model, so there
will be error in the estimation of Ψ. This is reflected in the 90% credible
bands given in Figure 2 (found simply by transforming back to meters
the 5% and 95% quantiles of the posterior predictive distribution of the
Bayesian emulator for the log transformation).
A round of adaptive design was then performed, to obtain new runs of
TITAN2D near the critical contour. The results were essentially the same
as those obtained in Figure 2.

3 Modeling the Input Distributions

Figure 3 shows an empirical plot of the number of pyroclastic flows exceed-
ing volume Vj ≥ v vs. v from March, 1996 through July, 2008 for SVH, on
a log-log scale, for large volumes v ≥ ε (here ε = 5 · 104 m3).
The near-linear fall-off on a log-log scale suggests that the probability dis-
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FIGURE 2. Median estimates (solid curves) and 90% credible bands (dashed
curves) of frontier Ψ(φ), based on Gaussian process fit to log-transformed simu-
lation output, at Plymouth.

tribution of flow volumes satisfies

logP[V ≥ v | V ≥ ε] ≈ −α log(v) + c (1)

for some constants α > 0 and c ∈ R, and hence the distribution of the {Vj}
is approximately Pareto, with

P[V ≥ v] ≈ (v/ε)−α, v ≥ ε . (2)

The pyroclastic flows (PFs) whose volume exceed the threshold ε are a
marked Poisson process with marks as the initial volumes and initiation
angle pairs {(Vj , ϕj)} at times τj > 0. We take the Poisson rate to be
some constant λε; we also assume independence of the Pareto-distributed
volumes {Vj}.
The likelihood function, upon observing {(Vj , τj) : Vj > ε, 0 < τj ≤
T}j≤Jε , is

L(α, λ) ∝ (αλ)Jε exp
[
− λT ε−α − α

∑
j≤Jε

log Vj

]
= (αλ ε−α)Jε e−λT ε

−α−αSε ,

where Sε :=
∑
j≤Jε log(Vj/ε).
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FIGURE 3. Frequency-vs.-magnitude plot for pyroclastic flows at SVH.

We analyze this likelihood function from an objective Bayesian perspective.
Let π(α, λ, ϕ) denote an objective prior density function for α and λ and
the initiation angle ϕ. Inferences will be based on the posterior density

π∗(α, λ, ϕ) = π(α, λ, ϕ | data) ∝ L(α, λ)π(α, λ, ϕ) ;

note that the likelihood does not depend on the initiation angle ϕ.
The obvious objective prior distribution for the angle ϕ is the uniform
distribution on [0, 2π), and this was initially deemed reasonable by the ge-
ologists in the project; but, later, it was realized that a uniform distribution
is not optimal – because of the configuration of the mountain – and a non-
uniform distribution will be incorporated in the final analysis. Also, ϕ was
viewed as independent of the other parameters.
A natural objective choice for π(α, λ) is the reference prior distribution of
Berger and Bernardo (1992). There are actually two reference priors, based
on declaring first α and then λ to be the parameter of interest:

πRα(α, λ) ∝ λ−1/2α−1ε−α/21{α>0,λ>0}

πRλ(α, λ) ∝ λ−1/2[α−2 + (log ε)2]1/2ε−α/21{α>0,λ>0} .
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These were both used in the final analysis, and gave virtually identical
results.
The final issue is basal friction parameter b. It appears that b and V are
strongly related; indeed are nearly linearly related on a log-log-scale over
the range of parameters of interest. This relationship is being determined
in ongoing work, based on a hierarchical Bayesian analysis of 4 sets of
data involving pyroclastic flows at different volcanoes. The analysis then
proceeds by simply replacing b by the empirical function of V obtained
from this analysis, so that only V remains in the expressions. Hence we
henceforth ignore b.

4 Risk Assessment

Combining the previous modeling, we can now compute the probability of
a catastrophic event in the next t years at Plymouth.
The number of PFs in a future time interval of length t years whose volume
Vi and initiation angle ϕi satisfy Vi > Ψ(ϕi) (i.e., the number of catas-
trophic PFs in t years) will have a Poisson probability distribution with
conditional expectation

E(# catastrophic PFs in t yrs | α, λ
)

=
t λ

2π

∫ 2π

0

Ψ(ϕ)−α dϕ, (3)

for given values of the parameters α and λ, so the probability of a catas-
trophic event is

P ( ≥ one catastrophic PF in t yrs | α, λ
)

= 1−exp

[
− t λ

2π

∫ 2π

0

Ψ(ϕ)−α dϕ

]
.

The posterior probability of catastrophe in t years, using the likelihood
function of and the objective prior densities is then given by

P (t) = P [At least one PF > Ψ(ϕ) in t yrs | data]

= 1−
∫
R2

+

exp

[
− t λ

2π

∫ 2π

0

Ψ(ϕ)−α dϕ

]
π∗(α, λ) dα dλ (4)

for the posterior density π∗(α, λ) = Z−1L(α, λ)λa−1 α−1g(α)1{α>0,λ>0},
with normalizing constant Z :=

∫∫
R2

+
L(α, λ)λa−1 α−1g(α)dα dλ. The λ in-

tegral in equation (4) is available in closed form, after computation leaving:

P (t) = 1− Z̃−1

∫
R+

[
1 + (t/T )Iε(α)

]−Jε−a
αJε−1e−α[Sε−a log ε]g(α) dα ,

where Iε(α) := 1
2π

∫ 2π

0
[Ψ(ϕ)/ε]−α dϕ and Z̃ is the normalizing constant.
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Quasi-variances and extensions

David Firth1

1 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK;
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Abstract: The notion of quasi-variances, as a device for both simplifying and
enhancing the presentation of categorical-predictor effects in statistical models,
was developed in Firth and de Menezes (Biometrika, 2004, 65–80). The approach
generalizes the earlier ideas of Ridout (GLIM Proceedings, 1989) and of Easton,
Peto and Babiker (Statistics in Medicine, 1991 — ‘floating absolute risk’, which
has become rather controversial in epidemiology). In this talk I will outline and
exemplify the method to show how it can be useful, and discuss its extension to
some other contexts such as parameters that may be arbitrarily scaled and/or
rotated.

Keywords: Floating absolute risk; model summary

1 Quasi-variances: The basic idea

When presenting the results of statistical modelling, one very standard
summary is a table of parameter estimates and standard errors; in Bayesian
analysis, an analogous device is a table of posterior means and standard de-
viations or — if space permits — a series of marginal views of the posterior
density. The device of ‘quasi-variances’ aims to improve such summaries in
situations where at least some of the parameters of interest relate to the ef-
fect of a categorical predictor variable. In such situations, contrasts among
the parameters typically are identified and of interest. Most commonly the
standard summary is based on an arbitrarily selected subset of contrasts,
for example contrasts with the first or last level of a factor, or with an
average over all of the levels. Such a summary works well for those specific
contrasts, but does not facilitate valid inference on other contrasts not in
the selected subset.
Quasi-variances overcome this difficulty as follows. (The exposition here
will be in terms of estimates and standard errors; it could equally well be
made in terms of posterior means and standard deviations.) For a set of

parameters β1, . . . , βp, we approximate the variance of any contrast
∑
crβ̂r

(where
∑
cr = 0) by

∑
c2rqr, in which the quantities q1, . . . , qp are so-called

quasi-variances. When good quasi-variances can be found — that is, when
the approximation is reasonably accurate for all contrasts of potential in-
terest — this yields a simple summary table from which valid approximate
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inference can be drawn about any contrast. The simplicity stems from the
fact that the {qr} can be read as if they were the variances of p uncor-
related estimates. This also allows for simple graphical presentations, for
example with a point estimate and error bar for each parameter, whose
‘Pythagorean’ interpretation is both informative and familiar.
This basic idea was first suggested by Ridout (1989), in the context of es-
timates from a balanced experimental design. Easton, Peto and Babiker
(1991) independently suggested it under the name ‘floating absolute risk’,
with some particular epidemiological applications in mind. A further influ-
ential reference is Cox and Reid (2000, p237). In epidemiology the method
has proved to be rather controversial (e.g., Easton and Peto, 2000, and
references therein); this seems to be partly because the idea of Easton et
al. (1991) was not always well enough understood, and partly because the
specific approximation recipe used in Easton et al. (1991) was not ideal.
Menezes (1999), Firth and Menezes (2004) and Plummer (2004) studied
the approximation in detail and suggested methods that are more gener-
ally successful. The work of Ridout (1989), whose approximation recipe
was indeed one of the ‘generally successful’ variety, was sadly unknown to
the epidemiologists whose arguments about the method’s merits spanned
several subsequent years.

2 Aims in this talk

In this talk I will review why and when the method of quasi-variances
works well, and I will discuss some examples of its fruitful application. The
controversy surrounding ‘floating absolute risk’ will be demystified.
Attention will then turn to extensions of the method:

(i) To some less standard contexts where contrasts are still the identifi-
able parameter combinations of interest. These contexts include:

– Bradley-Terry models for binary ‘tournaments’ (Turner and Firth,
2010);

– the homogeneous RC(1) association model of Goodman (1979),
for contingency tables;

– multinomial logit regression models for categorical-response data;

– certain other often-used multiplicative interaction models, such
as the ‘unidiff’ model from social mobility studies (Erikson and
Goldthorpe, 1992; Xie, 1992).

(ii) To some more general situations, where the contrasts of interest are
identified only after fixing some other aspect of parameterization such
as scale or angle of rotation. These include:

– the non-homogeneous Goodman RC(1) association model;
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– the (homogeneous or non-homogeneous) Goodman RC(2) asso-
ciation models;

– some standard item-response models (Rasch-type scaling mod-
els);

– factor analysis of multivariate data.

3 Software

The R package qvcalc (Firth, 2003b) implements the basic method effi-
ciently, with direct interfaces to various prominent classes of model object
in R; summary capabilities include the routine reporting of the accuracy of
computed quasi-variances, and facilities for readily interpreted ‘error bar’
plots of effects of interest. The same package also underlies a simple web-
based calculator (originally developed using Xlisp-Stat ; see Firth, 2000).

Acknowledgments: This work was supported by the Engineering and
Physical Sciences Research Council, UK.
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Some theoretical thoughts when using a
composite endpoint to prove the efficacy of a
treatment

Guadalupe Gómez1
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Abstract: This paper discusses, following Gómez and Lagakos (2011) methodol-
ogy, to what extent is there a gain in efficiency from adding a component event to
a relevant endpoint when the treatment effect on this component is not as strong
as on the original relevant endpoint under ideal (independence) circumstances. It
presents the bivariate copula model used to overcome the independence assump-
tion and presents the relationship between the components of the asymptotic
relative efficiency and a set of interpretable parameters.

Keywords: Asymptotic Relative Efficiency; Composite Endpoints; Composite
Outcomes; Copula Model; Logrank tests

1 Introduction and motivating example

In randomized clinical trials it is common to use a composite event as
endpoint and to prove the beneficial effects on treatment for this endpoint.
A composite event E∗ is defined as one of several events Ej (j = 1, · · · ,m),
that is, E∗ =

⋃m
j=1 Ej . One of the reasons why scientists use composite

events is to assure that, for a given sample, enough events are observed
during the course of the study, being this especially crucial when one of
the events is ”rare” or not very frequent. The popular thinking is that ”by
adding” more events to the composite endpoint, we might have more power
to detect treatment differences.
This problem is found in many areas but in particular in cardiovascular
studies. For instance, Tardif et al (2008) use composite endpoints when
studying the addition of succinobucol, a novel anti-oxidant and anti-inflam-
matory agent, to optimal medical therapy to 6,144 high-risk patients with
unstable angina or who had suffered heart attacks. In the double-blind,
placebo-controlled clinical trial for succinobucol the following six cardio-
vascular events are of interest: Cardiovascular death, resuscitated cardiac
arrest, myocardial infarction, stroke, hospitalization due to unstable angina
or hospitalization due to coronary revascularization. The study shows that
succinobucol has no effect on the primary endpoint E∗ where all six events
are considered, while it has a beneficial effect on the composite secondary
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endpoint defined as the union of the first 4 events. In this particular in-
stance, the addition of the hospitalization events (355 (67%) in the suc-
cinobucol group and 318 (60%) in the placebo group) to the previous 4
events (207 versus 252) has yielded a non significant result for the pri-
mary E∗ from a beneficial effect that the treatment has on the composite
secondary endpoint.
Gómez and Lagakos’ paper (2011) proposes a conceptual framework as
an aid to make a decision, when planning a clinical trial, on whether to
use a relevant endpoint E1 or the composite of E1 and an additional E2
based on prior information about the disease. The main goal of this paper
is to discuss to what extent is there a gain in efficiency from adding a
component event to a relevant endpoint when the treatment effect on this
component is not as strong as on the original relevant endpoint under
ideal (independence) circumstances, to present the copula models used to
overcome the independence assumption and to frame them to derive the
relative efficiency of E∗ = E1 ∪ E2 versus using just the primary endpoint
E1.

2 Notation

We consider two-arm randomized studies involving random assignment to
an active treatment (X = 1) or to a control treatment (X = 0) and we
focus on the time from randomization until the first occuring of a specific
set of clinical outcomes. We assume that we have two different endpoints
of potential interest, E1 and E2, where each one can be either single or
composite. This paper is restricted to the case where the additional event
E2 cannot include a terminating event, such as death and it corresponds to
cases 1 and 3 of Gómez and Lagakos (2011). The individuals are followed
until the event of interest, or until the end of the study, whichever occurs

first. Denote by T
(j)
1 and T

(j)
2 the times to E1 and E2, respectively, for

patients in group X = j (j = 0, 1) and by C the time until the end

of the study (assumed equal for both groups). We assume that T
(j)
1 and

T
(j)
2 are absolutely continuous so that ties cannot occur and that end-of-

study censoring is the only noninformative censoring cause. We consider
the composite event E∗ = E1 ∪ E2 and we measure the effect of treatment

on the composite endpoint T
(j)
∗ = min{T (j)

1 , T
(j)
2 } which is the time until

the occurrence of E∗ consisting of the earlier occurring of E1 or E2.

3 Facts when the independence assumption holds

In this section we show that a beneficial effect on E∗ can occur simultane-
ously with a beneficial effect on E1 and a harmful effect on E2 and that not
finding a beneficial effect on the composite event E∗ is no guarantee of not
having some effect on the individual events E1 or E2.
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These facts are shown for the particular case of independence between

T
(j)
1 and T

(j)
2 and under the assumption that the hazards of T

(1)
1 versus

T
(0)
1 (λ

(1)
1 (t) and λ

(0)
1 (t)) and of T

(1)
2 versus T

(0)
2 (λ

(1)
2 (t) and λ

(0)
2 (t)) are

proportional. Under this assumption, the relative treatment effects on E1
and on E2 are the constant hazard ratios

λ
(1)
1 (t)

λ
(0)
1 (t)

and
λ

(1)
2 (t)

λ
(0)
2 (t)

, respectively,

and hazard ratios < 1 (> 1) are indicative of a beneficial (harmful) effect
of the treatment.

Proposition For j = 0, 1, if T
(j)
1 and T

(j)
2 are independent and both T

(j)
1

and T
(j)
2 have proportional hazards, then, the hazards of T

(j)
∗ (λ

(1)
∗ (t) and

λ
(0)
∗ (t)) are proportional if and only if the baseline hazard functions for the

relevant and the additional endpoints, λ
(0)
1 (t) and λ

(0)
2 (t), respectively, are

as well proportional. That is, if we have, for given k1 > k2 > 0, λ
(1)
1 (t) =

k1λ
(0)
1 (t) and λ

(1)
2 (t) = k2λ

(0)
2 (t) for all t, then there exists k such that

λ
(1)
∗ (t) = kλ

(0)
∗ (t) if and only if λ

(0)
2 (t) = k0λ

(0)
1 (t) for all t with k and ko

related by k = 1
1+k0

k1 + k0

1+k0
k2.

Proof Due to the independence between T j1 and T j2 , we have

λ
(1)
∗ (t) = kλ

(0)
∗ (t)⇔ λ

(1)
1 (t) + λ

(1)
2 (t) = k(λ

(0)
1 (t) + λ

(0)
2 (t))

hence, since λ
(1)
1 (t) = k1λ

(0)
1 (t) and λ

(1)
2 (t) = k2λ

(0)
2 (t), it follows that

k1λ
(0)
1 (t) + k2λ

(0)
2 (t) = k(λ

(0)
1 (t) + λ

(0)
2 (t))⇔

(k1 − k)λ
(0)
1 (t) = (k − k2)λ

(0)
2 (t)⇔ λ

(0)
2 (t) =

(k1 − k)

(k − k2)
λ

(0)
1 (t).

This result establishes that if the baseline hazard functions, λ
(0)
1 (t) and

λ
(0)
2 (t) are proportional, then the hazard ratio

λ(1)
∗ (t)

λ
(0)
∗ (t)

is a linear combination

of
λ

(1)
1 (t)

λ
(0)
1 (t)

and
λ

(1)
2 (t)

λ
(0)
2 (t)

, and this has several relevant implications which we

summarize in the next Corollary.

Corollary Under the assumptions of the proposition and assuming that

λ
(0)
2 (t) = k0λ

(0)
1 (t),

1. If treatment has no effect on E1 neither on E2 (k1 = k2 = 1), then
treatment has no effect on E∗ (k = 1).

2. The effect that treatment has on E∗ lies always between the effects

that the treatment has on E1 and E2. That is, if k1 =
λ

(1)
1 (t)

λ
(0)
1 (t)

<
λ

(1)
2 (t)

λ
(0)
2 (t)

=

k2 then k1 <
λ(1)
∗ (t)

λ
(0)
∗ (t)

< k2 and hence: i) if the treatment effect is
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beneficial on E1 and E2 (k1 < k2 ≤ 1), the treatment will prove to
be beneficial on E∗ and ii) if the treatment effect is harmful on E1
and E2 (1 ≤ k1 < k2), the treatment will prove to be harmful on E∗.
Analogously if k1 > k2.

3. If treatment has a beneficial effect for E1 (k1 < 1) and a harmful
effect for E2 (k2 > 1), you can choose k0 conveniently to prove either
no effect or a beneficial or harmful effect on E∗. For instance, taking
k1 = 0.5 and k2 = 2, i) if k0 = 1.5 we have k = 2 and treatment has
a harmful effect for E∗, ii) if k0 = 0.5 then k = 1 and treatment has
no effect on E∗ and iii) if k0 = 0.25 then k = 0.8 and treatment has
a beneficial effect for E∗.

4 Using copulas to model the bivariate survival
function

So far we have proved that under the ideal situation of two independent
endpoints the beneficial effect on a composite endpoint does not imply
the beneficial effect in either component. However, most of the times the
two endpoints are correlated and the hazard of the composite cannot be
decomposed as the sum of the two marginal hazards. In this situation the

joint law of T
(j)
1 and T

(j)
2 is needed and we face the challenge of modelling an

empirical problem in such a way that is not too complex but still realistic.
We can model the joint dependence structure by means of a copula function.
A copula is best described, as in Joe (1997), as a multivariate distribution
function that is used to bind each marginal distribution function to form the
joint. The copula parameterises the dependence between the margins, while
the parameters of each marginal distribution function can be estimated
separately. The approach via copulas allows much more general types of
dependencies to be included than would usually be invoked by a conceptual
approach. The approach to formulating a multivariate distribution using
a copula is based on the idea that a simple transformation can be made
of each marginal variable in such a way that each transformed marginal
variable has a uniform distribution. Once this is done, the dependence
structure can be expressed as a multivariate distribution on the obtained
uniforms, and a copula is precisely a multivariate distribution on uniform
random variables. There are many families of copulas which differ in the
detail of the dependence they represent. A family will typically have several
parameters which relate to the strength and form of the dependence.
Among several classes of copulas the Archimedean copulas are an impor-
tant family, which have a simple form with properties such as associativity,
symmetry and have a variety of dependence structures (Trivedi and Zim-
mer, 2007). One particularly simple form of an Archimedean bidimensional
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copula is given by

H(t1, t2) = ϕ−1

(
2∑
i=1

ϕ(Fi(ti))

)

where ϕ is a generator function satisfying ϕ(1) = 0, limt→0 ϕ(t) = ∞,
ϕ′(t) < 0 and ϕ′′(t) > 0, and where Fi (i = 1, 2) are univariate marginal
probability distribution functions.
Different choices of the generator function yield as well different copulas
with specific features. We are basing our computations in Frank copula’s

generator defined as ϕ(t) = − ln
(
e−θt−1
e−θ−1

)
for dependence parameter θ,

−∞ < θ <∞, because it has the following useful features: it permits neg-
ative dependence between the marginals, the dependence is symmetric in
both tails, it is comprehensive, that is, it might represent perfect negative
dependence, independence and perfect positive dependence between vari-

ates. Furthermore, Spearman’s ρ linear correlation between F1(T
(j)
1 ) and

F2(T
(j)
2 ) is given by ρ = ρ(θ) = 1− 12

θ [ 1
θ

∫ θ
0

t
et−1 − 2

θ2

∫ θ
0

t2

et−1dt] holding a
1-1 relationship between ρ and θ.
For every group j = 0, 1 and given marginal survival (density) functions

S
(j)
1 (t1) and S

(j)
2 (t2) (f

(j)
1 (t1) and f

(j)
2 (t2)) for T

(j)
1 and T

(j)
2 and given

equal association parameter θ between T
(j)
1 and T

(j)
2 , the joint survival

and density functions based on Frank’s copula are as follows:

S(j)(t1, t2; θ) = −θ−1 log

{
1 +

(e−θS
(j)
1 (t1) − 1)(e−θS

(j)
2 (t2) − 1)

e−θ − 1

}

f
(j)
(1,2)(t1, t2; θ) =

θe−θ(S
(j)
1 (t1)+S

(j)
2 (t2)))

e−2θS(j)(t1,t2;θ)(e−θ − 1)
[f

(j)
1 (t1)][f

(j)
2 (t2))] (1)

For j = 0, 1, the survival and density function of T
(j)
∗ = min{T (j)

1 , T
(j)
2 }

become equal to

S
(j)
∗ (t; θ) = S(j)(t1, t2; θ) (2)

f
(j)
∗ (t) =

e−θS
(j)
1 (t)(e−θS

(j)
2 (t) − 1)

e−θS
(j)
∗ (t;θ)(e−θ − 1)

f
(j)
1 (t) +

e−θS
(j)
2 (t)(e−θS

(j)
1 (t) − 1)

e−θS
(j)
∗ (t;θ)(e−θ − 1)

f
(j)
2 (t)

if Frank’s copula is used.

5 Log rank test and Asymptotic Relative Efficiency

For the two-arm randomized study described in Section 2, we assume that
we have two independent samples, that end-of-study censoring is the only
noninformative censoring cause, that end-of-study censoring is identical
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across groups and that treatment groups have proportional hazards. To
check whether treatment has a beneficial effect, we might use endpoint E1
carrying the relevant information of the disease process or we might add
endpoint E2 and use the composite E∗. The null hypothesis of no treatment

difference is given either by H0 : λ
(0)
1 (·) = λ

(1)
1 (·) in terms of the marginal

hazards of T
(0)
1 and T

(1)
1 if E1 is being used or by H0 : λ

(0)
∗ (·) = λ

(1)
∗ (·)

in terms of the marginal hazards of T
(0)
∗ and T

(1)
∗ when inferences would

be based on E∗. In both cases the logrank test Z (and Z∗) is the chosen
statistic on which to base the conclusions.
Following Gómez and Lagakos (2011) we base the strategy in the behaviour
of the asymptotic relative efficiency (ARE) of Z∗ versus Z given by

ARE(Z∗, Z) =

(∫ 1

0
log
(
λ(1)
∗ (t)

λ
(0)
∗ (t)

)
f

(0)
∗ (t)dt

)2

(
log

(
λ

(1)
1 (t)

λ
(0)
1 (t)

))2

(
∫ 1

0
f

(0)
∗ (t)dt)(

∫ 1

0
f

(0)
1 (t)dt)

(3)

where f
(0)
1 (t) and f

(0)
∗ (t) are, respectively, the densities for T

(0)
1 and T

(0)
∗ in

group 0. The method proposes to use the composite endpoint instead of the
primary endpoint if ARE(Z∗, Z) > 1.25, to stick to the primary endpoint
if ARE(Z∗, Z) < 1.1, and whenever 1.1 < ARE(Z∗, Z) < 1.25 balance the
benefits of using the composite endpoint over the relevant endpoint on the
particular setting.

If such a method is being used for the design of a given clinical trial, the
computation of the ARE(Z∗, Z) would need to be based on easily inter-
pretable parameters such as the frequencies p1 and p2 of observing the
endpoints E1 and E2 in treatment group 0, the relative treatment effects on

E1 and E2 given by the hazard ratios HR1 =
λ

(1)
1 (t)

λ
(0)
1 (t)

and HR2 =
λ

(1)
2 (t)

λ
(0)
2 (t)

and

to a lesser extent by the dependence degree between the relevant endpoint

T
(0)
1 and the additional endpoint T

(0)
2 given by Spearman’s rank correlation

coefficient ρ.

As we see in (3) the ARE(Z∗, Z) depends on the marginal laws of T
(0)
1

and T
(0)
∗ in group 0 and on the hazard ratios

λ
(1)
1 (t)

λ
(0)
1 (t)

and
λ(1)
∗ (t)

λ
(0)
∗ (t)

. Assuming

Frank’s copula for both groups with equal association parameter θ, the

density of T
(j)
∗ in group j (j = 0, 1) is given by (2). Hence to derive the

ARE(Z∗, Z) in terms of the above listed interpretable parameters we have

to specify marginal parametric laws for T
(j)
1 and T

(j)
2 for both treatment

groups 0 and 1 and we have to relate their parameters to the frequencies
p1 and p2, the hazard ratios HR1 and HR2 and the Spearman’s coefficient
ρ.
If for j = 0, 1 and k = 1, 2, we choose Weibull distributions with scale

parameters b
(j)
k and shape parameters βk chosen equal for both groups so
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that the proportionality of the hazards holds, the marginal survival function

is given by S
(j)
k (t) = exp

(
−(t/b

(j)
k )βk

)
. Then the relationship between

(b
(0)
1 , b

(0)
2 , b

(1)
1 , b

(1)
2 , β1, β2, ρ) and (p1, p2,HR1,HR2, β1, β2, ρ) is given by:

1. The scale parameter b
(0)
1 is a function of p1 and β1 given by

b
(0)
1 = 1

(− log(1−p1))1/β1
.

2. (a) If E1 does not include a terminating event, the scale parameter

b
(0)
2 is a function of p2 and β2 given by b

(0)
2 = 1

(− log(1−p2))1/β2
.

(b) If E1 includes a terminating event, T
(j)
2 might be censored by

T
(j)
1 and the probability of observing E2 will depend on whether

T
(j)
1 ≤ T (j)

2 or not and hence on the joint density f
(0)
(1,2)(t1, t2; θ)

given in (1). In this case, the scale parameter b
(0)
2 is a function

of (p1, p2, ρ, β1, β2) and it is found as the solution of equation

p2 =
∫ 1

0

∫∞
v
f

(0)
(1,2)(u, v; θ)dudv, or equivalently

p2 =
∫ 1

V L

(∫ UL(0)(y)

0
g(x, y)dx

)
dy where

UL(0)(y) = S
(0)
1 ((− log y)1/β2b

(0)
2 ), V L = S

(0)
2 (1) and

g(x, y) = θ(1−e−θ) exp{−θ(x+y)}
(e−θ+e−θ(x+y)−e−θx−e−θy)2 .

3. For k = 1, 2, the scale parameter b
(1)
k is function of the scale parameter

b
(0)
k , the shape parameter βk and the hazard ratio HRk as follows:

b
(1)
k =

b
(0)
k

HRk

1
βk

Based on the guidelines established in Gómez and Lagakos (2011) they
prove that often adding an endpoint to a relevant endpoint can be helpful
if the relative effect on treatment on the additional endpoint is larger than
on the relevant endpoint, harmful if the effect is smaller and whenever
the effect on both endpoints is about the same the frequency of observing
the endpoints and their correlation have to be taken into account before
reaching a decision.

6 Illustration and conclusion

When studying the addition of succinobucol (Tardif et al, 2008) we can split
the six components composite event E∗ (cardiovascular death, resuscitated
cardiac arrest, non-fatal myocardial infarction, non-fatal stroke, unstable
angina, coronary revascularization) into the relevant endpoint E1 formed
by cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial
infarction and non-fatal stroke and the additional endpoint E2 formed by
hospitalization for unstable angina and coronary revascularization in order
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to assess the best choice as primary endpoint for the analysis under the
circumstances of this randomized clinical trial. Based on the published pa-
rameters the frequencies of observing E1 and E2 are respectively p1 = 0.0822
and p2 = 0.0903 with relative treatment effect on E1 given by a hazard ra-
tio of HR1 = 0.81 and on E2 given by HR2 = 1.05. For these values the
ARE(Z∗, Z) lies between 0.05 and 0.18 for all the possible degrees of asso-

ciation between T
(j)
1 and T

(j)
2 and irrespective of the chosen values for the

shape parameters. It is hence clear in this case that adding hospitalization
for unstable angina and coronary revascularization is not recommended. As
a matter of fact the trial failed to show a statistically significant difference
on E∗ (p-value = 0.955) between the succinobucol group and the control
group, while it showed a beneficial effect of succinobucol on the relevant
endpoint E1 (p-value = 0.029). Note here that as pointed out in Section
3 composing an event on which treatment has a beneficial effect with an
event showing no significant effect we have produced a composite endpoint
where the effect has vanished. This clinical trial is extensively discussed
in Gómez, Dafni and Gómez (2011) who assess, within the cardiovascular
research context, the characteristics of the candidate individual endpoints
that should govern the choice of using a composite endpoint as the primary
endpoint by means of the asymptotic relative efficiency.
The paper has given more insight into the relationship between the hazard

ratios of T
(1)
k versus T

(0)
k (k = 1, 2) and of T

(1)
∗ versus T

(0)
∗ and has provided

a straightforward relationship between the components of the ARE(Z∗, Z)
and a small set of interpretable parameters.
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Abstract: Real-world phenomena are frequently modelled by Bayesian hierar-
chical models. The building-blocks in such models are the distribution of each
variable conditional on parent and/or neighbour variables in the graph. The spec-
ifications of centre and spread of these conditional distributions may be well-
motivated, while the tail specifications are often left to convenience. However,
the posterior distribution of a parameter may depend strongly on such arbitrary
tail specifications. This is not easily detected in complex models. In this paper we
propose a graphical diagnostic which identifies such influential statistical mod-
elling choices at the node level in any chain graph model. Our diagnostic, the local
critique plot, examines local conflict between the information coming from the
parents and neighbours (local prior) and from the children and co-parents (lifted
likelihood). It identifies properties of the local prior and the lifted likelihood that
are influential on the posterior density. We illustrate the use of the local critique
plot with applications involving models of different levels of complexity. The local
critique plot can be derived for all parameters in a chain graph model, and is easy
to implement using the output of posterior sampling.

Keywords: Chain graph; graphical diagnostic; hierarchical model; local critique
plot; model criticism.

1 Introduction

Bayesian hierarchical models are now widely used to model complex, struc-
tured data. Such models are built from a large number of individual fac-
tors, representing the conditional distributions of each variable given those
higher in the hierarchy, or, in the case of undirected models, potential
functions for cliques of variables. Responsible, disciplined model-building
requires that specification of all these factors should properly take into
account prior information, whether this codifies scientific laws, earlier ex-
periments, or degrees of subjective belief. However, this specification is a
very challenging task, and there will often be a concern that it has been
done imperfectly. In particular, while it may be relatively easy to spec-
ify the location and spread of a marginal or conditional distribution, the
shape of the distribution, especially in the tail, is a more taxing question.
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Yet the posterior distribution of all unknowns given data may depend on
the trading-off of tails of individual model factors. It is important that this
phenomenon be detected so that the modeller’s attention can be drawn to
particular statistical choices that are influential in the analysis, in order to
confirm them or to reconsider.
In a simple Bayesian model, conflict between prior and data is easily de-
tected, and this provides a diagnostic for criticising statistical modelling
choices. Suppose we have a Bayesian model with a single unknown param-
eter θ. Then a graphical display of the prior and likelihood functions for θ
quickly reveals the extent of any conflict between these two sources of in-
formation. In a general hierarchical model, identifying conflict between the
sources of information contributing to the posterior distribution of a single
node is a more subtle matter. This paper introduces a graphical diagnostic
for this purpose.

1.1 Some previous work

Bayesian model criticism is often performed by considering a Bayesian p-
value describing the compatibility of the observed data and the model.
Such a p-value is typically obtained from some test-statistic or discrepancy
measure (possibly depending on parameters as well as data) reflecting im-
portant aspects of the model, and a predictive distribution for this discrep-
ancy measure. The type of predictive distribution used varies, e.g. the prior
predictive distribution, the posterior predictive distribution (Meng, 1994),
and the partial posterior predictive distribution (Bayarri and Berger, 1999,
2000; Bayarri and Castellanos, 2007). The latter approach avoids the need
for informative prior distributions, as in the prior predictive approach, as
well as the conservatism caused by the double use of data, as in the posterior
predictive approach. This conservatism may also be handled by calibration
(Hjort et al., 2006). These p-values are usually directed at one specific as-
pect of a model, not considering model fit at the individual nodes of a
hierarchical model. Our idea of looking for conflict between the prior and
likelihood information at the node level is not new. O’Hagan (2003) ex-
tends the node level residual analysis of Chaloner (1994) to other measures
of conflict, to look for conflict between the different sources of information
provided for the node in question. In practice, this is done by looking at
how much the densities representing two different sources of information
overlap, measured by the height of the densities (normalised to have unit
maximum height) at the point where the two cross. Marshall and Spiegel-
halter (2007) propose a similar p-value for measuring conflict at the node
level in hierarchical models, which also avoids specifying a discrepancy mea-
sure and acts as an approximation to their cross-validatory, mixed p-value,
when it exists.
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1.2 Our objective

However, none of the above-mentioned conflict measures really address the
nature of the conflict and the impact certain aspects of the prior and the
likelihood have on the posterior analysis. The diagnostic we propose exam-
ines conflict at the node level by identifying where the posterior samples
of a variable are located in what we call the local prior (the information
coming from the parents and/or neighbours) and what we call the lifted
likelihood (the information coming from children and co-parents).

2 Local critique plots

Our diagnostic technique is defined for a wide class of hierarchical models,
including both directed and undirected dependencies (and so in particular
handles spatial models in which a Markov random field is one of the model
components). For the models we consider, the conditional independence
structure can be represented by a chain graph (Lauritzen, 1996). In a gen-
eral chain graph model, the full conditional distribution of any variable has
a factorisation of the form

p(xi|x−i) ∝ p(xi|xpa(i), xne(i))×
∏

c:i∈pa(V (c))

p(xV (c)|xpa(V (c)))

2.1 The local prior and the lifted likelihood

We write pi(x) = p(xi|xpa(i), xne(i)) and call it the local prior for variable
xi. The other factor li(x) =

∏
c:i∈pa(V (c)) p(xV (c)|xpa(V (c))) is the lifted

likelihood.

• local prior measures the influence of parents and neighbours,

• lifted likelihood, that of children and (the possibly many) co-parents

2.2 Diagnostic functions

To get a standard 0–1 scale for prior and likelihood ‘tension’ we use cumu-
lative versions of the local prior and the lifted likelihood:

πi(x) =

∫ xi

−∞
pi(x

i→u)du

where xi→u means x with its ith element replaced by u.

ψi(x) =

∫ xi
−∞ li(x

i→u)du∫∞
−∞ li(xi→u)du
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(assuming the denominator integral exists – we have a fix if it does not).
πi(x) and ψi(x) measure where in the effective prior and likelihood the
value xi lies – 0 means the left tail, 1 the right tail. Both can depend on
other variables xj since all unknowns vary dependently.
We use the joint posterior distribution of πi(x) and ψi(x) as a diagnostic
for critically examining model assumptions. We propose to use a plot of
this posterior distribution, which we call the local critique plot (Scheel, et
al, 2011), to examine the degree in conflict between model assumptions at
a node level in the graph.
In all but the most trivial applications, this distribution will be intractable,
but our method can be implemented by fairly simple post-processing of
MCMC output, which can be created by any software. All of our examples
are based on output from WinBUGS (Lunn, et al, 2000).

3 An example

In the presentation, a number of motivating illustrations and more substan-
tial examples will be given. In Figure 2, an example of an array of critique
plots is shown. Within each frame, the plot shows a sample from the pos-
terior distribution of the cumulative local prior (vertical axis) against the
cumulative lifted likelihood (horizontal axis). The two rows present the
plots for the 5 group means in a simple normal means hierarchical model,
with the upper and lower rows corresponding to two different prior spec-
ifications. It is clear, from the way that the distribution is concentrated
into the top left corner of the diagram, that for the more informative prior
(upper row) there is substantial local prior–lifted likelihood conflict for the
5th parameter.
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Figure 6: The Local critique plots for λi, i = 4, 1, 3, 2, 5 (sorted by increasing ȳi) in the O’Hagan

model for (a)-(e) the informative prior and (f)-(j) the non-informative prior (M = 10000,

R = 1000).
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FIGURE 1. Local critique plots for group means in a simple normal means model,
under two prior specifications: the less informative prior is used in the lower row
of plots.
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Abstract: Taylor’s ”universal” power law is an empirical law for the relationship
between the mean and variance of population abundance, which over time has
been observed for a wide range of different species and ecosystems. Ever since it
was proposed 50 years ago, the power law has given rise to discussions, because
it seemed to lack a satisfactory theoretical explanation, in spite of its frequent
observation in many different ecological, genomic, social science and epidemiolog-
ical settings. We investigate a possible theoretical explanation for Taylor’s power
law based on the Tweedie distribution, which is an exponential dispersion model
characterized by scale invariance; representing a statistical equilibrium that a
system subject to random perturbations will approach over time. By exploring
a new self-similarity hypothesis we derive the spatial correlation structure of the
population, from which parameters may be estimated by means of estimating
functions. These results enable us to investigate the mechanisms that control the
spatial structure of the population, including the effects of environmental factors
and interaction between species.

Keywords: Power variance function; Scale invariance; Self-similarity; Spatial
distribution; Tweedie distribution.

1 Introduction

It is commonly so for species abundance data that sites with higher abun-
dances tend to have higher variability. Let Yij denote the observed abun-
dances, where i = 1, . . . , k denotes site and j = 1, . . . , ni denotes replicate
within site, and let µi = E(Yij) denote the mean abundance for site i. Tay-
lor’s power law (Taylor, 1961) stipulates a variance function of the form

Var(Yij) = aµbi , (1)

where a and b are positive parameters. These two parameters may be esti-
mated by regressing the log empirical variance logS2

i on the log empirical
mean log Y i, assuming independence both between and within sites. In
this way Taylor (1961) confirmed the power law for 24 previously pub-
lished ecological data sets. Taylor interpreted b as a species-specific index
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of aggregation for the population, where b = 1 indicates a random disper-
sion pattern of the individuals and b > 1 an aggregated dispersion pattern.
Values of b below 1 are rarely observed in practice, and by far the most
common values of b are between 1 and 2.
Less than a quarter of a century later, Taylor et al. (1983) reported that the
power law had been observed for no less than 444 different species (mainly
insects), and subsequently the power law was observed again and again for
different species to such an extent that it earned the name ”universal”. The
power law has been observed in an ever expanding variety of different areas
such as ecology, epidemiology and genetics, ranging from, say, the number
of sexual partners reported by HIV infected individuals (Anderson and
May, 1988), to the physical distribution of genes on human chromosome
7 (Kendal, 2004a). Taylor’s power law has also been discussed in physics
(Eisler et al. , 2008; Fronczak and Fronczak, 2010), where the phenomenon
is known as fluctuation scaling.
Over the years there have been many attempts at explaining Taylor’s power
law theoretically, see e.g. Kendal (2004b) and references therein, but no
explanation seems to have prevailed. The lack of a definitive theoretical
explanation for Taylor’s power law has given rise to much confusion in
the literature, because the power law as such has little explanatory power,
thereby reducing b to be just one out of many possible indices of aggregation
(Pedigo and Buntin, 1994, p. 48). Instead we shall investigate the Tweedie
hypothesis (Kendal, 2004b), namely that Taylor’s power law is generated
by the Tweedie distribution (Tweedie, 1984), whose variance function co-
incides with Taylor’s power law, and whose shape is governed by the three
parameters a, b and µ. We argue that the so-called Tweedie convergence
theorem (Jørgensen et al., 1994, 2009) provides a compelling explanation
for the ubiquity of Taylor’s power law in nature, so that we are in effect
observing the direct manifestation of a central limit effect. We discuss some
of the historical background and possible ramifications of these ideas.

2 The double power law

A major challenge in ecology is to discover the mechanisms that control
the spatial distribution of a population in its habitat. In the conventional
approach to Taylor’s power law, the replicates within site are obtained by
subdividing the site into quadrats, where quadrat is the technical term for
the frame or sampling device used for isolating an area to be sampled. By
holding the quadrat size fixed, and assuming that µi varies between sites,
we can estimate b, e.g. by the log regression method outlined above. By
contrast, the expanding bin method of Kendal (2002, 2003, 2007) keeps µ
fixed and varies the quadrat size t, which, as it happens, yields a second
power law where the variance increases as a power of t.
A possible explanation for these phenomena may be found in the double
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power law,
Var(Yij) = at2−Dµbi , (2)

where the factional dimension D belongs to the interval (0, 2) and t de-
notes quadrat size. The double power law may be derived from a spatial
self-similarity hypothesis, proceeding along similar lines as Jørgensen et
al. (2011b). The parameters D, b and µi reflect three different aspects of
the population distribution, namely the spatial correlation structure (see
Eq. (3) below), the social behaviour of the individuals of the species (cf.
Jørgensen et al., 2011a), and the combined effects of environmental factors,
respectively. The fourth parameter a is a dispersion parameter in the sense
of Jørgensen (1997, p. 5).
The special case D = 1 corresponds to independence between quadrats,
but estimated values of D are usually between 0 and 1, corresponding to
a positive correlation between quadrats within site. For example, Fairfield
Smith (1938) investigated the heterogeneity of wheat yields and estimated
D to be 0.746, whereas Bassingthwaighte et al. (1989) estimated D to be
0.4 in an investigation of regional myocardial blood flow, see also Kendal
(2001). Like b, the power 2 − D in (2) is usually between 1 and 2, but
as already explained, these two powers reflect two different aspects of the
spatial distribution.
Inspired by Taylor’s regression method for estimating b, one may tenta-
tively estimate the parameters D and b of the double power law by regress-
ing logS2

i on log Y i and log t, for example by adopting the expanding bin
method in order to vary the quadrat size t. As pointed out by Perry (1981),
Taylor’s logarithmic regression method for estimating a and b suffers from
a problem of bias. This problem was addressed by Jørgensen et al. (2011a),
who proposed a bias-corrected Pearson estimating function for estimating
b in Taylor’s power law (1). More generally, we may combine the double
power law (2) with a regression model for µi, for example a log-linear model

logµi = x>i β,

where xi is a vector of site-specific covariates, and β is the corresponding
regression vector. This type of regression model allows us to study the
influence of site-specific environmental factors, including the presence of
other species at the site, which may lead to a better understanding of
factors that e.g. favor invasive species or lead to the extinction of species.
In order to estimate the regression vector β, we need the covariance struc-
ture of the data Yij within each site, which may be derived on the basis of
the self-similarity hypothesis. In the present case where the quadrat size t
is fixed, the correlation between two quadrats turns out to be constant,

Corr(Yij1 , Yij2) = 21−D − 1, (3)

corresponding to an exchangeable correlation structure. We may hence es-
timate β by means of the corresponding quasi-score function; essentially
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a generalized estimating equation with exchangeable correlation structure.
The method of Jørgensen et al. (2011a) may be extended to deal with the
double power law (2) by means of a joint bias-corrected Pearson estimating
function for estimating a, b and D jointly with β.

3 Discussion

We have outlined a new approach to Taylor’s power law based on the
Tweedie hypothesis and the spatial self-similarity hypothesis, and we have
argued for the plausibility of both hypotheses. This approach enables us
to investigate the mechanisms that control the structure and spatial distri-
bution of different biological populations. The question of the influence of
environmental factors on the distribution patterns of species, as opposed to
internal factors such as behaviour and species interactions, remains a topic
of discussion in the ecological literature (Hutchinson, 1953; Jumars and
Eckman, 1983; Camazine et al., 2003). Given suitable data, our approach
allows a detailed investigation of the influence of environmental conditions
and interactions between species, which can potentially revolutionize our
understanding of the dispersion and aggregation patterns of biological pop-
ulations.
We are currently planning a collaboration with ecological colleagues (see
Jørgensen et al., 2011a) in order to obtain further data that can verify the
hypotheses discussed here in practice. We are also developing the statistical
methods required for such an investigation, as outlined above. A further
goal is to be able to make predictions and simulations of the spatial distri-
bution of biological populations. We plan to achieve this by developing a
multivariate Tweedie distribution, based on the results of Jørgensen (2011).
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sizes, one of which can be translated into an incomplete data setting. We pro-
pose and compare different marginal estimation methods (generalized estimating
equations (GEE), weighted GEE, pseudo-likelihood (PL), weighted PL, within-
cluster resampling). The two settings are illustrated by a veterinary epidemiology
example with herds as clusters, and a development toxicity example with litters
as clusters.
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1 Introduction

Correlated outcome data appear in many applications and there are a num-
ber of alternative modelling approaches available nowadays. Here we focus
on marginal approaches, not including full likelihood (the specification of
which is considered too cumbersome in many situations): generalized esti-
mating equations (GEE) and pseudo-likelihood (PL).
Typically, one considers the following marginal interpretations. A ‘non-
hierarchical’ interpretation refers to the mean parameter as the mean for
a typical member of the population of all members (over all clusters). A
‘hierarchical’ interpretation refers to the mean parameter as the mean for
a typical member of a typical cluster of the population of clusters. Both
interpretations are marginal but are different in the way they reflect the
hierarchical structure represented by the clusters. The second hierarchical
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interpretation corresponds to marginal analyses using weighted GEE or
PL, with weights equal to the inverse of the cluster size.
This paper focuses on the analogy of non-ignorable cluster size with in-
complete data, by studying two similar but different settings. One setting
is characterized by the first data example on Bovine Herpesvirus-1 (BHV)
in Belgian cattle herds (Boelaert et al 2000), with the objective to estimate
the age-dependent prevalence of Bovine Herpesvirus-1. The other setting
is characterized by data from a developmental toxicity study, investigating
the dose-response relationship in mice of the potentially hazardous chem-
ical compound di(2-ethylhexyl)phthalate (DEHP, used as plasticizers for
numerous plastic devices made of polyvinyl chloride, see Tyl et al 1988).
In Section 2 we formalize the two different settings of non-ignorable cluster
sizes. GEE and PL based marginal analyses are applied to the two data
examples in Section 5. The paper ends with concluding remarks and topics
of future research.

2 Methodology

Sizes of complete and incomplete clusters

Consider a population of clusters and assume we are interested in the es-
timation of the marginal parameter θ = E(yij), the mean of the outcome
for subject j within cluster i = 1, ..., N (with N the number of clusters). In
the first example yij refers to the indicator whether animal j within herd
i has been infected or not, in the second example to the indicator whether
fetus j within litter i is malformed or not. Given N , one observes cluster
sizes (m1, ...,mN ).
Given N and mi, one observes subject-level outcomes yij , j = 1, ...,mi and
missingness indicators δi = (δi1, ..., δimi) with δij = 1 if yij is observed and
0 otherwise. Finally, denote ni =

∑mi
i=1 δij the total number of observed

outcomes for cluster i. The ni are referred to as the “incomplete-cluster
size” as opposed to the (complete-)cluster sizes mi.
Different situations (not shown and discussed here) can be distinguished
depending on the nonignorability of ni and/or mi, and whether mi and/or
ni is ancillary to θ (not shown in this abstract). In case of nonignorability,

f(yij |xij , ni,mi) 6= f(yij |xij),
and consequently E(yij |xij , ni,mi) 6= E(yij |xij).
For the BHV data mi is the size of the herd and ni the number of animals
sampled from the herd (in this particular case mi = ni, as all animals were
tested). No outcomes are missing, but one can easily verify that herdsize
is non-ignorable. The herdsize can be thought of as a variable summarizes
several unobserved variables affecting the infection status of the animal.
For the NTP data mi is the number of implants of litter i. The mi is
expected to be ignorable for θ, but the incomplete cluster of viable fetuses
ni is non-ignorable.
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Marginal Approaches

The most popular marginal approach is undoubtedly generalized estimating
(confining all attention to the specification of the first moments of the
outcome; Liang and Zeger 1986) and variations such as GEE2 (Liang, Zeger
and Qaqish 1991). Next to GEE, PL methods (Arnold and Strauss 1991)
have become popular as an alternative to GEE and GEE2. Rather than
modifying the ‘independent’ score equations, the full likelihood is simplified
and replaced by a more manageable ‘pseudo-likelihood’. Both approaches,
GEE and PL, share statistical performance characteristics (e.g. efficiency,
robustness) as compared to full likelihood (Geys, Molenberghs and Lipsitz
1988).
If the outcome measured among cluster members is independent of cluster
size (i.e., if cluster size is ignorable), then weighted or unweighted GEE
analyses produce equivalent results, and the GEE analyses may be opti-
mized by using a more appropriate working correlation than the one corre-
sponding to independence. When cluster size is non-ignorable however, the
two marginal analyses are different and GEE should be based on the inde-
pendence working correlation. Williamson, Datta, and Satten (2003) and
Benhin, Rao and Scott (2005) proposed the weighted GEE to deal with
non-ignorable cluster size as an alternative to the computation intensive
within-cluster resampling approach of Hoffman, Sen, and Weinberg (2001).
In this paper we also consider pairwise PL and the conditional version of
PL in combination with weighing with the inverse of the cluster size and
within-cluster resampling.

3 Analysis of BHV data

Table 1 shows estimated parameters of the model. In this section the age-
dependent prevalence of BHV

P (animal tests positive|age) = expit (β0 + β1age)

based on different GEE and PL based models. The upper part refers to,
from left to right: GEE with independence and next with exchangeable
working correlation, cluster weighted GEE with independence and next
with exchangeable working correlation, within cluster resampling GEE with
one animal resampled per herd, within cluster resampling GEE with two
animals resampled per herd (if available, otherwise one single animal) with
independence and next with exchangeable working correlation. The lower
part, first two columns to the left, refers to two repeated analyses based on
within cluster resampling full likelihood Dale model (Dale 1986) with two
animals resampled per herd (if available, otherwise one single animal). The
next columns on the lower part are all PL estimates: pairwise likelihood
based on the Dale model using weights w1i = 1/(ni − 1), next w2i =
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CW- CW- WCR- WC2R- WC2R
GEE- GEE- GEE- GEE- GEE GEE- GEE-
IND EXCH IND EXCH (100R) IND(100R) IND(100R)

β̂0 -1.175 -1.362 -1.615 -1.762 -1.600 -1.608 -1.651

se(β̂0) 0.182 0.134 0.153 0.210 0.139 0.151 0.156

β̂1 0.017 0.019 0.017 0.018 0.017 0.017 0.018

se(β̂0) 0.002 0.002 0.003 0.002 0.002 0.003 0.003

WCR-D WCR-D 2PLD 2PLD 2PLD 2PLD WC2R-PL-
(100R) (100R) w1 w2 w3 w4 D(100R)

β̂0 -1.646 -1.650 -1.215 -1.599 -0.842 -1.624 -1.664

se(β̂0) 0.116 0.145 0.178 0.150 0.283 0.135 0.135

β̂1 0.018 0.018 0.018 0.017 0.014 0.018 0.019

se(β̂1) 0.001 0.002 0.002 0.002 0.003 0.002 0.002

ÔR 11.847 10.533 11.604 10.591 12.376 10.229 8.980

se(ÔR) 2.733 1.704 2.340 2.022 3.810 1.783 1.834

TABLE 1. BHV estimated models according to dif-
ferent GEE based and PL model strategies. Weights:
w1i = 1/(ni−1), w2i = 1/{ni(ni−1)}, w3i = 1, w4i = 1/{(1+0.5∗(ni−1))(ni−1)}.

1/{ni(ni − 1)}, then w3i = 1 (no weights), and finally w4i = 1/{(1 + 0.5 ∗
(ni−1))(ni−1)}. The final right column refers to within cluster resampling
where two pairs are resampled per herd (if available), and using the Dale
model. Within cluster resampling was always combining the results of 100
runs. As expected, the estimates of CW-GEE-IND are in line with the
WCR-GEE-IND, WCR2-GEE-IND and WCR-D. It is also clear that PL
needs a careful consideration of the different weighting options (combining
PL-weights with cluster weights). Using no weights (w3i = 1) leads to a
biased estimate for the intercept.

4 Analysis of NTP data

The dams were sacrificed, slightly prior to normal delivery, and the status of
uterine implantation sites recorded. A total of 1082 live fetuses were exam-
ined for malformation, coded as a binary indicator. Fetuses were clustered
within mothers; hence the implied association needs to be accommodated
in the analysis. Table 2 suggests clear dose-related trends in the malforma-
tion rates. The average litter size (number of viable animals) decreases with
increased levels of exposure to DEHP. This setting is different in nature as
compared to the BHV-example. Indeed, the number of implants mi of litter
i is not related to any outcome, whereas the number of viable fetuses ni of
litter i can be seen as the result of a non-ignorable missing data mechanism.
It is well-known in the missing data context that, while ignorability only
requires the relatively general missing at random assumption for likelihood
and Bayesian inferences, this result cannot be invoked when popular non-
likelihood- based method, such as GEE and PL. Molenberghs et al (2011)
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Litter
]Dams,≥ 1 Size Malformations

Exposure Dose Impl. Viab. Live (mean) Ext. Visc. Skel.

DEHP 0 30 30 330 13.2 0.0 1.5 1.2
44 26 26 288 11.1 1.0 0.4 0.4
91 26 26 277 10.7 5.4 7.2 4.3
191 24 17 137 8.1 17.5 15.3 18.3
292 25 9 50 5.6 54.0 50.0 48.0

TABLE 2. NTP summary data for DEHP. The dose is in mg/kg/day.

propose a suite of corrections to the standard form of pseudo-likelihood,
to ensure its validity under missingness at random. Their corrections fol-
low both single and double robustness ideas, and is relatively simple to
apply. Molenberghs et al (2011) illustrate that the naive complete case PL-
analysis and its weighted version show greatly inflated standard errors, due
to the dramatic sample size reduction (only 23 complete litters out of 108
litters with at least one viable fetus). They also proposed a doubly robust
version in this setting, which is efficient while it does not even need an
explicit model for the missingness probabilities.

5 Discussion

We can conclude that informative cluster sizes do occur more often in the
analyses of clustered data than often anticipated. Williamson et al (2007)
illustrate the use of weighted GEE in a condom use study. In this case,
the cluster would be the subject and the individual sex act would be the
observation (subunit) within the cluster. Loquiha (2010) studied maternal
mortality in Mozambique, and he used weighted GEE to take the numbers
of admissions to the health centers as non-ignorable cluster sizes into ac-
count. A setting which fits into the missing data context appears in the
study of factors associated with periodental disease. Here, data are avail-
able on the disease status of each tooth of an individual, but as persons
with poor dental health are likely to have fewer teeth than do persons with
good dental health, number of teeth is non-ignorable.
Our study indicates that results of GEE and PL approaches are very com-
parable, at least if appropriate weights are chosen. Pseudo-likelihood is es-
pecially appealing in the case of high-dimensional multivariate outcomes,
of different nature (mixed continuous and categorical). Simulations are
planned to examen their performance further, in different settings.
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Abstract: Mortality decreased in all countries in the European Union in the
last century, presenting similar patterns in the change in mortality. Despite these
similar trends, there are still considerable differences in the levels of mortality in
these countries and between men and women. The aim of this article is to adjust
and predict mortality and life expectancy at birth for both sexes, in 16 countries
in the European Union, modifying the Lee-Carter model with the inclusion of
a spatial component. Mortality is decreasing in these countries, and the histori-
cal difference between sexes is disappearing, but differences between the studied
countries remain.

Keywords: Bayesian Lee-Carter; Europe; Mortality; Spatial.

1 The model

One of the most common models used for the representation of the evolution
of mortality and also one of the most used nowadays by actuaries and
demographers is the Lee-Carter model (Lee and Carter, 1992). This model
and its different extensions have been applied by many authors. The work
of Pedroza (2006) in the Bayesian framework is of especial interest. In this
paper we propose a Lee-Carter model which modifies mortality specifically
for countries that belong to a group by the inclusion of a geographic factor.
The Lee-Carter model with a spatial component that we suggest can be
formulated as follows,

log

(
qxtr

1− qxtr

)
= ax + bxkt + Sr + εxt, (1)

where x refers to age, t to the year of death and, r to countries to be
included in the model, ax, bx are vectors of unknown parameters, kt is
an unobserved time series process and Sr is the spatial random effect. εxt
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errors are assumed to be independent and identically distributed according
to a normal with mean 0 and common variance σ2

t . This model permits the
comparison between countries by means of a simple Index, Sr.
Under the Bayesian paradigm, the researcher can incorporate his knowledge
about the matter he is dealing with as a priori information. Afterwards this
information is combined with the observed data to obtain the a posteriori
distribution of the parameters about which inference is expected to be
carried out. Moreover, the Bayesian estimation first requires the likelihood
function to be provided, in our study, the Lee-Carter model extended with
the spatial component, and the a priori distributions of the parameters of
interest. Here, non-informative distributions were chosen for the parameters
ax, bx, kt together with non-informative distributions for the variances of
parameter σ2

t . To be precise, we have chosen a distribution N(0, σ2
t ) with

σ2
t ∼ Gamma(0, 0.001). The initial a priori distributions for the starting

point b0 and k0 were assumed to be 1 and 0 respectively. In order to study
the spatial dependence Sr, we chose a conditional autoregressive model
CAR(σ2

r) (Besag, 1974; Clayton, 1993) with σ2
r ∼ Gamma(0, 0.001) as

an a priori distribution. This approximation, the most common and the
simplest computationally, approximates the spatial dependence as a mean
of the spatial effect of its nearby areas.
In order to implement the Bayesian model, it is necessary to obtain the
a posteriori distribution of all the parameters of the model. However, the
posterior distribution inference is analytically intractable. Instead, several
MCMC algorithms have been proposed to obtain the posterior distribu-
tion of the parameters. To be precise, we used Gibbs sampler (Geman and
Geman, 1984; Gelfand and Smith, 1990) to draw samples from the joint
posterior distribution. This algorithm consists of iteratively sampling from
the conditional distribution of each of the parameters given, assigning val-
ues to all the other parameters and the data. We used the Winbugs software
to fit the model and perform all the posterior inference.
We ran three different chains using 2,500 iterations for the Gibbs sampler,
with different over-dispersed starting values. We took the first 500 as burn-
in and in the end we obtained a sample for each parameter by selecting
the last 2,000 values of each one of the chains. Results presented here
are based on the combined 6,000 draws from the posterior distribution.
The convergence of the chains was checked by using the Gelman-Rubin
statistic (Gelman and Rubin, 1992) implemented in the R-CODA package
(Plummer et al. 2009). Values lower than 1.1 suggest that convergence
has been reached. We have calculated the Gelman-Rubin statistic for the
parameters of the model, and in all of them, values lower than 1.01 are
reached, indicating convergence.
The last step of the Lee-Carter model consists of fitting a temporal series
in the index kt. In order to carry out predictions of the Lee-Carter model,
within the Bayesian framework, the work of Pedroza (2006), has to be
considered. This paper carries out predictions for future years by means of
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Gibbs sample, following two steps:

1. First drawing the kt from a normal random distribution with the
correct parameters estimated from the data

2. Then, given the kt, drawing the log mortality rates from a normal
distribution with corresponding parameters.

Our proposal consists of fitting a temporal series to the index kt by us-
ing the Box-Jenkins methodology. We decided to use standard adjustment
since it provides consistent predictions. However, one disadvantage is that
predictions in this model are only based on the variation of one parameter
assuming the variabilities provided by the geographic component and age
are constants .

2 Application

We analyse mortality in both sexes and for 16 countries in the European
Union (Germany, Austria, Belgium, Denmark, Spain, Finland, France, Hol-
land, Ireland, Italy, Luxembourg, Portugal, the United Kingdom and Swe-
den), using the Bayesian Lee-Carter model, and adding a geographical com-
ponent for the period 1989-2006. Data have been obtained from Human
Mortality Database (2009). These data have mortality details by individ-
ual age and year for each country. We used data from 1989 to 2006 in order
to adjust. As we wanted to consider Germany as one country we chose 1989
since it set a historic milestone caused by the fall of Berlin Wall and the
unification of Germany
Figure 1 shows the exponented spatial effects during the years 1989- 2006,
the main conclusion is the convergence of differences in European mortality
due to gender.
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Abstract: Empirical Bayes (EB) is a very appealing technique for tasks in
which many outcomes of the population do not occur in the sample. In these
tasks, it is necessary to estimate sparse probabilities and the EB is known to
provide good estimates. However, EB estimates have two main drawbacks: they
may be non-monotonic and under some circumstances they cannot be computed.
This work presents a framework to constrain EB method by means of its equiva-
lence with the leaving-one-out estimation. Two solutions are derived that amend
the previous problems by applying two different sets of constraints: interval and
monotonic. The typical application (for us) is language modelling.
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constraints.

1 Introduction

We assume a random sample to be drawn from a large population of out-
comes. If a particular outcome is observed r = 0, 1, 2, . . . times in a sample
of size N , then the maximum likelihood (ML) estimate r/N is not a good
estimate of the population probability, pr, when r is small. The probability
of infrequent outcomes is referred to as small probabilities by Good (1953).
The small probabilities estimation is a common problem in several tasks
such as language modelling, see Ney et al (1997), where the majority of the
outcomes are not observed in the sample.
The Empirical Bayes (EB) is a Bayesian approach in which the unknown
prior distribution is estimated from the sample after making suitable as-
sumptions, see Good (1953) and Robbins (1956). EB uses the posterior
mean as an estimator for the population probabilities. First, we assume that
the observed counts follow a binomial distribution; and then the population
probability for an outcome that has occurred r times is approximated by

pr = r+1
N+1

EN+1(r+1)
EN (r) ≈ r+1

N
EN (r+1)
EN (r) , (1)

where EN (r) is the posterior mean of the count. It is worth noting that
the posterior mean is computed over an unknown prior distribution. The
posterior means in Eq.(1) are approximated by their observed value nr as
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follows
pr ∼= 1

N (r + 1)nr+1

nr
, (2)

where nr denotes so-called counts-of-counts (COC), which count for the
number of outcomes that have been observed r times in the sample, i.e.,
there are nr outcomes with a count equal to r.
This variant of EB provides good estimates for small probabilities by shift-
ing probability mass from the outcomes that are frequently observed in the
sample to those outcomes that are rarely observed. However, the EB esti-
mates do not require the probabilities pr to be increasingly monotonic with
r. Moreover, the EB estimates in Eq. (2) cannot be computed (or are 0) if
nr (or nr+1) is equal to 0, which specially happens for frequent outcomes.
Consequently, the reliability of the probability estimates depend on the
observed COC. Ensuring monotonicity while retaining the good properties
of EB estimates is very difficult from the EB perspective even making fur-
ther assumptions. In this work, we will constrain the probabilities, pr, in
order to ensure monotonicity by means of leaving-one-out. In the following
sections, two set of constraints will be proposed.

2 Leaving-one-out estimation

The leaving-one-out (LOO) estimation as an equivalent derivation of the
EB estimates was suggested in Nadas (1985). As in the ML case, we form
equivalence classes by grouping all outcomes with the same count r in the
class modelled with the probability pr. The LOO estimation is based on
rounds where one outcome observation plays the testing role whereas the
remaining observations play the training role. In a given round a sample
observation of an outcome, is left out for testing; and a model is trained
with the remaining observations in order to predict the probability of the
left out observation. The sample counts are then modified accordingly. For
instance, if an outcome has been observed r times, then it is moved to the
equivalence class r−1. The LOO log-likelihood is obtained by repeating
this process for all observed counts r = 1, . . . , R as follows

F ({pR−1
0 }) =

∑R−1
r=1 (r + 1)nr+1 log pr + (n1 − 1) log p0 (3)

≈ ∑R−1
r=0 (r + 1)nr+1 log pr (4)

where the probability of the most frequent outcome, pR, is assumed to
be given, e.g. relative frequency R/N ; and where we assumed that pR0 =
p0, · · · , pr, · · · , pR are normalised, i.e., they sum up to 1. This constraint
can be expressed in the Lagrangian function as follows

F ({pR−1
0 }, λ) =

∑R−1
r=0 (r + 1)nr+1 log pr + λ(

∑R
r=0 nrpr − 1) , (5)

where λ is a normalisation constant. The solution to the maximisation of
Eq. (4) is obtained by equalling to 0 the gradient of the Lagrangian

pr = (1− R
N ) 1

N (r + 1)nr+1

nr
≈ 1

N (r + 1)nr+1

nr
, (6)
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which is equivalent to the EB estimates in Eq.(2). In the remaining, we will
show how EB can be constrained under the LOO framework.

2.1 Leaving-one-out with interval constraints

In order to ensure monotonicity EB estimates can be constrained to be in
monotonically increasing intervals as follows

p0 ≤ 1
N ,

r−1
N ≤ pr ≤ r

N r = 1, . . . , R− 1 . (7)

Conceptually, in order to assure monotonicity an additional constraint
would be necessary p0 ≤ p1, even though this constraint is not active in
practice. Anyway, the proposed algorithm can be easily extended to include
this additional constraint.
In order to find the optimal set of parameters that maximise Eq. (4) con-
strained by Eq. (7); we consider the estimates pR0 as a function of the
unknown normalisation parameter λ. For doing so, we apply the Karush-
Kuhn-Tucker (KKT) conditions and the water-filling method, see Boyd et al
(2004), obtaining the following solution

pr(λ) = max{ r−1
N ,min{ 1

λ (r + 1)nr+1

nr
, rN }} . (8)

Then, the value of λ is obtained by reformulating the normalisation con-
straint as follows

Q(λ) =
∑R
r=0 nrpr(λ) (9)

with pR(λ) fixed. Finally, the optimal value of λ must satisfy Q(λ) = 1.
Since the normalisation function λ 7→ Q(λ) is monotonically decreasing, it
is straightforward to find the optimal value of λ.

2.2 Leaving-one-out with monotonic constraints

Interval constraints force the EB estimates to be in a narrow interval. A
more flexible set of constraints that also ensures monotonicity are proposed
here

pr ≤ pr+1 r = 0, 1, . . . , R− 2 (10)

where as usual pR is kept fixed and not estimated.
The solution to such maximisation problem will result in segments [rk, rk+1]
of constant probabilities qk for k = 1, . . . ,K such that:

. . . = prk−1︸ ︷︷ ︸
qk−1

< prk = . . . = prk+1−1︸ ︷︷ ︸
qk

< . . . < prk+1
= . . .︸ ︷︷ ︸

qk+1

, (11)

with the following boundary conditions: r0 ≡ 0 and rK = R− 1.
The optimisation problem consists in finding these segment boundaries
rK0 and the probability of each segment qk. The probability estimates qk
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for each segment [rk, rk+1], are computed as a function of the unknown
segmentation, rK0 . The optimal values are given by q̂k = q(rk, rk+1 − 1),
where

q(r′, r) = 1
λ

A(r′,r)∑r
s=r′ ns

, 0 ≤ r′ ≤ r < R− 1 (12)

with A(r′, r) =
∑r
s=r′(s + 1)ns+1, and with λ being a normalisation con-

stant independent of the segmentation, λ = N/(1 − nRpR). The optimal
segmentation is found by the following recurrence

F (r) = max
r′≤r : pr′<pr

{F (r′−1)+A(r′, r) log(q(r′, r))} , (13)

and tracing back the optimal boundaries used for computing F (R− 1).

3 Language modelling

One of the applications of EB is language modelling (LM). LM consists in
computing the probability of a given sentence. In this task all the possible
sequences of words up to a given length are considered the population and
each specific sequence as an outcome. In Andrés-Ferrer and Ney (2009)
experiments are reported for the interval constrained estimates applied to
a large language modelling task (1.7 million of running words).
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Abstract: To predict the long-term persistence of vaccine-induced anti-HPV-
16/18 and to obtain the estimated time points where the individual titers are
below the threshold value for protection, a fractional-polynomial model, derived
in a data-driven fashion, was used. Initially, model selection was done from among
the second-order fractional polynomial, first-order fractional polynomial, and lin-
ear mixed model. According to a likelihood ratio-test statistics, the first-order
fractional polynomial was selected. Apart from the fractional polynomial model,
we also applied a power law model, which is a special case of the fractional poly-
nomial model. Both models were compared with the AIC criterion. Within the
observation period, the fractional polynomials fitted the data better than the
power-law model; this does not imply that it fits best over the long run. There-
fore, we point out that the persistence of the anti-HPV responses induced by these
vaccines can only be ascertained empirically by long-term follow-up analysis.

Keywords: Fractional Polynomial Model; AIC; Power-law Model

1 Introduction

During the 1990s, epidemiological studies, supported by molecular technol-
ogy, provided evidence on the causal role of some human papillomavirus
(HPV) infections in the development of cervical cancer (Bosch et al. (2002)).
In recent years, much attention has been paid to the possibility of vaccina-
tion against HPV as a means of preventing cervical pre-cancerous lesions
and cancer. David et al. (2009) studied the HPV data set, which records
information until 75 months. The authors used a conventional power-law
model as well as a modified power-law model. However, the first model is
limited by the assumption of a progressive decay of antibody and antibody-
producing B-cells, while the second model model assumes, in addition,
that the proportion of memory B-cells remains stable and identical for
all women, which is biologically unlikely.



50 Long-Term Persistence of Induced HPV Antibodies:

With these considerations in mind, a modeling endeavor was undertaken to
define the long-term duration of vaccine induced anti-HPV. The objective
of this paper is to predict the long-term persistence of vaccine-induced anti-
HPV-16 and anti-HPV-18 antibodies, to obtain the estimated time point
above the threshold value, and also to predict the proportion of subjects
above the threshold value with flexible fractional-polynomial model.

2 Motivating Data Set

The data consist of healthy women aged 15–25 years. In the initial phase,
blood samples from the 514 women who came from North America (USA
and Canada) and Brazil, were evaluated at months 0, 7, 12, and 18 and
annually thereafter up to month 90 after first vaccination, for the presence
of HPV-16/18 antibodies using a type-specific enzyme-linked immunosor-
bent assay (ELISA). For the current evaluation, we included women who
had received three doses of AS04-adjuvanted HPV-16/18 vaccine and had
at least one time point after the third dose with serology results available
for at least one vaccine antigen component.

3 Exploratory Data Analysis

The individual profile curves reveal substantial variability between sub-
jects. From the evolution of the mean, we noticed that the decline in anti-
body level is higher in the first few months, followed by a moderate decrease
until the end of the follow up period. The observed variances for each cat-
egory month indicates that the variance is not constant over time which
means that a random intercept model might not be an appropriate model
for these studies.

4 Modeling the Mean Antibody Using
Subject-specific Fractional Polynomials

Fractional polynomials(Royston and Altman(1994)) were proposed as flex-
ible parametric approach in order to describe the dependency between a
response of primary interest and a covariate. In our example, the response
of primary interest is log-transformed antibodies and the covariate is time.
The mean structure of a fractional polynomial model can be formulated in
the following way:

m∑
i=0

βiHi(t) +

m∑
i=0

biHi(t), (1)

where m is an integer, p1 ≤ p2 ≤ · · · ≤ pm is a sequence of powers and
Hi(a) is a transformation function given by

Hi(t) =

{
tpi if pi 6= pi−1,
Hi−1(t)× log(t) if pi = pi−1,

(2)
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with p0 = 0 and H0 = 1. Note that, to take subject heterogeneity into ac-
count, we assume two components in the mean structure. The first consists
of the fixed parameters β and the latter the subject-specific parameters bi.
For the analyzes presented here, a first order (m = 1) and second order
(m = 2) fractional polynomial was used. Hence, the mean structure for the
first order mixed fractional polynomial can be written as

f(tij) = (β0 + b0i) + (β1 + b1i)t
p1

ij

Here, b0i and b1i are subject specific parameters. Note that for p1 = 0 the
factional polynomial model is reduced to the power low model.In this study
we used a fractional-polynomial mixed model with serial correlation.

5 Long Term Prediction Using Subject-specific
Fractional Poynomials

In the first stage, we selected the model for the serial correlation process
and the fractional polynomial model for the mean structure. Four models
for the serial correlation process were considered: (1) a model without serial
correlation process, (2) a local exponential model, (3) Gaussian serial corre-
lation, and (4) exponential serial correlation. To select the power of the frac-
tional polynomial, powers in the range {−3,−2.75,−2.5, . . . , 2.5, 2.75, 3}
were considered. For HPV-16, the model with the smallest AIC obtained
for the p = −1.5 while for HPV-18 the power is equal to −1.25. For HPV-
16, the best serial correlation model is the local exponential model (AIC=
201.5) while for HPV-18 the Gaussian serial correlation model is the model
with the best goodness-to-fit (AIC= −317.9). Next, a second-order FP was
fitted and the so-called Function Selection Procedure (FSP)(Royston and
Sauerbrei (2008)) was applied. The first-order FP, reported above, are to
be preferred. For each subject in the study, the time to cross a given thresh-
old value, tτ , can be calculated from the predicted serological result. Three
different threshold values(τ) were used. For HPV-16; 1.474,2 and 2.58, and
for HPV-18; 1.355, 2, and 2.409. We noticed that for lower threshold (1.47
and 1.355 for HPV-16 and HPV-18, respectively) the proportion of unpro-
tected subjects is 0.002% (1 subject only) for HPV-16 and HPV-18. For
τ = 2, 93.2% (90.7, 95.1) and 85.8% (82.5, 88.6) are protected during 25
years for HPV-16 and HPV-18, respectively. Figure 1 shows the long term
predicted means for 25 years

6 Discussions and Conclusions

In summary, based on a fractional polynomial model and follow-up data for
more than 500 vaccinated women, we are able to predict that vaccination
with the AS04-adjuvanted HPV-16/ 18 vaccine induces persistence of both
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FIGURE 1. Long term(25 years) Prediction for HPV-16

anti-HPV-16 and -18 antibodies for at least 25 years. In this study, the
results of long-term prediction using a fractional polynomial model corrob-
orates the findings of previous work which is done on the same data set
up to 75 months with a modified power-law model by David et al. (2009).
Both models feature a long term plateau. The modified power-law model
introduces bias towards a plateau in predicting long-term antibody levels.
However, the fractional polynomial model is very flexible (Royston and
Altman (1994)), being a data-driven method.
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Abstract: Bayesian model selection within the regression framework is discussed
to assess the progression of chronic kidney disease in transplanted children.
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1 Introduction

Chronic kidney disease (CKD), is a progressive loss of renal function: kid-
neys lose their ability to remove wastes, concentrate urine and conserve the
electrolytes in the blood. It is irreversible and therapies can only slow down
the progression of the disease. CKD has five stages of increasing severity
which are determined by the glomerular filtration rate (GFR). Patients in
stage V, also known as End-stage renal disease, require replacement ther-
apy, dialysis or kidney transplant, to keep them alive.
Transplantation, if available, is always the best option because the renal
function is largely recovered. But it is not a definitive therapy and renal
function loss, after transplantation, occurs in a very complex process which
is mostly studied in adult but poorly understood in paediatric populations
(Areses et al., 2010).
In this paper we discuss the possible relationship between GFR, which
determines the severity of the disease, and time after transplantation in
transplanted children with regard to some patient and donor covariates
which could be relevant.

2 Data and variables

Data come from 57 children who have been transplanted for more than
one year in the Comunitat Valenciana (CV), an autonomous region in the
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east of Spain. They are a cross-section of an observational study aimed to
follow-up the evolution of transplanted children in CV.
GFR at the time of the study is recorded together with some patient co-
variates measured at different periods of time: age of the patient, previous
transplants and time in dialysis at transplantation time; GFR, presence of
antihypertensive medication, rejection episodes, proteinuria and microalbu-
minuria in urine from a general revision after 12 months of the transplant;
and post-transplant time at the cross-sectional time. Information from the
donor includes age and her/his, alive or cadaveric, condition. Units of mea-
surement for times are always months.

3 Bayesian model selection

The general framework of this study is multiple linear regression. Bayesian
variable selection is firstly considered due to the excessive number of covari-
ates initially in the dataset. Nephrologists in the team consider GFR after
12 months of transplantation, post-transplant time, previous transplants
and antihypertensive medication as important, necessary and undisputable
in the model. These covariates will be considered as fixed in the model
and generate the so-called base model M0. The variable selection proce-
dure will only affect to the rest of covariates, a total of seven variables,
which generate a total of 27 possible different regression models Mi:

Y = X0β0 +Xiβi + ε, ε ∼ Nn(0, σ2In), i = 0, . . . , 27 − 1

where X0 and X = [X0, Xi] are, respectively, the design matrix associated
to the base model M0 and model Mi, β0 and (β0, βi)

T the corresponding
vectors of regression coefficients and ε the random error with variance-
covariance matrix σ2In.
Bayesian approach to model selection is based on the posterior distribution
for all the candidate models. This information is equivalently expressed in
terms of Bayes factor in favor of model Mi and against model M0, which
compares the support of the data for both models, and prior probabilities
for all candidate models. Bayes factors depend on the prior distribution for
the parameters of the model and for this reason, the elicitation of prior dis-
tributions is a key point in this general procedure. Default improper priors
generally provides undetermined Bayes factors and subjective elicitation is
a colossal task, practically impossible, because of the enormous quantity of
prior distributions required.
Objective Bayesian methods for assessing prior distributions for the param-
eters of all the models are considered. In particular, we take into account
the proposal by Forte (2011) based on the so-called Conventional approach
(Berger and Pericchi, 2001, and references there) and invariance elements
for selecting objective prior distributions for the parameters of all the pos-
sible models which provide determinated and closed-form expressions for
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the corresponding Bayes factors. It considers the usual Jeffrey’s prior for
common parameters (the ones in the base model), πi(β0, σ) = 1/σ, and
the conditional prior distribution:

πi(βi | β0, σ) =

∫ 1

0

Nki(βi|0, (
λ−1(1 + n)

(ki + k0 + 1)
− 1) Σ)π(λ) dλ

with π(λ) = λ1/2/2 and λ ∈ [0, 1], for the rest of the βi parameters of the
different models Mi, where k0 and ki are, respectively, the dimension of vec-
tors β0 and βi and Σ is the variance-covariance matrix of β̂i, the MLE of βi.
Following Scott and Berger (2010), which account for multiplicity control
in the election of prior distributions over the model space, the prior distri-
bution for all candidate models has been selected as p(Mi) = C(7, ki)

−1/8,
where C(7, ki) is the number of ki-combinations of 7.

4 Selected model

After computing the posterior probability for all candidate models the se-
lected model will be the one with highest posterior probability. The poste-
rior probability for the chosen model is 0.31 and it includes, jointly with
covariates in M0, the age of the patient at transplantation time. For the
second candidate model, which adds proteinuria to that best model, the
posterior probability turns out 0.09. In addition, the inclusion probability
for each one of these covariates, defined as the sum of the posterior proba-
bilities for models which contain it (Barbieri and Berger, 2004), is 0.86 for
the age of the patient at transplantation time and 0.32 for proteinuria.
Following the general Bayesian approach to regression models Y = Xβ+ε
with ε ∼ Nn(0, σ2In), the posterior distribution for the expected GFR for
patients with covariate vector value Xc can easily computed from the joint
posterior distribution (O’Hagan, 1993):

p(E(Y|Xc), σ
2|data) =

= p(E(Y|Xc) | σ2, data) p(σ2|data)

= Nk

(
XT
c β̂, σ

2XT
c (XTX)−1Xc

)
IG
(n− r

2
,
σ̂2(n− r)

2

)
,

where n is the sample size (57 in our case), k the dimension of the model

(here 6), β̂ and σ̂2 the usual MLE estimates of β and σ2 respectively and,
IG(a, b) stands for an inverse Gamma distribution.
Figure above displays the posterior mean of the posterior distribution of the
expected GFR with regard to post transplant times, in months, for patients
with no previous transplants who follow antihypertensive treatment and
have covariables values in the model around the mean. Lines in red are the
threshold for the different stages of the disease. The expected GFR shows
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a clear decreasing pattern with post-transplant time and provides direct
information about the progression time of the disease.
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Llorenç Badiella1, Emilio Letón2, Elisa M. Molanes-López3,
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Abstract: Receiver Operating Characteristic (ROC) curves are used to evaluate
the accuracy of quantitative tools. The area under the ROC curve (AUC) is a
global summary index of the accuracy of a diagnostic test. AUC is commonly
estimated using an empirical nonparametric method based on the Mann-Whitney
statistic. In this manuscript, we introduce a new approach for constructing non-
parametric confidence intervals for the AUC based on logistic regression with
random effects. Using several simulated scenarios, this method is compared to
other existing methodologies. A real example is used to illustrate the new ap-
proach.

Keywords: AUC; GLMM; Mann-Whitney statistic.

1 Introduction

In many scientific areas, ROC curves are used to evaluate the accuracy of
quantitative diagnostic tools (biometric markers in medical applications,
psychometric tests in psychology, predictive models in machine learning,
credit scorings in banking, etc.) in order to distinguish individuals with
some trait of interest (a certain disease in medical diagnostic tests) from
the rest of individuals.
The ROC curve is built as follows. Let X and Y be the results for a healthy
and a diseased subject and let SX and SY be their survival functions. As-
suming that higher test values are associated with the diseased population,
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for a given cut-off point c, the sensitivity (Se(c)) and specificity (Sp(c))
are given by:

Se(c) = P (Y > c) = SY (c) and Sp(c) = P (X ≤ c) = 1− SX(c).

The ROC curve is a plot of sensitivity versus 1-specificity for any value of
c. Based on this curve, there are different indexes to measure the diagnostic
accuracy from a local and global point of view. On one hand, the Youden
index (see, Le, 2006, Letón and Molanes-López, 2009, and Perkins and
Schisterman, 2006, among others), is a local index that at the same time
identifies an optimal cut-off point to be used in practice for classifying. On
the other hand, the area under the ROC curve, usually denoted as Θ or
AUC, is commonly used to summarize the global discriminatory ability
of a diagnostic test. This index can be interpreted as the probability that
a randomly chosen diseased subject will have a test value (measured in a
continuous scale) greater than that of a randomly chosen healthy subject
(Bamber, 1975), that is,

Θ = P (Y > X).

Moreover, α = Θ
1−Θ , known as Agresti’s α, can be interpreted as a gener-

alization of the Odds Ratio when the response variable is not binary.
In order to evaluate or compare several diagnostic tools, it is of special
interest to obtain confidence intervals for their AUC’s. In Section 2, several
traditional approaches for estimating AUC’s variability are summarized,
and a direct approach is introduced using logistic regression with random
effects. This approach provides confidence intervals within the scope of
generalized linear mixed models (GLMM) (Lee et al., 2006). A simulation
study is carried out in Section 3, where the new approach is compared to the
other methods. Finally, we analyze a motivating and illustrative example
in Section 4.

2 New method based on logistic regression with
random effects

Suppose that a diagnostic test is measured on m healthy subjects and n
diseased individuals. Let Xi and Yj denote the observations for healthy
subjects (i = 1, ...,m) and diseased individuals (j = 1, ..., n), respectively.
The empirical nonparametric estimation of AUC is given by:

Θ̂ = ÂUC =
1

mn

m∑
i=1

n∑
j=1

Ψ(Xi, Yj)

where

Ψ(X,Y ) =

{
1 X < Y
0 X > Y.
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The classical approach to estimate Var[Θ̂] is Bamber’s method (Bamber,
1975) which is based on the non-null distribution of the Mann-Whitney
statistic. Pepe (2003) suggested applying a logit transformation and use
the delta method, to obtain confidence intervals within the unit interval.
Other approaches, different in nature, frequently used to obtain confidence
intervals for Θ are based on empirical likelihood (Qin and Zhou, 2006, and
Qin and Hotilovac, 2008) and bootstrap resampling methods (Mossman,
1995, and Obuchowski and Lieber, 1998).
We propose here to estimate Θ in a direct way by means of a statistic
model using Ψ(Xi, Yj) as response variable, with m× n available observa-
tions. Although original test values are statistically independent, however,
Ψ(Xi, Yj) values are not, since observations sharing any of both indexes
are correlated. To take into account this fact, the model can be stated as
follows:

Wij = Ψ(Xi, Yj) = β0 + bXi + bYj + εij ,

where W is the response vector of length m× n, with elements denoted as
Wij , β0 = Θ is the expected value for the response variable, bXi ∼ N(0, σ2

X)
is a random term associated to the healthy subjects, bYj ∼ N(0, σ2

Y ) is
another random term for the diseased subjects and εij ∼ N(0, σ2

ε ) models
the random error term.
Taking into account the binary nature of the response variable and the
presence of random effects, this model belongs to the GLMM class. In our
case, the model can be stated as:

g(µij) = β0 + bXi + bYj ,

where g is a differentiable monotonic link function (usually a logit function
when the response is a binary variable), µij is the expected value of Wij

and β0 = log
(

Θ
1−Θ

)
, which corresponds to the logarithm of Agresti’s α

index.
This approach can be now evaluated using generic software, for example
using SAS PROC GLIMMIX with RMPL (Residual Marginal Pseudo Like-
lihood) method (Verbeke and Molenberghs, 2000).

3 Simulation study

In this section, we compare six different methods for constructing confi-
dence intervals for Θ: Bamber’s method without a logit transformation
(CIB), Bamber’s method with a logit transformation (CIBLogit), boot-
strap standard normal method (CIBootN ), bootstrap percentile method
(CIBootP ), empirical likelihood approach (CIEL), and our new method
(CIGLMM ). The comparison is based on coverage probability and length.
Different parametric models are considered for the diagnostic test:
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TABLE 1. Averaged coverages and lengths under Scenario 1

m = n = 20 m = n = 50 m = n = 100
Cov(%) Length Cov(%) Length Cov(%) Length

Θ = 0.5 CIB 0.938 0.361 0.944 0.227 0.948 0.160
CIBLogit 0.956 0.347 0.952 0.223 0.952 0.159
CIBootN 0.944 0.363 0.942 0.228 0.943 0.161
CIBootP 0.945 0.365 0.942 0.227 0.943 0.160
CIEL 0.963 0.361 0.960 0.227 0.955 0.160
CIGLMM 0.954 0.340 0.950 0.221 0.951 0.158

Θ = 0.7 CIB 0.928 0.322 0.941 0.203 0.942 0.144
CIBLogit 0.956 0.315 0.952 0.201 0.948 0.143
CIBootN 0.929 0.326 0.941 0.204 0.943 0.144
CIBootP 0.941 0.324 0.948 0.203 0.940 0.144
CIEL 0.956 0.323 0.958 0.205 0.951 0.144
CIGLMM 0.949 0.307 0.948 0.199 0.947 0.142

Θ = 0.9 CIB 0.893 0.185 0.928 0.118 0.941 0.083
CIBLogit 0.959 0.203 0.955 0.122 0.953 0.084
CIBootN 0.893 0.188 0.926 0.118 0.941 0.083
CIBootP 0.914 0.185 0.936 0.118 0.945 0.083
CIEL 0.917 0.190 0.953 0.124 0.958 0.086
CIGLMM 0.935 0.191 0.950 0.119 0.952 0.084

TABLE 2. Averaged coverages and lengths under Scenario 2

m = n = 20 m = n = 50 m = n = 100
Cov(%) Length Cov(%) Length Cov(%) Length

Θ = 0.5 CIB 0.931 0.371 0.950 0.235 0.943 0.166
CIBLogit 0.955 0.356 0.956 0.231 0.946 0.165
CIBootN 0.933 0.376 0.948 0.235 0.943 0.166
CIBootP 0.936 0.375 0.948 0.235 0.943 0.166
CIEL 0.957 0.365 0.956 0.233 0.947 0.166
CIGLMM 0.951 0.350 0.954 0.229 0.945 0.164

Θ = 0.7 CIB 0.932 0.337 0.942 0.212 0.940 0.150
CIBLogit 0.958 0.328 0.953 0.210 0.945 0.149
CIBootN 0.936 0.341 0.940 0.213 0.941 0.150
CIBootP 0.939 0.339 0.946 0.212 0.939 0.150
CIEL 0.959 0.334 0.955 0.212 0.946 0.150
CIGLMM 0.954 0.322 0.952 0.209 0.944 0.148

Θ = 0.9 CIB 0.875 0.197 0.919 0.127 0.933 0.090
CIBLogit 0.946 0.217 0.951 0.132 0.948 0.092
CIBootN 0.876 0.199 0.918 0.127 0.931 0.090
CIBootP 0.900 0.196 0.926 0.127 0.936 0.090
CIEL 0.908 0.202 0.950 0.130 0.951 0.092
CIGLMM 0.922 0.208 0.947 0.130 0.947 0.091
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- Scenario 1: X ∼ N(0, 1) and Y ∼ N(
√

2Φ−1(Θ), 1).
- Scenario 2: X ∼ N(0, 1) and Y ∼ N(

√
5Φ−1(Θ), 4).

- Scenario 3: X ∼ Exp(1) and Y ∼ Exp( 1
Θ − 1).

We have simulated 2,000 trials for each combination of Θ = 0.5 (null
accuracy), 0.7 (moderate) and 0.9 (high), with (m,n)=(20,20), (50,50),
(100,100). For the bootstrap-based confidence intervals we have used B =
200 bootstrap resamples.

TABLE 3. Averaged coverages and lengths under Scenario 3

m = n = 20 m = n = 50 m = n = 100
Cov(%) Length Cov(%) Length Cov(%) Length

Θ = 0.5 CIB 0.939 0.361 0.941 0.227 0.951 0.160
CIBLogit 0.955 0.347 0.945 0.223 0.955 0.159
CIBootN 0.940 0.366 0.939 0.228 0.948 0.160
CIBootP 0.946 0.365 0.936 0.227 0.947 0.160
CIEL 0.963 0.361 0.951 0.227 0.958 0.160
CIGLMM 0.949 0.340 0.945 0.221 0.955 0.158

Θ = 0.7 CIB 0.930 0.324 0.941 0.204 0.939 0.144
CIBLogit 0.964 0.316 0.949 0.202 0.945 0.144
CIBootN 0.933 0.328 0.938 0.205 0.941 0.144
CIBootP 0.941 0.326 0.945 0.205 0.942 0.144
CIEL 0.965 0.323 0.955 0.205 0.950 0.144
CIGLMM 0.957 0.309 0.948 0.200 0.945 0.143

Θ = 0.9 CIB 0.880 0.195 0.926 0.125 0.935 0.088
CIBLogit 0.946 0.214 0.951 0.130 0.949 0.090
CIBootN 0.880 0.197 0.925 0.125 0.934 0.088
CIBootP 0.903 0.194 0.933 0.124 0.939 0.088
CIEL 0.913 0.199 0.951 0.128 0.950 0.089
CIGLMM 0.924 0.204 0.948 0.127 0.946 0.089

Results of the simulation study are presented in Tables 1-3. They show that
the new method based on GLMM provides the smallest interval width and
at the same time appropriate coverage probability.

4 Example

In order to illustrate the methodology described above, a real example
is used. The study is based on 63 dogs from several races and ages, 35
out of them diagnosed as mitral insufficiency (Sánchez et al., 2010). The
diagnosis is usually based on VHS, a quantitative measure from a thoracic
radiograph, reflecting heart size and expressed on vertebral bodies units.
Confidence intervals of the AUC using the approaches described previously
are given in Table 4.
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Abstract: The date palm color is the main external quality feature which al-
lows the evaluation of its ripeness (kimri, khalal or rutab), thereby influencing
the decision of the consumer to purchase. This study characterizes spectrophoto-
metrically the various stages of maturation of fresh dates range Medjoul, using a
spectrophotometer Minolta CM-2600. Regarding the reflectance spectra (360-740
nm), we can differentiate the three states. The one we can differentiate clearer is
kimri state, since the spectrum shape is modified, mainly in wavelengths ranging
between 650 and 700 nm.

Keywords: Smoothness, P-splines, spectrometry , color, maturity

1 Introduction

The appearance of food is of great importance in the food industry. Color
is the quality parameter with the largest influence on consumer purchasing
criteria and color is also related to technological treatments or degradation
processes (Maroulis and Saravacos 2003). Therefore, an objective measure-
ment of color can be an instrument to assess the main characteristics of
many foods (Francis 1995).
Color, as seen by the human eye, is the result of complex series of physi-
ological and psychological responses to electromagnetic radiation of wave-
lengths in the range of 400 to 700 nm. The use of instrumental methods
are necessary for reproducible, precise, accurate and fast results allowing a
better interpretation of color differences (Pérez-Álvarez 1996).
The color of a food, plant or animal, can be described by different color
coordinate systems. In particular, using the color space CIE L*a*b*, the
color differences are similar to those perceived by the human eye (Abbott
1999).
In the date palm, as in most fruits, the outer color is one of the most
important quality parameters. It experiences major changes during the
different stages of their growth and maturation (kimri, khalal and rutab).
Therefore, the analysis of the optical properties of date palm at different
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stages of maturity, using non-destructive techniques may be of interest to
the date palm industry (Vilella-Espla, Pérez-Álvarez et al. 2004).

2 Material and Methods

Samples: date palms of the Medjoul variety harvested in different stages
of maturity (kimri, khalal and rutab) were supplied by Phoenix Station of
Elche (Alicante).
Determination of optical properties: reflection spectra and color co-
ordinates, L * (lightness), a * (red-green coordinate), b * (yellow-blue co-
ordinate), C * (color intensity) and h (Hue angle = arctang b / a), were
determined using a Minolta CM-2600 spectrophotometer with illuminant
D65, observer 10, as SCI, opening for the illumination of 11 mm and 8
mm for measurement. The colorimeter was calibrated according to man-
ufacturer’s instructions before taking action with a white tile (CM-A145)
and a zero calibration box (CM-A32). Nine replicates of each sample were
analyzed on whole fruit.
Statistical Analysis: The study of the refection spectra shows a curve for
each of the maturity states. The idea is to test the differences among curves
for each stage of maturity. A Penalized Spline Mixed Model with interaction
between reflection and maturation status (Durban and Lee, 2008) has been
used for the study of these curves:

yij = fzi(xij) + ai1 + ai2xij + εij ;

i.e.

yij = β0 + β1xij + Ziuk
∑L

l=2
tril(γ0l + γ1lxij)+

+
∑L

l=2
Ziw

l
k + ai1 + ai2xij + εij .

where

wlk ∼ N(0, σ2
wl), (ai1, ai2)T ∼ N(0,Σ), εij ∼ N(0, σ2

ε)

and yij represents the reflectance, xij represents the wavelength applied,
and finally γ0l + γ1lxij + Ziw

l
k shows the difference in the fitted curves

between the different states of maturation (kimri, khalal and rutab).

3 Results

Figure 2 compares the reflection spectra between the different stages of
maturity. An isobestic point, (ie, a point which, in the same wavelength
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match the different stages of maturity, point of intersection) was found in
the area near the 550 nm. In this area (400-500 nm), where both chloro-
phylls and carotenoids absorb the reflection of the greenest date is lower.
Therefore, this could be a characteristic of the date palms. The biggest
difference between the samples is observed on the 678 nm, where the date
kimri state, has a very pronounced minimum. This minimum corresponds
to the absorption band of chlorophyll (Merzlyak, Solovchenko et al. 2003).
In addition, looking at the bands, it would be possible to differentiate be-
tween rutab and khalal states at wavelengths between 400 and 430 nm,
areas without overlapping.

4 Conclussion

The reflectance spectra provide more information about the characteristics
of each state of ripeness. Our recommendation is to use the reflection spec-
tra as a tool for differentiation among stages by analyzing the percentage
of reflection at wavelengths of 678 nm (the minimum value in the kimri
state).
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e Innovación, Plan Nacional de I+D+I 2008-2011, MTM2010-20540 and
Maria Durban

References

Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Posthar-
vest Biology and Technology 15(3):207-225.

Francis, F. J. (1995) Quality as influenced by color. Food Quality and Pref-
erence 6(3):149-155.

Maroulis, Z B. and Saravacos, G.D. (2003) Food process design. New York,
Marcel Dekker, Inc.
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Abstract: The aim of this work is to calculate house price indexes taking into
account the location of the houses. Two approaches were used to fit the regres-
sion model. The first one includes the postal code as a categorical variable. The
second one takes into account the house coordinates and, the model is fitted using
geographically weighted regression. We estimate index for housing prices in the
city of Bilbao (Spain) over the period 2005-2010.

Keywords: hedonic models; geographically weighted regression; price index;
spatio-temporal data

1 The real estate bubble

Since the accession of Spain to the EU in 1986 and, in particular dur-
ing the first years of the present century, housing prices have experienced
substantial increases. This phenomenon has been observed in a large part
of the western world, but in Spain has been exacerbated by a number of
circumstances: monetary stability, with low or even negative real interest
rates, easy borrowing, high economic growth and fiscal allowances for home
buyers. Since the first years of this century it became commonplace to refer
to the real state bubble.
As the situation began to deteriorate after the onset of the financial crisis of
2008, widely different figures have been given on how much housing prices
have already dropped. Previously, widely different figures were given on the
extent of the price increase while the bubble lasted.
Part of the discrepancy can be traced to the fact that different sources
sometimes speak of different markets (and it is known, for instance, that
second residences in coastal areas have been hit harder than urban prop-
erties in or near large cities). But even when speaking of roughly the same
market, figures are so widely disagreeing so as to raise the issue of how they
were obtained and what they really measure.
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Compiling a housing price index is particularly difficult, due to the opacity
of the market, the incentives to understate transaction prices, and the fact
that any single house is traded only very infrequently, and has no exact
replicates. In this paper we obtain an index as the estimate of a non-
observable component, of the price level, in a semi-parametric model of
readily available offered prices in the city of Bilbao (Spain).

2 Methodology

We address the problem of opacity making resort to publicly available data
of the Spanish house prices in one of the leading housing market portals
on the web (www.idealista.com). It is open to question whether these
prices even approach final transaction prices, however for our purposes,
it is enough to assume that they overstate transaction prices by a factor
relatively constant over time.
We fit a model to the response log(Price/m2) to capture the influence on
house prices of attributes such as number of total surface, type of dwelling,
number of bedrooms, bathrooms, type of heating, age of the building, ori-
entation, availability of services such as garage, elevator, etc. In general our
model is as follows,

log(Price/m2) = β0 +
∑
k

βkxk + s(t) + ε (1)

where the aforementioned attributes or explanatory variables are denoted
by xk and the effect of time t is captured using as a regressor a cubic
smoothing spline s, whose suitably normalized profile provides an estimate
of the price index. To capture the influence of the location, two approaches
have been used: including the postal code as a categorical regressor and
using geographically weighted regression (Fotheringham et al. 2002), with
each house geocoded to UTM coordinates.
While the first approach, using areal postal code information, can be imple-
mented easily using available software (we have used Simon Wood’s mgcv

package, available in R; see Wood, 2004), mixing geographically weighted
regression and a non-parametric trend requires what is in essence a back-
fitting algorithm (see, e.g. Hastie and Tibshirani, 1990), which alternates
the fitting of the different effects present in the model.
A little over five thousand observations have been used, the exact number
varying across models on account of missing values in several regressors.

3 Results and Discussion

The results obtained include an estimated temporal profile of the price in-
dexes which are shown in Figure 1 (left), the different curves were computed
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via a backfitting algorithm. The black line is the initial estimate whereas
the green one is the final estimate. This estimated temporal profile, clearly
shows a drop of about 15% from market heights which bottomed around
mid 2009. After that period, the temporal index exhibits some small fluctu-
ations with a slightly increasing trend towards the second semester of 2010.
Ever since, and contrary to common belief, prices have shown an upturn.
The estimated prices per squared meter, for the different locations investi-
gated in the city of Bilbao, are presented in Figure 1(right). Likewise, the
estimates for the effect of the considered attributes on house prices, broken
down by geographical location, were computed (Figure 1, left). For illustra-
tion, we display the impact of attributes such as the number of bathrooms
and bedrooms, availability of garage, as well as the contribution of eleva-
tor, into the house price in Figure 2. In particular, when focused on those
attributes, it is observed that the availability of elevator and garage have
a greater contribution to the price (per squared meter) than the number
of bedrooms and bathrooms. The different contribution between elevator-
garage and bedrooms-bathrooms might be explained by the fact that the
price per squared meter does not discriminate between the type of room in
the dwelling.
In general, the results presented in this paper agree quite well with per-
ceived trends in the Spanish market, in particular, in the city of Bilbao.
Furthermore, given the opacity of the real transactions in the market, our
approach provides a way to compute a price index curve that can be used to
estimate the non-observable transaction prices. Moreover, the model pre-
sented here allows to quantify the contribution of different attributes in
the housing prices. As a concluding remark, we would like to stress the
fact that the methodology affords easy, cheap and almost real time moni-
toring of the market as new information accumulates which might be very
appealing when the data are updating continously.

Acknowledgments: Partial support from grants ECO2008-05622 (MCyT)
and IT-347-10 (Basque Government) is gratefully acknowledged.
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FIGURE 1. (Left) Temporal estimated curve of the price index. (Right) Esti-
mated prices per squared meter for housing market in Bilbao.
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FIGURE 2. Relative contributions to the estimated price per squared meter for
the number of bathrooms, bedrooms, availability of garage and elevator.
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Abstract: The National Vascular Database (NVD) collects information of the
quality of care and outcomes of patients admitted to acute hospitals in England,
Wales, Scotland and Northern Ireland with (i) Abdominal Aortic Aneurysms
(AAA), (ii) lower limb ischaemia requiring bypass, (iii) Carotid Endarterectomy
and (iv) Amputation. The NVD has proved to be an important resource for
clinical audit (Prytherch et al., 2001), by contrast its potential as a valuable
research tool remains underexploited. Use for research is dependent on the ability
to adjust for case-mix, which in turn is dependent on the completeness and quality
of data collected. In this work we present an illustration of Multiple Imputation
by Chained Equations (MICE) (van Buuren & Groothius-Oudshoorn, 2010) to
address the problems of missing data. We follow the analysis protocol of (Sterne et
al., 2009) and compare the VBHOM model (Tang et al., 2007) based on imputed
data, with a complete cases analysis.
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1 Selection of variables to impute

As a general rule using every bit of available information yields multiple
imputations that have minimal bias (Collins et al., 2001; Meng, 1994). This
principle suggests that the number of predictors should be as large as pos-
sible. Practically however, the imputation scheme should be at least as rich
as the models that the analyst intends to use for their statistical modelling
after the imputations: a property referred to as congeniality (Meng, 1994).
As well as including predictor variables of the VBHOM model (Tang et al.,
2007) we have also included auxiliary variables that can improve prediction
of the missing values in the variables of interest. When selecting auxiliary
variables it is important to include both clinical judgment on which vari-
ables might usefully predictor those that are missing and also statistical
judgment to avoid variables that are highly collinear (i.e. do not contribute
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FIGURE 1. Key variables and summary of missing data. For a full description
of the variables, see http://www.vascularsociety.org.uk/library/audit.html.

any additional information relative to the variables that have already been
selected) (Collins et al., 2001). The subset of variables to be imputed and
their missingness characteristics are summarised in Fig. 1. Note that for
continuous variables any data values that lie outside clinically plausible
limits have been declared as missing data.

2 Choice of imputation methods

In this work we have opted to use predictive mean matching (PMM) to im-
pute continuous predictor variables and polytomous regression for binary
and categorical predictors. PMM is a general purpose imputation method
(Little, 1988) in which the imputations are confined to the observed distri-
bution. An advantage of PMM is that it can preserve non-linear relations
between predictors. A possible disadvantage of PMM is that it may fail to
produce enough between imputation variation when the number of predic-
tors is small (van Buuren, & Groothius-Oudshoorn, 2010). As the sample
sizes of the NVD AAA data is large and the number of predictors is also
large, we believe that PMM offers a useful method of imputing continuous
variables and preserving non-linear relationships. Moreover, partly to miti-
gate concerns regarding insufficient between imputation variation, we have
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elected to use 20 imputations in our work rather than the ‘standard’ five
imputations routinely suggested.
Multiple imputation assumes normality of the variables being imputed,
and it is important to check that this assumption will be approximately
satisfied. For those variables that are found to have a non-normal distribu-
tion a transformation to approximate normality is required. A logarithmic
transformation will often suffice. In this work we have opted for the loga-
rithmic transformation for the variables White Cell Count, Urea, Sodium
and Potassium, all of which are sufficiently non-normal to cause concern
about the validity of the normality assumption.
It is important to include the outcome variable (in this case mortality status
at discharge) as a predictor in the imputation model. Failing to include the
outcome will severely dilute the associations between the outcome and the
other variables (Moons et al., 2006). Missing outcomes will also be imputed,
but the results of the imputations are excluded in the final analyses.

3 Evaluating robustness of the imputation scheme

There is no definitive method for checking the imputations or the within
imputation iterations.
The chain mean and standard deviation at each iteration can be plotted
and on convergence the different streams should freely intermingle without
showing any definite trends. Although the default setting of five iterations
is often sufficient, in this work we used 20 within imputation iterations.
Successful convergence of chain means and standard deviations is exhibited
for this data set.
In general, a good imputed value is one which could have been observed
had it not been missing. The missing at random assumption can never
be tested on the observed data, but we can check that the imputations
are plausible by comparing the distributions of the observed and imputed
values for each imputed data set. In this work, distributions of observed
and imputed values appear similar.

4 Comparison of imputed data with complete case
analyses

Fig. 2 shows the performance of the VBHOM model for predicting sta-
tus at discharge (dead / alive) using only data with complete cases and
a full data set with missing values imputed and pooled using the MICE
scheme explained above. The magnitudes of the coefficients in the model
are broadly similar both with and without imputation. However, notice
that, for all of the variables in the VBHOM model, the confidence intervals
are narrower for the MICE imputed data. A narrower confidence interval
represents reduced uncertainty in the model coefficients and hence greater
confidence in the validity of the model.
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FIGURE 2. Comparison of VBHOM model complete case analysis versus MICE.
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Abstract: The assessment of patterns of antibiotic use in early life may have ma-
jor implications for understanding the development of asthma. This paper com-
pares a classical generalized latent variable modelling framework and a Bayesian
machine learning approach to define latent classes of susceptibility to asthma
based on patterns of antibiotic use in early life. We compare the potential advan-
tages of each method for elucidating clinically meaningful phenotypes or classes.
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1 Introduction

The assessment of patterns of antibiotic use in early life may have major
implications for our understanding of the development of asthma. Within
the medical literature, antibiotic use has been investigated as having a
causal association with asthma. We hypothesise that antibiotic use in early
life, rather than being causally related to asthma gives an indication of a
child’s susceptibility to infection with a heightened response to exposure
since such children are more likely to receive antibiotics early on in life
due to their immunodeficiency. Thus antibiotic use in early life can be
used as a marker in order to identify children who are more susceptible to
outcomes of exacerbation of wheeze and asthma symptoms. The aim of this
project is to identify latent classes of susceptibility to characterize children
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according to susceptibility based on patterns of early-life antibiotic use and
investigate whether this latent class is predictive of contemporaneous and
future asthma and wheeze symptoms. We infer that antibiotic use picks up
a signal of something that occurs very early in life, and which is completed
by 24 months of age.

2 Methods

The Manchester Asthma and Allergy Study (MAAS) is an unselected,
prospective population-based birth cohort study designed to determine
early life factors for the development of asthma and allergic disease. Sub-
jects were recruited prenatally and followed prospectively. A trained physi-
cian extracted the information on antibiotic prescription receipt and symp-
toms of asthma/wheezing from the primary care medical records (n=916).
Based on a longitudinal model for antibiotic use within the first 2 years
of life, latent class analysis was carried out to obtain a phenotypic defi-
nition of susceptibility. We then investigate whether these latent classes
of susceptibility are predictive of contemporaneous and future asthma and
wheeze symptoms. We describe and use two different statistical approaches
for defining latent classes of susceptibility to asthma: a classical general-
ized linear latent and mixed models framework using the gllamm package
in STATA and a Bayesian machine learning approach using Infer.NET.

Using the classical approach to latent class analysis we formulated a longi-
tudinal trajectory model which allows us to hypothesize that there may be
subgroups of children who, because of differing maturity of their immune
response, have changing levels of susceptibility over time. We specified this
as a two-level random-coefficient logistic regression model for antibiotic use
with level-1 units as the monthly measurement occasions and the level-2
units as children. This model characterises the child’s susceptibility through
their age and exposure to two particular known risk factors (older siblings
and day-care) and by membership of different possible classes defined by
the intercept and slope in the regression equation for antibiotic use yij of
child i at time j which was specified as:

Logit{Pr(yij) = 1|xij , ci = k} = β0k + β1kx1i + β2kx2ij + β3kx3ij (1)

where x1i is the time point for a specified child i. x1 represents monthly
time periods and x1 = 1,. . . ,24 months; x2ij is child i’s day-care atten-
dance at time j; and x3i is the number of older siblings child i has which
remains constant at all time points j. We also introduce a prior distribution
Pr(ci = k) over the classes given by a multinomial distribution.
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We assume that each child belongs to one of a set of N latent classes,
with the number of classes and their size not known a priori. Other than
random temporal fluctuation, each child’s pattern of antibiotic prescription
is to be explained by their belonging to a particular class of susceptibility.
Children belonging to the same class are similar with respect to the ob-
served variables in the sense that their observed scores are assumed to come
from the same probability distributions, whose parameters are, however,
unknown quantities to be estimated. Using empirical Bayes’ techniques,
children are assigned to the latent class with the largest posterior proba-
bility. We also consider a restricted random-intercept form of this model
in which the classes are allowed to differ in their intercepts, but not in
their slopes i.e. in which the relative susceptibility remained constant over
time. These models were fit using gllamm, a program implemented in Stata
(www.stata.com) to fit generalized linear latent and mixed models.

We then investigated parallel models using a machine learning approach
with the Bayesian inference software Infer.NET. The Bayesian machine
learning method provides a unified framework for modelling and quan-
tifying uncertainty–employing probabilistic modelling strategies based on
defining priors in such a way that probabilities can be associated with un-
known parameters. The three steps for defining a model in Infer.NET are:
i) the definition of a probabilistic model; ii) the creation of an inference en-
gine for performing inference; and iii) the execution of an inference query.
Since the Bayesian approach to statistical modelling enables us to quantify
model uncertainty through the incorporation of priors, we assumed uninfor-
mative priors for yij . Variables x1i, x2ij and x3ij are specified as a vector
array X with a vector of coefficients β. The k unobserved latent classes
are accompanied by a random temporal fluctuation or noise, ξk and ci is
assumed to be multinomial over k classes with a prior uniform Dirichlet
distribution (Dirichlet (1,1)) and the random noise has a prior Gaussian
distribution(0,1).

We compare models that assume varying numbers of latent classes using
the Bayesian Information Criterion as a measure of goodness-of-fit. We
then investigate whether the inferred phenotypes of susceptibility predict
current or future asthma and wheeze symptoms using conventional time-
to-event analyses.

3 Results

Using the classical generalized linear latent and mixed models framework,
we identified a model with three distinct latent classes of susceptibility
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based on patterns of antibiotic use in the first two years of life. Based on
our interpretation of the model, Class 1 were children resilient to infection
(31.1%), Class 2 showed a normal immune response (55.7%) and Class 3
were susceptible to infection (13.2%). Compared to Class 1 and Class 2,
children in Class 3 had a significantly higher hazard of reported asthma or
wheeze symptoms in the first three years of life (HR=3.72 [95% CI 2.72
– 5.10, p < 0.01] and 1.61 [95% CI 1.25 – 2.09, p < 0.01] respectively.
Class 2 had a greater hazard of experiencing exacerbations of asthma and
wheeze symptoms than Class 1 (HR=1.90 [95% CI 1.21 – 2.98, p < 0.01])
however, after the third year of life, this hazard ratio ceased to be statisti-
cally significant (HR=1.39 [95% CI 0.79 – 2.45, p = 0.25]). Similar results
were obtained using a Bayesian machine learning framework. We demon-
strate the potential advantages of Bayesian models for elucidating clinically
meaningful phenotypes.

4 Conclusion

By analysing trajectories of antibiotic use in early life, we identified a group
of children with high susceptibility to the development of asthma. Our re-
sults suggest that antibiotic use in early life indicates a child’s susceptibility
to infections. Since the Bayesian and frequentist approaches provided differ-
ent perspectives for identifying the latent classes, with concordant results,
the combination of methodologies was complementary – Bayesian exten-
sions to classical epidemiology have the potential to shape hypotheses with
more complete use of the data and current knowledge.
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1 Servei d’Estad́ıstica Aplicada
2 Departament de Psico-oncologia, Institut Català d’Oncologia-Girona. Hospital
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Abstract: We present an analysis of cancer patients which use Complementary
and Alternative Medicine (CAM). We find out variables coming from their own
characteristics, their disease and their own perception of health and quality of life
as factors that influencing the use of CAM as a complement to the conventional
healthcare.

1 Introduction

The controversial term Complementary and Alternative Medicine (CAM)
includes any practice of care or healing “that does not fall within the realm
of conventional medicine”, or maybe “that still has not been shown consis-
tently to be effective”.
However, it is common that people choose complementary therapies after
or during having experienced some limitations in the conventional medicine
for treating certain diseases. That’s the case, for instance, of patients with
chronic diseases, or with a psycho-somatic component, or to treat side
effects caused by conventional treatments. As far as we know, there are few
studies about the use of CAM as a complement of the hospital treatment.
Some related papers are Evans et al (2007), Albert & Shen (2005).
In this study, we are interested in characterising which kind of patients uses
some of those therapies coming from alternative medicine, even though we
don’t have information on whether it helps to the conventional treatment.

2 The Data

The initial sample was collected in three hospitals. However in this study
we restrict to the oncologic patients of Hospital Universitari Josep Trueta
de Girona. The database comes from the answers of a questionnaire that
patients respond with the help of a qualified member of the clinical team.
The sample contains 205 cancer (Breast, Lung, Gastric, Colon, Gynecolog-
ical, Hematologic) patients with available variables given in four groups:
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• Socio-demographic variables of the patient: Sex, age, marital status,
studies and nationality.

• Disease’s characteristics: Cancer types, months in treatment, months
from diagnostic, metastasis and, past and current treatments (chemother-
apy, radiation therapy, surgery).

• CAM’s characteristics: a dummy variable of whether or not the pa-
tient uses CAM. For those receiving CAM it is included:

– type of CAM (Traditional Chinese Medicine, Homeopathy, Reiki,
Bach flower therapy, physiotherapy, diet and others).

– How they knew of the therapy and what it is used for

– About the therapist.

– Since when he is using CAM (in weeks)

– If the oncologist knows that patient uses CAM and his reaction.

– Their belief that CAM helps on different facets.

• Quality of life questionnaire: Moreover, patients also answered the
EORTC QLQ-C30 questionnaire. The content areas covered by the
questionnaire reflect the multi-dimensionality of the Quality of Life
(QoL) construct (see Aaronson et al., 1993). Quality of life scales
has been used as in Fayers et al (2001). This incorporate five func-
tional scales (physical, role, cognitive, emotional, and social), three
symptom scales (fatigue, pain, and nausea and vomiting), a global
health status / QoL scale, and a number of single items assessing ad-
ditional symptoms commonly reported by cancer patients (dyspnoea,
loss of appetite, insomnia, constipation and diarrhea) and perceived
financial impact of the disease. Scales were used as a binary variables
defined by: More than 75% vs Equal to or less than 75% in Global
health status (QL2cat) and Functional scales; Equal to or greater
than 25% vs Less than 25% in Symptom scales/items (FIcat).

3 Statistical Analysis

Due to the huge amount of variables, firstly we performed a multivariate
correspondence analysis (Lebart et al., 2004) using the disease characteris-
tics as active variables.
After multivariate analysis to characterize patients we establish a logistic
regression model (Hosmer and Lemeshow, 2002) for the binary indicator
of using CAM. The main goal was finding the main factors that motivate
the use of CAM for cancer patients. Covariates included in the model have
been selected from this previous multivariate analysis. Moreover, since men
and women present different types of cancer, results has been obtained
stratifying by sex.
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4 Results

The database of 205 patients was analysed for these previous analysis. We
analized 85 men (41%) and 120 women (59%) with average age of 57.85
years old (stdev=12.54). The percentage of patients using CAM was 33%
and the distribution among type of cancer was: Breast (33%), Colon (19%),
Gynaecological (6%), Gastric (9%), Hematologic (16%), Lung (17%).
No statistically significant factor was obtained for the men subsample.
For women, statistically significant factors for the logistic model were: Edu-
cation, months in treatment, QL2cat (Global health status/QoL, see Data
section) and FIcat (Perceived financial impact of the disease, see Data sec-
tion). Even though type of cancer is not statistically significant but it is
clinically relevant; that is why we introduced the breast cancer indicator
(1=breast cancer; 0=other cancer).

FIGURE 1. Use of CAM by Cancer type.

Results obtained from the model are in Table 1. Women with breast cancer
have more than twice the risk of using CAM than others. About the du-
ration of treatment, women with less than 6 month of treatment have two
and a half the risk of using CAM. Women who feel better have 2.14 the
risk of using CAM. And, woman who didn’t perceive financial impact of
the disease is 2.83 times the odds of woman who perceived financial impact
of the disease, this is, women who do no perceive financial impact of the
disease use CAM.
Hosmer and Lemeshow Goodness-of-Fit Test is calculated Statistic Chi-
Square=1.2361, DF=7 and p value=0.9901.
All results were obtained using the software SAS v9.2 (SAS Institute Inc.,
Cary, NC, USA).
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TABLE 1. Odds Ratio Estimates

Variable Effect OR 95% Wald CL

Education Elementary vs None 4.92 0.54 45.22
Universitary vs None 4.80 0.48 48.26
Middle vs None 13.69 1.50 125.45

Breast Cancer Indicator Yes vs No 2.56 1.02 6.44
Months in treatment < 6 vs ≥ 6 2.45 1.00 6.00
QL2cat > 75% vs ≤ 75% 2.14 0.87 5.26
FIcat ≥ 25% vs < 25% 2.83 1.05 7.61

5 Conclusions

In this study, the main part of patients would like to receive information
about complementary therapies from the hospital (85%). For this reason,
we encourage to do studies on the effectiveness of these therapies, as a
complement of some conventional treatments which may be too severe for
some patients.
The main goal of the analysis was to find out patient characteristics which
may lead an individual to use complementary therapy. From the model,
we got that statistically significant factors were education, breast cancer,
few months in treatment, high global health status, and lesser perception
of financial impact of the disease.
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Abstract: Spatial isotropy implies that the dependence between two observa-
tions of a spatial process is a function only of the distance between the two
sample locations, and not the direction. Although it is a common assumption
in spatial data analysis, it may not be realistic in practice. In this work, we
present a variogram-based testing technique for assessing isotropy. The method
is illustrated with a real data example.
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1 Introduction

A common assumption in the analysis of spatial data is isotropy which
means direction invariance of the dependence structure. However, in some
practical contexts, this assumption may not be reasonable. For instance,
when monitoring pollutants coming from a certain emission source, such as
an industrial site, wind directions may play a role in the evolution of the
process.
Isotropy is a simplifying assumption in data analysis, and it is usually ex-
plored by drawing the variogram for different directions, although some
formal tests have been introduced by Guan et al. (2004), based on sub-
sampling estimator of the covariance matrix. In this paper, we present a
testing procedure for assessing isotropy based on the variogram.
Denote by Z a spatial process defined on a spatial domain D ⊂ R2,
{Z(s), s ∈ D}. In order to characterize the spatial dependence struc-
ture of Z, the variogram is a useful and well-known tool. Specifically, the
variogram is denoted by 2γ and it is defined as:

2 γ(h) = Var(Z(s)− Z(s+ h)), s, s+ h ∈ D.

Consider n observations of Z at locations s1, . . . , sn, denoted by Z(si), for
i = 1, . . . , n. The variogram is usually estimated by its empirical version
based on binning the data, as

2 γ̂(h) =
1

|N(h)|
∑

(i,j)∈N(h)

{Z(si)− Z(sj)}2,
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where N(h) = {(i, j) : (si, sj), si − sj = h} and |N(h)| denotes the
cardinality ofN(h). A more robust estimator of the variogram is obtained in
the square-root-absolute-value (srav) scale (see Cressie (1993)), as follows:

2 γ̂∗(h) =
1

|N(h)|
∑

(i,j)∈N(h)

√
|Z(si)− Z(sj)|. (1)

In addition, when the original data are normally distributed, the srav of
the differences between observations are also well described by a normal
distribution. ‘The estimate γ̂∗ can be converted into an estimate of γ by a
suitable transformation.
If the spatial process Z is isotropic, then the variogram depends on the
difference vector h only through its size. In Section 2, we will briefly de-
scribe the testing procedure for assessing isotropy based on the srav-scale
variogram, that is, the variogram information is given by the square-root
absolute values of the differences between observations. An illustration with
real data will be provided in Section 3.

2 Assessing isotropy

Consider the binned-variogram estimator in the srav scale given by (1),
obtained from the sample Z(s1), . . . , Z(sn). The difference vectors between
sample locations can be expressed in polar form as: si−sj = hije

ivij , where
hij = ‖si− sj‖ and vij = ∠(si, sj). An estimation of the variogram surface
in (1) can be obtained by smoothing the data cloud (hij , vij , dij) where

dij =
√
Z(si)− Z(sj) denote the observed differences in the srav scale,

which follow a normal distribution. It is computationally more convenient
to work with data which has been binned across both distance and angles.
Under the assumption of isotropy, the marginal effect of the distance will be
the same for all angles v ∈ [0, 2π] and the estimated surface is obtained as
a one-dimensional smooth curve, which is the same for all possible angles
vij . That is, the variogram surface under isotropy varies with h but not
with the angle v.
The test statistic is given by:

T =
∑
i

(M0(hi, vi)−M1(hi, vi))
2
, (2)

where M0 denotes the smooth variogram surface under isotropy and M1

is the smooth variogram surface estimator, and i indexes the binned data.
Both M0 and M1 are obtained by local linear smoothing in practice. There-
fore, the testing problem reduces to the comparison of nonparametric sur-
faces, similar to Bowman (2007).
The test statistic in (2) can be written as a quadratic form in normal
random variables, T = d′Qd, where d denotes the vector of binned srav
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differences and ′ denotes the transpose. The matrix in the quadratic form
is given by Q = (S1 − S0)′Σ(S1 − S0), where S0 and S1 are the smoothing
matrices in the nonparametric estimators of the variogram surfaces, under
the assumption of isotropy and in the general case, respectively. Compu-
tation of a p-value can be done using moment matching techniques (see
Bowman, 2007) which involves the estimation of the covariance matrix Σ
under the null hypothesis of isotropy.

3 Real data analysis

Mosses have been used for decades as biomonitors in order to determine
levels of heavy metal concentrations in the atmosphere, since the uptake of
metals in mosses comes mainly from the air. A sampling network using this
technique has been established in Galicia (NW Spain) since 1995. In 2006,
measurements of mercury (Hg, in parts per billion) jointly with other heavy
metals were collected on a grid with 148 points covering Galicia and nearby
locations. This dataset has been analyzed in order to assess for isotropy.
Applying the test statistic for these data, the p-value obtained is 0.018,
giving evidence of lack of isotropy.

FIGURE 1. Variogram surfaces for Mercury concentrations in March. Isotropic
variogram: dark green surface.
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Figure 1 shows the fitted variogram surfaces on the srav scale, with colour
shading indicating the distance between the isotropic variogram (dark green
surface) and the smooth variogram. Red and blue areas indicate that the
two surfaces are more than (respectively, less than) two standard errors
apart. Hence, the red and blue streaks in the picture indicate higher and
lower variance in these directions, suggesting non-isotropy in the blue (lower
variance) direction.

Acknowledgments: Work of Rosa M. Crujeiras has been supported by
the MTM2008-03010 Project from the Spanish Ministry of Science.
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Abstract: Regular vines constitute a flexible class of high-dimensional depen-
dency models which use only bivariate copulas as building blocks. The flexibility
however comes along with a strongly increasing complexity in higher dimensions.
In order to counteract this problem, we propose using efficient statistical model se-
lection techniques to simplify a regular vine. The newly proposed approaches were
evaluated in extensive simulation studies and used to investigate a 19-dimensional
financial data set of Norwegian and international market variables.

Keywords: multivariate copula; regular vines; simplified vines.

1 Introduction

Introduced by Bedford and Cooke (2001, 2002) and discussed in detail in
Kurowicka and Cooke (2006) regular vines (R-vines) are a flexible class of
high-dimensional dependency models which use only bivariate copulas as
building blocks. Each so-called pair copula can be chosen arbitrarily and
the full model exhibit complex dependence patterns such as asymmetry
and tail dependence.
The flexibility however comes along with a strongly increasing complexity
in higher dimensions: the number of pair copulas increases quadratically
and the number of different R-vines even exponentially. Very recently, there
has been considerable progress in constructing R-vines (Dißmann et al.
2011). Nevertheless, for R-vines to be really useful in practice, one needs
to be able to fit such structures to data with more than 20 dimensions for
which efficient methods were lacking so far. Hence, we treat the problem of
determining whether an R-vine can be simplified or even truncated using
simple Gaussian and independence copulas, respectively, after explicitly
modeling a certain number of dependency levels.
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FIGURE 1. An R-vine tree specification on seven variables with edge indices.

2 Regular vines and their simplification

An R-vine on d variables is a sequence of trees T1, ..., Td−1 with nodes Ni
and edges Ei, i = 1, ..., d − 1, which satisfies the following: T1 has nodes
N1 = {1, ..., d} and edges E1. For i = 2, ..., d− 1, Ti has nodes Ni = Ei−1,
where two edges in Ti must share a common node if they are to be joined
by an edge in tree Ti+1. An example of a seven-dimensional R-vine tree
specification is given in Figure 1.
The statistical model based on R-vine trees is then obtained by associating
each edge e = j(e), k(e)|D(e) in Ei, i = 1, ..., d− 1, with a bivariate copula
density cj(e),k(e)|D(e), a pair copula. These pair copulas constitute the build-
ing blocks of the R-vine distribution. Kurowicka and Cooke (2006) prove
that the joint density of the d-dimensional random vector (X1, ..., Xd) is
uniquely determined and given by

f(x) =

[
d∏
k=1

fk(xk)

]
×
[
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)

]
,

where fk, k = 1, ..., d, are the marginal densities of Xk, k = 1, ..., d, and
cj(e),k(e)|D(e) := cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e))). xD(e) denotes
the subvector of x = (x1, ..., xd)

′ determined by the indices D(e). Condi-
tional distribution functions such as F (xj(e)|xD(e)) can be obtained re-
cursively using the copula specifications of previous trees (Dißmann et al.
2011).
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The number of different possible R-vine tree specifications is very large
(Morales-Napoles et al. 2009), e.g., in seven dimensions (cp. Figure 1) there
are already more than 2.5 million different R-vines. Following the idea that
we want to model the strongest dependencies in the first trees, we therefore
construct R-vine trees heuristically by capturing as much dependence as
possible in each tree using a maximum spanning tree algorithm. If for
example Kendall’s τ is used as dependence measure, we select the spanning
tree that maximizes the sum of pairwise absolute empirical Kendall’s taus
τ̂i,j , i.e.,

max
∑

e={i,j} in spanning tree

|τ̂i,j |.

See Dißmann et al. (2011) for more details.
Also the number of pair copulas and hence the computational effort needed
to estimate all R-vine parameters strongly increase with the dimension:
there are d(d−1)/2 pair copulas in a d-dimensional R-vine. In high dimen-
sions and under limited time and computational resources, we therefore
want to find the best possible specification of the first K trees in the R-
vine, while higher order trees should only involve simple pair copulas.
Specifically, we denote an R-vine a pairwisely simplified K level one, sRV(K),
if we replace all pair copulas in trees higher than K by Gaussian copulas
which are easier to specify than other copulas and straightforward to inter-
pret in terms of the correlation parameter. Further, we speak of a pairwisely
truncated R-vine at level K, tRV(K), if all pair copulas in trees higher than
K are set to independence copulas. Truncation may also be regarded as a
special case of simplification, using Gaussian pair copulas with correlation
parameter equal to zero. Hence, it constitutes the greatest possible simpli-
fication.
The density of a pairwisely simplified K level R-vine distribution is given
by

f(x) =

[
d∏
k=1

fk(xk)

]
×
[
K∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)

]
×
[

d−1∏
i=K+1

∏
e∈Ei

cρj(e),k(e)|D(e)

]
,

where cρj(e),k(e)|D(e) denote Gaussian pair copulas and arguments have been

omitted for reasons of readability.
The density of a pairwisely truncated R-vine at level K is given similarly
with the rightmost part of the above equation collapsing to 1, since the
density of the independence copula is simply 1.
For canonical vines, a special case of R-vines (Aas et al. 2009), the product
of all pair copulas involved in trees higher than K gives a (d−K)-variate
copula. We call this joint simplification. It has previously been treated by
Valdesogo (2009) and Heinen and Valdesogo (2009) and more details on it
can also be found in Brechmann et al. (2010).
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3 Selection criteria

We will now consider the selection of simplification levels. Truncation level
selection follows as a special case and can exploit the nestedness of tRV(K)
and tRV(K + 1). sRV(K) and sRV(K + 1) are not nested in general.
We will start with K = 1 and fit a simplified R-vine. We thereafter increase
K by one and assess the gain by fitting the extra tree. If the gain is negligible
we stop and use the resulting specification. If the gain is large enough, we
increase K by one again, and proceed in this way until we have reached a
simplification level K0, which either gives a sufficient fit, or we have reached
the computational time frame we allowed for the estimation process.
To assess whether there is gain to move from model sRV(K) to sRV(K+1),
we now consider two kinds of statistical model selection techniques. First,
we choose the one of sRV(K) and sRV(K + 1) with the smaller AIC or
BIC value. If for some K0 the smaller model is chosen, we stop, and use
the model sRV(K0). AIC/BIC comparisons for non-nested models however
induce an increased variability. Second, we therefore consider the likelihood-
ratio based test for non-nested model comparisons by Vuong (1989). It
determines the simplification level as the level K0 for which sRV(K0 + 1)
does not provide a statistically significant gain. The Vuong test statistic
may also be corrected for the number of model parameters using the Akaike
and the Schwarz corrections, which correspond to the AIC and BIC penalty
terms, respectively.
In the case of joint simplification of canonical vines one may in addition
to the above-mentioned model selection methods, use copula goodness-of-
fit tests to determine the truncation/simplification level (Brechmann et al.
2010).
To sum it up, at each level four steps have to performed:

1. Tree construction using maximum spanning trees.

2. Pair copula type selection (e.g., using copula goodness-of-fit tests or
AIC comparisons).

3. Pair copula parameter estimation.

4. Investigating whether truncation and/or simplification are possible.

In extensive simulation studies we validated this heuristic approach and, in
particular, all five procedures for the selection of simplification and trun-
cation levels: AIC, BIC, Vuong test with and without Akaike and Schwarz
correction. It turned out that the Vuong tests are superior to AIC/BIC and
perform quite well. More parsimonious models are typically found using the
BIC and, especially, the Vuong test with Schwarz correction. Details can
be found in Brechmann et al. (2010).
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FIGURE 2. First R-vine tree for the financial data set. Edge labels indicate
empirical Kendall’s τ ’s between the respective variables.

4 Application

We analyzed a 19-dimensional data set consisting of Norwegian and inter-
national financial variables with 1107 daily observations from March 2005
to March 2008. The variables constitute the market portfolio of a large
Norwegian financial institution and hence, it is crucial to correctly model
the dependencies between them.
When investigating possible simplification of adequate R-vine specifications
with marginal ARMA-GARCH models and a range of ten different copula
types (allowing, amongst others, for tail dependence and asymmetric de-
pendence), simplification at level 2 and truncation at level 4 or 6 turned
out to be appropriate. Further, in comparison to the multivariate t-copula,
currently the state-of-the-art approach for modeling financial return data,
all truncated and simplified models were statistically equivalent or superior.
In economical terms, our model has an evident interpretation. It is consti-
tuted of three clusters of economically similar variables (see the first R-vine
tree in Figure 2). The first cluster consists of stock, hedge fond and real
estate indices (V1, V17-V20). The second cluster consists of interest rates
and bond indices (V7-V16), and finally, exchange rates (V2-V5) constitute
the third cluster. The identified simplification and truncation levels indi-
cate that dependencies within these clusters are the most important ones
to model accurately.
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5 Conclusion

The methods discussed here allow for the first time to efficiently construct
flexible R-vine models even in higher dimensions and under time and re-
source restrictions. As such, R-vine models constitute a powerful class of
high-dimensional dependency models, available for a wide range of appli-
cations (see Brechmann and Czado (2011) for a large scale financial appli-
cation).
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Abstract: Spatial models of species distribution often include attempts to de-
scribe relationships with climate variables via low-degree spline curves; these are
commonly termed “climate envelopes”. Such curves should typically be either
unimodal or monotonic. We propose a simple parametric alternative to spline
curves which appeals to biological plausibility and can capture common expected
features of species’ presence/climate relationships. Furthermore, the methodology
can be extended to the multivariate case in a straightforward manner.

Keywords: Climate envelope; niche modelling; species distribution.

1 Introduction

As an important part of understanding the likely effects of future climate
change, it is vital we understand the relationships between species distri-
butions and climate conditions. Historically, methods for modelling these
relationships have proved inadequate: Austin (2002) criticised the then-
popular use of Normal distribution curves to model responses as being too
restrictive and unrealistic, instead recommending smooth spline (“GAM”)
terms. Alternatively, Oksanen and Minchin (2002) suggested using the suite
of five curves (ranging from completely flat to skew-unimodal) from Huis-
man et al. (1993); these, however, can suffer from discontinuities. Recent
papers (e.g. Heikkinen and Mäkipää, 2010) have tended to use smooth
spline terms with few degrees of freedom. In practice, species’ responses to
climate variables (if present) are expected to be unimodal or monotonic.
Here we present a parametric form for modelling species/climate relation-
ships that is biologically plausible, is efficient in terms of the number of
parameters involved, and can be readily extended to a multivariate setting
to account for interactions between climate variables. We study data on
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FIGURE 1. Distribution of Abies alba in Europe.

tree species from the Europe-wide data set Atlas Florae Europaeae. For
the species Abies alba (European Silver Fir) recorded presences are shown
in Figure 1. Four potential climate variables have been identified: an index
of drought (DRO); the number of “growing degree days” (GDD); the mean
temperature of the coldest month (MTCO); and the mean temperature of
the warmest month (MTWA).

2 A Species Distribution Model

We fit a Bayesian logistic spatial regression model to the presence/absence
data including a spatially-structured random effect (Besag et al., 1991)
in the WinBUGS software (Lunn et al., 2000). With presence/absence re-
sponse Yi for observation cell i = 1, . . . , 2606 we have a Binomial error
model with logit link and linear predictor

µi = β0 + g(Di) + g(Gi) + g(Ci) + g(Wi) + ui

for: intercept β0; covariates Di (DRO), Gi (GDD), Ci (MTCO) and Wi

(MTWA); random effect ui where

f (ui | τ) ∝ τn/2 exp

{
−τ

2

∑
i∼i′

(ui − ui′)2

}
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FIGURE 2. Envelopes: (a) linear predictor scale; (b) response (probability) scale.
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FIGURE 3. Estimated univariate climate envelopes for Abies alba.

with smoothing parameter τ ; and (initially) univariate envelope functions
g() of the form

g (x) = min {α1 + β1x, 0, α2 + β2x} (1)

with β1 > 0 and β2 < 0. The form of functions g() is piecewise linear on the
linear predictor scale, as seen by the solid line of Figure 2(a). This maps
onto the curve shown in Figure 2(b) on the response scale; the key here is
that this flexible yet efficient parametric form allows for a “plateau”, and
is guaranteed to be either unimodal or monotonic.
Univariate climate response functions for the Abies alba data are shown
in Figure 3 as solid curves; the shaded regions represent the associated
uncertainty, while the broken curves show alternative fits from a GAM,
where the g() functions are replaced by splines of low degree. While the
envelopes are similar, the spline term for growing degree days does have an
unlikely feature—the rise towards zero days.
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3 Multivariate Envelope Functions

The piecewise polynomial function of (1) can be generalised to a multi-
variate setting by thinking of the climate envelope as a “top-sliced warped
cone”, allowing for different slopes either side of the apex for each covariate;
pairwise interactions can also be included. A general multivariate envelope
cone in this form can be defined by the cartesian equation, in M dimen-
sions, for apex a and covariates x:

(z − az)2 =

M∑
i=1

βi,1 (xi − axi)
2 I [xi < axi ] + βi,2 (xi − axi)

2 I [xi ≥ axi ]

+
∑
i>j

βi,j (xi − axi)
(
xj − axj

)
and where the apex height is constrained positive (i.e. az > 0), where
βi,1 > 0, βi,2 < 0∀i, and the top-slicing is enforced by z = min (z, 0). Our
model therefore becomes

µi = β0 + g(Di, Gi, Ci,Wi) + ui

for multivariate envelope function g(). In terms of implementation, the
multivariate cone can be coded efficiently via max/min operations, and
note that despite a longer per-iteration run time, in practice convergence
has proved to be much faster than with our univariate envelopes.
We illustrate the multivariate envelope on a second species, Castanea sativa
(Sweet Chestnut), whose distribution is shown in Figure 4. Using a GAM,
fitting a smooth to all four variables at once proved highly unsatisfactory,
as the results were too “wiggly” and not at all realistic; what is shown
in Figure 5 is a model having a bivariate smooth for MTCO and MTWA
but separate additive univariate terms for the other two variables. Using
the gam function in the mgcv package (Wood, 2006) in R (R Development
Core Team, 2010), we needed to fix the degrees of freedom at 4 for the
bivariate spline smooth, as any other value gave an envelope function that
was very different and did not seem at all realistic; it seems, then, that using
“default” GAM software in this way has a considerable lack of robustness.
Note also the slight rise for very low values of minimum temperature, itself
an unlikely feature. The “top-sliced warped cone” model, however, has no
such issues, and the plot shown in the right-hand panel of Figure 5 is a 2-D
projection for the temperature variables from a model with a full 4-D fit
with all four variables and all pairwise interaction terms; to generate the
plot, the values of DRO and GDD chosen corresponded to the apex a. The
fitting process required no tuning, and generic priors were appropriate for
all parameters; convergence was achieved around 500 iterations, and the
envelope shown was obtained from a further 500. The plot suggests a much
clearer picture, showing that mean temperature of the coldest month is
very important for Castanea sativa, as it is generally not found in regions
with colder winters.
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FIGURE 4. Distribution of Castanea sativa in Europe.
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FIGURE 5. Multivariate climate envelopes for Castanea sativa.

4 Discussion

Potential correlations between climate variables suggest that envelope func-
tions should be multivariate, but using standard GAM/spline implementa-
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tions in R for example, we found fitting 4-D surfaces problematic with our
species presence/absence data; even 2-D surfaces were highly sensitive to
choice of degrees of freedom. It is possible that realistic envelopes could be
obtained by setting further constraints on GAM smooths—for example, by
forcing spline curves to be either monotonic or a combination of two mono-
tonic segments (having a maximum at the join). However, the top-sliced
warped cone function introduced here is simple, fits quickly, is intrinsically
realistic and is easily interpretable.

Acknowledgments: This work received funds from the Rural and En-
vironment Research and Analysis Directorate (RERAD) of the Scottish
Government, and from the UKPopNet project “Developing Bayesian hier-
archical models of UK butterfly distributions”.

References

Austin, M.P. (2002). Spatial prediction of species distribution: an inter-
face between ecological theory and statistical modelling. Ecological
Modelling, 157, 101-118.
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Abstract: We aim to explore the survival distributions based on the extreme
dispersion, XD, models proposed by Jørgensen (2010). Survival times can be
modelled within the XD framework by taking log T = Y ∗ ∼ XD(µ, λ), where T
is the survival time and Y ∗ is the extreme dispersion random variable. We will
show how these survival models can be generated within XD and investigate the
distribution and properties of the survival time T = eY

∗
. We will also introduce

a frailty generalization of XD.

Keywords: Extreme dispersion; Morris class; Quadratic slope; Survival regres-
sion model; Frailty.

1 Introduction

Jørgensen (2010) proposed an extreme value analogue of exponential dis-
persion models, ED, and generalized linear regression models. The slope
function is introduced as an analogue of the variance function. Therefore
the slope function characterizes the extreme dispersion model, XD in much
the same way that the variance function characterizes the exponential dis-
persion model.
We start with a basic no-parameter survivor function Pr(Y > y) = G(y),
where Y is contained in the interval C ⊆ R. Typically C = [a, b), however
the interval can be open or closed at either end point. The density function

corresponding to G(y) integrates to 1 over this interval,
∫ b
a
f(y)dy = 1.

In the XD framework G(y) is analogous to the moment generating function
of ED. Therefore, apart from a sign change, the cumulative hazard function
H = − logG is analogous to the cumulant generating function. As we know,
h = H ′ is the hazard function which is therefore analogous to the mean
value mapping, τ , of ED. So we have

r(Y ) = h(0), s(Y ) = h′(0), (1)

where r is the rate and s is the slope, being analogous to the mean and vari-
ance. Unlike variance, the slope can be negative as well as positive. In ED,
τ must be monotone increasing. However, h can be monotone increasing or
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decreasing. Interestingly, Jørgensen (2010) shows that the hazard function
for T = eY does not need to be monotone, even if it does for Y . Therefore
we are not limited in this sense when considering the survival extension of
the XD model.
Going back to the random variable Y , the unit slope function is defined as

v(µ) = h′(h−1(µ)), (2)

where µ ∈ Ψ = h(C) = [h(a), h(b)) is the rate parameter (more on this in
the next section). The slope function, v(µ), maps Ψ onto R+ when h is
increasing and onto R− when h is decreasing. Here h−1(·) is the inverse
hazard function so that h(h−1(µ)) = µ.
It can be shown that the inverse hazard function satisfies the differential
equation

dh−1(µ)

dµ
=

1

v(µ)
. (3)

Replacing h with τ and v with V in Equations (2) and (3) gives us the equa-
tions in the exponential dispersion framework which show the relationship
between the mean value mapping and the unit variance function.

2 The extreme dispersion model

The extreme dispersion model, XD(µ, λ), generated by G has survivor func-
tion

G(y∗;µ, λ) = Gλ
(
y∗

λ
+ h−1(µ)

)
. (4)

The XD model has support on C∗ = λ(C − h−1(µ)), i.e. this is the support
of the XD random variable Y ∗, where we have included the superscript “∗”
to differentiate from Y ∈ C, which is the random variable corresponding
to G(y); the function we’re using to generate XD. Note that the survivor
function G(y) has no parameters. It is used merely to generate G(y∗;µ, λ)
which has two parameters.

Here µ ∈ Ψ = h(C) and λ > 0. So to generate the XD survivor function we

replace y by y∗

λ + h−1(µ) in G(y) and raise it to the power of λ.
The reason for carrying out this operation is based on properties of the
moment generating function and the fact that G(y) is analogous to this
function.
We can see that the cumulative hazard function for the XD model is

H(y∗;µ, λ) = λH

(
y∗

λ
+ h−1(µ)

)
, (5)

where H(·) = − lnG(·). And the hazard function is
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h(y∗;µ, λ) = h

(
y∗

λ
+ h−1(µ)

)
(6)

where h(·) = H ′(·).
The density function for the XD model is therefore

f(y∗;µ, λ) = h

(
y∗

λ
+ h−1(µ)

)
exp

(
−λH

(
y∗

λ
+ h−1(µ)

))
. (7)

It can be shown that h(0;µ, λ) = µ and h′(0;µ, λ) = 1
λv(µ) for the XD

model. So we see that µ is the rate and 1
λv(µ) is the slope of Y ∗. We also

see why v(µ) is called the unit slope function as it corresponds to λ = 1.
Jørgensen (2010) puts special emphasis on XD models with quadratic unit
slope function. These are analogous to the exponential dispersion models
with quadratic variance functions known as the Morris class.

3 XD survival model

To obtain the survival model based on the XD model, we let Y ∗ = log T
where T is the positive survival time. This gives us the following

GT (t;µ, λ) = Gλ
(

ln t

λ
+ h−1(µ)

)
, (8)

HT (t;µ, λ) = λH

(
ln t

λ
+ h−1(µ)

)
, (9)

hT (t;µ, λ) =
1

t
h

(
ln t

λ
+ h−1(µ)

)
, (10)

and,

fT (t;µ, λ) =
1

t
h

(
ln t

λ
+ h−1(µ)

)
exp

(
−λH

(
ln t

λ
+ h−1(µ)

))
, (11)

which has support

CT = exp(C∗) (12)

where the subscript T here indicates that these functions correspond to the
survival time T .
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4 Estimation

Jørgensen (2010) suggests both a quasi-likelihood method and maximum
likelihood for fitting these models (in the regression setting). He discusses
some potential problems with both methods. We will consider the latter
method here.
Looking only at the survival XD model, the log-likelihood function is given
by:

`T (µ, λ) =

n∑
i=1

δi log

[
1

ti
h

(
ln ti
λ

+ h−1(µ)

)]
− λH

(
ln ti
λ

+ h−1(µ)

)
.

(13)
where δi is the censoring indicator, δi = 0 if the survival time is censored.

5 Example: Rayleigh-XD

We now look at an example; the ‘Rayleigh-XD’, so called because it is
the XD(µ, λ) model based on the Rayleigh generator, G(y) = exp(−y2/2).
Using G(y) (the generator) and the equations in Sections 2 and 3, we can
obtain the XD model and it’s survival counterpart.

5.1 XD Model

G(y∗;µ, λ) = exp

(
−λ

2

(
y∗

λ
+ µ

)2
)

(14)

H(y∗;µ, λ) =
λ

2

(
y∗

λ
+ µ

)2

(15)

h(y∗;µ, λ) =
y∗

λ
+ µ (16)

Support : C∗ = λ× ([0,∞)− µ) = [−λµ,∞) (17)

5.2 Survival

GT (t;µ, λ) = exp

(
−λ

2

(
log t

λ
+ µ

)2
)

(18)

HT (t;µ, λ) =
λ

2

(
log t

λ
+ µ

)2

(19)

hT (t;µ, λ) =
1

t

(
log t

λ
+ µ

)
(20)

Support : CT = exp(C∗) = [exp(−λµ),∞) (21)
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6 Simulation

We simulated survival times from the survival Rayleigh-XD. We did this
for all combinations of µ = (2, 0.5), λ = (2, 0.5) and n = (100, 1000), where
n is the sample size. So in total there were 2× 2× 2 = 8 different settings.
There was no censoring for the purposes of this simulation. Survival times
were generated using the inverse function,

t = F−1(u) = exp

(
λ

{[
− 2

λ
log(1− u)

]1/2

− µ
})

, (22)

where u ∼ Uniform(0, 1) is generated using a random number generator.
Maximum likelihood was then used to fit the survival Rayleigh-XD model
to the simulated data. Within each setting this was done 1000 times. The
average of the 1000 MLEs for each setting is shown in Table 1 below, along
with the % bias given by pbias = 100(θ̃ − θ)/θ, where θ̃ represents the
average of the 1000 MLEs.

TABLE 1. Simulation Results
µ λ n µ̃ pbiasµ λ̃ pbiasλ

1 2.0 2.0 100 2.07 3.54 1.94 -2.80
2 0.5 2.0 100 0.50 0.58 1.95 -2.53
3 2.0 0.5 100 2.05 2.69 0.49 -2.42
4 0.5 0.5 100 0.49 -2.86 0.49 -2.40

5 2.0 2.0 1000 2.01 0.51 1.99 -0.53
6 0.5 2.0 1000 0.50 -0.02 1.99 -0.54
7 2.0 0.5 1000 2.01 0.34 0.50 -0.46
8 0.5 0.5 1000 0.50 -0.51 0.50 -0.44

We can see from Table 1 that there does not seem to be an issue with the
MLEs in this simple setting for the survival Rayleigh-XD.

7 Extreme generalized linear models

Extreme generalized linear models are formed by regression of the rate
r(Y ∗i ) = µ(x′iβ) where Y ∗1 , . . . , Y

∗
n are independent random variables. Here

µ(x′iβ) denotes the inverse link function, xi is a vector of covariates for the
ith case and β is a vector of unknown regression parameters. Therefore

Y ∗i ∼ XD(µ(x′iβ), λ). (23)

We can then model Ti, the survival time for the ith individual, by letting
Y ∗i = log Ti.
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8 Frailty

We can further extend this survival XD regression by multiplying the haz-
ard function, hT (t;β, λ) = hT (t;µ(x′iβ), λ), by a random effects term. Thus
the conditional hazard and survivor functions are

hT (t;β, λ | z) = zhT (t;β, λ), (24)

and
GT (t;β, λ | z) = e−zHT (t;β,λ). (25)

If we assume that z has a gamma distribution, g(z), with E(Z) = 1 and
V ar(Z) = σ2, then we can integrate out the random effect to obtain the
marginalized survivor function,

GT (t;β, λ, σ2) =

∫ ∞
0

e−zHT (t;β,λ)g(z)dz =
[
1 + σ2HT (t;β, λ)

]−1

σ2 , (26)

and the corresponding marginalized hazard function is

hT (t;β, λ, σ2) =
hT (t;β, λ)

1 + σ2HT (t;β, λ)
. (27)

This now depends on σ2 which is another parameter that must be esti-
mated.

9 Discussion

The XD class of extreme dispersion models offers the prospect of develop-
ing a new class of survival models with novel properties. Our early work
confirms that this is indeed the case. However, the resulting survival models
appear to embody a latent period before which failure becomes operational.
Whilst this is always a testable hypothesis, in the group setting, the extent
to which these models can be usefully applied in practice remains to be
ascertained.
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Abstract: This paper is concerned with the least-squares (LS) linear filtering
problem of discrete-time signals from noisy measurements coming from multiple
randomly delayed sensors with different delay characteristics. It is assumed that
the Bernoulli random variables characterizing the measurement delay are corre-
lated at consecutive sampling times. Using an innovation approach, a recursive
linear filtering algorithm is obtained without requiring the state-space model gen-
erating the signal, but only the covariance functions of the signal and the noise,
the delay probabilities and the correlation function of the Bernoulli variables.

Keywords: Least-squares estimation; Randomly delayed observations; Covari-
ance information; Innovation approach; Multiple sensors.

1 Introduction

In many practical situations, for example in networked systems with a
heavy network traffic, data packets may suffer transmission delays due to
numerous causes, such as network congestion, random failures in the trans-
mission device, accidental loss of some measurements, or data inaccessibility
at certain times. Moreover, these time-delays are often random in nature.
Standard estimation algorithms are not applicable in such situations where
measurements are randomly delayed, thus being necessary to modify these
algorithms incorporating the effects of random delays. The signal estima-
tion problem for models with random delays has been widely investigated
assuming full knowledge of the signal state-space model (see e.g. Su and Lu
(2001)) and using only the covariance functions of the processes involved
in the observation model (see e.g. Nakamori et al. (2005)).
However, most papers concerning systems with randomly delayed sensors
assume that all the sensors have the same delay characteristics. In the
last years, Hounkpevi and Yaz (2007) (using the state-space model) and
Caballero-Águila et al. (2010) (using covariance information) have general-
ized this situation considering multiple delayed sensors with different delay
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characteristics. The main assumption in these papers is that the delays are
mutually independent. In the current paper, this restriction is weakened;
specifically, we consider different sequences of Bernoulli variables corre-
lated at consecutive sampling times to characterize the measurement delay
of each sensor. This correlation model covers situations where consecutive
observations cannot be delayed; for example, signal transmission problems
with stand-by sensors where any transmission failure in a sensor is imme-
diately detected and the failed sensor is replaced.

2 Delayed observation model

Considerm scalar sensors whose real measurements, ỹik, of the n-dimensional
signal, zk, are perturbed by additive noise vectors vik; that is,

ỹik = Hi
kzk + vik, k ≥ 1, i = 1, . . . ,m. (1)

Assume that at time k = 1 the real measurements, ỹi1, are always avail-
able for the estimation, but at any time k > 1, the available measure-
ment coming from each sensor may be randomly delayed by one sampling
time according to different delay characteristics. Therefore, if {γik; k > 1},
i = 1, . . . ,m, denote sequences of Bernoulli random variables, the available
measurement of the ith sensor, yik, is described by

yik = (1− γik)ỹik + γikỹ
i
k−1, k > 1; yi1 = ỹi1, i = 1, . . . ,m. (2)

From (2) it is clear that, if γik = 1, which occurs with probability pik,
then yik = ỹik−1 and the measurement of the ith sensor is delayed by one
sampling period; otherwise, γik = 0 and yik = ỹik, which means that the
measurement is up-to-date with probability 1−pik. Therefore, the variables
{γik; k > 1} model the random delay of the ith sensor and the values{
pik, k > 1

}
represent the delay probabilities in the measurements coming

from the ith sensor. It is also assumed that a delay in the observation at
time k depends on a delay at time k − 1, but it is independent of delays
at times previous to k − 1; this is formulated by imposing the stochastic
independence of the Bernoulli variables γik and γjs when |k − s| ≥ 2.

For simplicity, (1) and (2) are rewritten as follows:

ỹk = Hkzk + vk, k ≥ 1,
yk = (Im − Γk)ỹk + Γkỹk−1, k > 1; y1 = ỹ1,

(3)

where ỹk =
(
ỹ1
k, . . . , ỹ

m
k

)T
, Hk =

(
H1T
k , . . . ,HmT

k

)T
, vk =

(
v1
k, . . . , v

m
k

)T
,

Γk = Diag
(
γ1
k, . . . , γ

m
k

)
and Im is the m×m identity matrix.

To address the LS linear estimation problem of the signal based on the
randomly delayed observations (2), the following hypotheses are assumed:
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(H.1) {zk; k ≥ 1} has zero mean and factorizable covariance function
Kz
k,s=E[zkz

T
s ]=AkB

T
s , s≤k, with Ak and Bs known n×M matrices.

(H.2) The noise, {vk; k ≥ 1}, is a zero-mean white sequence with known
covariances Cov[vk] = Rk, ∀k ≥ 1.

(H.3) For i = 1, . . . ,m, the noises
{
γik; k > 1

}
are sequences of Bernoulli

variables with P
[
γik = 1

]
= pik. For i, j = 1, . . . ,m the variables γik

and γjs are independent for |k− s| ≥ 2, and Cov[γik, γ
j
k−1] are known.

(H.4) The signal process, {zk; k ≥ 1}, and the noises, {γk; k > 1} and
{vk; k ≥ 1}, where γk = (γ1

k, . . . , γ
m
k )T , are mutually independent.

Clearly from (H.3), the following properties hold:

• The mean of the random matrix Γk is Γpk = Diag
(
p1
k, . . . , p

m
k

)
and,

for any random matrix Gm×m independent of {Γk, k ≥ 1}, it is satis-
fied E[ΓkGm×mΓs] = E[γkγ

T
s ] ◦ E[Gm×m] (◦ denotes the Hadamard

product).

• The random vectors γk and γs are independent for |k − s| ≥ 2 and
the covariance matrices of γk and γs for s = k, k − 1, which will be
denoted by Kγ

k,s, are known.

• The mean of the random vector γk is E [γk] = pk =
(
p1
k, . . . , p

m
k

)T
and the correlation functions of γk and 1− γk (1 = (1, . . . , 1)T is the
m× 1 ones vector) are denoted by

E[γkγ
T
k ] = P pk , E[(1−γk)(1−γk)T ] = P 1−p

k , E[γk(1−γk)T ] = P p,1−pk .

3 Linear filtering algorithm

Using an innovation approach and the Orthogonal Projection Lemma, the
following recursive algorithm, for the LS linear filter of the signal zk based
on the randomly delayed observations {y1, . . . , yk} given in (3), is derived.

The linear filter, ẑk/k, of the signal zk is obtained as

ẑk/k = AkOk, k ≥ 1,

where the vectors Ok are recursively calculated from

Ok = Ok−1 + JkΠ−1
k νk, k ≥ 1; O0 = 0,

and the matrix Jk is given by

Jk = GTBk − rk−1G
T
Ak
− Jk−1ΞTk , k ≥ 2; J1 = BT1 H

T
1 ,

with rk = E[OkO
T
k ] recursively obtained from

rk = rk−1 + JkΠ−1
k JTk , k ≥ 1; r0 = 0.
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The innovation, νk, satisfies

νk = yk −GAkOk−1 − Ξkνk−1, k ≥ 2; ν1 = y1.

and Πk, the innovation covariance matrix, is given by

Πk = P 1−p
k ◦

[
HkAkB

T
k H

T
k +Rk

]
+ P pk ◦

[
Hk−1Ak−1B

T
k−1H

T
k−1 +Rk−1

]
+P 1−p,p

k ◦
[
HkAkB

T
k−1H

T
k−1

]
+ P p,1−pk ◦

[
Hk−1Bk−1A

T
kH

T
k

]
−GAkrk−1G

T
Ak
− ΞkΠkΞTk −GAkJk−1ΞTk − ΞkJ

T
k−1G

T
Ak
, k ≥ 2,

Π1 = H1A1B
T
1 H

T
1 +R1.

The matrices GAk , GBk and Ξk are given by

GΨk = (I − Γpk)HkΨk + ΓpkHk−1Ψk−1, Ψ = A, B,

Ξk =
[
Kγ
k,k−1 ◦

(
(HkAk −Hk−1Ak−1)(Hk−1Bk−1 −Hk−2Bk−2)T −Rk−1

)
+
(
pk(1− pk−1)T

)
◦Rk−1

]
Π−1
k−1, k > 2,

Ξ2 = Γp2R1Π−1
1 .

The accuracy of the LS linear filter is measured by the filtering error covari-
ance matrices Σk/k = E

[
(zk − ẑk/k)(zk − ẑk/k)T

]
which, using hypothesis

(H.1) and the filter expression, are given by

Σk/k = Ak
[
BTk − rkATk

]
, k ≥ 1.
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Abstract: This paper considers the least-squares linear estimation problem in
linear fractional order discrete state-space systems with uncertain observations.
An extension of the fractional Kalman filter is obtained for this class of systems
whose observations may not contain the signal, and this uncertainty is described
by introducing independent Bernoulli variables in the observation model.

Keywords: Least-squares estimation; Discrete fractional state-space systems;
Uncertain observations; Fractional Kalman filter.

1 Introduction

The least-squares estimation problem of stochastic signals from noisy ob-
servations has been widely treated when the observation sequence contains
the signal to be estimated with probability one. Although the Kalman filter
has played an important role because of its wide applicability in many fields,
for fractional order models the Kalman filter is not directly applicable and
new estimation algorithms are needed. In Sierociuk and Dzieliński (2006)
and Sierociuk et al. (2011) generalizations of the Kalman filter for linear
fractional order discrete state-space systems, called fractional Kalman filter
and improved fractional Kalman filter, respectively, are proposed.
On the other hand, in many practical situations, the signal vector enters
in the observation equation randomly. This can occurs, for example, in
problems where there exist intermittent failures in the observation device,
fading phenomena in propagation channels, target tracking, accidental loss
of some measurements, or inaccessibility of the data during certain times;
that is, problems where, due to different reasons, the transmitted data
packet can contain observations which are only noise. These situations are
described by an observation equation which includes not only an additive
noise, but also a multiplicative noise component, modelled by a sequence of
Bernoulli random variables whose values, one or zero, indicate the presence
or absence of the signal in the observation. The state estimation problem
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from uncertain observations has been widely studied in linear systems un-
der different hypotheses on the variables describing the uncertainty (see
e.g. Hermoso-Carazo et al. (2008), Caballero-Águila et al. (2011) and ref-
erences therein); our aim in this paper is to obtain a filtering algorithm
from uncertain observations, when the state evolution is described by a
linear fractional order discrete equation and the uncertainty is modelled by
independent variables.

2 System description

A linear fractional order discrete state equation (Sierociuk et al. (2011)) is
given by

∆αxk+1 = Axk +Buk + wk, k ≥ 0

xk+1 = ∆αxk+1 −
k+1∑
j=1

(−1)j
(
α
j

)
xk+1−j , k ≥ 0

where xk is the n-dimensional state vector, uk is a d-dimensional system
input, wk represents the system noise and A,B are known matrices of
appropriate dimensions.
We assume that the equation orders are not identical, and the following
generalized definition is considered:

∆Υxk+1 = Axk +Buk + wk, k ≥ 0

xk+1 = ∆Υxk+1 −
k+1∑
j=1

(−1)jΥjxk+1−j , k ≥ 0
(1)

with

Υj = diag

[(
α1

j

)
· · ·
(
αn
j

)]
, ∆Υxk+1 =

 ∆α1x1,k+1

...
∆αnxn,k+1


where α1, . . . , αn are the system equation orders.

The aim of this paper is to determine the least-squares (LS) linear esti-
mator of xk from noisy measurements which may not contain the signal
with different probabilities. Specifically, assume that the observation at
each sampling time, k, denoted by yk, may either contain the state to be
estimated, xk, or be only noise, vk; this uncertainty about the state be-
ing present or missing in the observation is modelled by Bernoulli random
variables, γk. The observation model is thus described as follows:

yk = γkHkxk + vk, k ≥ 1. (2)

If γk = 1, then yk = Hkxk + vk and the measurement contains the signal;
otherwise, γk = 0 and yk = vk, which means that such measurement is only
noise.

To address the LS linear estimation problem of the state (1) based on the
observations (2), the following hypotheses are assumed:
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• The initial state, x0, is a zero-mean random vector with known co-
variance matrix Cov[x0] = P0.

• The noises, {wk; k ≥ 0} and {vk; k ≥ 1}, are zero-mean white
sequences with known covariance matrices Cov[wk] = Qk, Cov[vk] =
Rk, ∀k.

• The multiplicative noise {γk; k ≥ 1}, which describes the uncertainty
in the observations, is a sequence of independent Bernoulli random
variables with P [γk = 1] = pk.

• The initial state, x0, and the noises, {wk; k ≥ 0}, {γk; k ≥ 1} and
{vk; k ≥ 1} are mutually independent.

3 Linear filtering algorithm

The LS estimator of the state xk given the observations Y k = {y1, . . . , yk}
is E[xk/Y

k] =
∫
xkg(xk/Y

k)dxk and, hence, its determination requires
knowledge of the conditional density g(xk/Y

k). The uncertainty in the
observations produces that the density of each observation yj is a mixture,
or weighted sum, of two densities (corresponding to γj = 0 and γj = 1)
and hence, the computation of the conditional density g(xk/Y

k), mixture
of 2k densities, requires an exponentially growing memory. For this reason,
the estimation problem in systems with uncertain observations has usually
been focused on searching for suboptimal, basically linear, estimators.
In this paper, we propose a filtering algorithm that, as usual in the LS
filtering problem, performs in two steps: first, approximations of the mean
and covariance of the state xk given the observations Y k−1 (x̂k/k−1 and
Pk/k−1, respectively) are obtained and, from them, the conditional mean

and covariance given Y k are approximated by the following expressions,
with a similar structure to those of the Kalman filter:

E[xk/Y
k] ' x̂k/k = x̂k/k−1 + P xνk/k−1Π−1

k/k−1νk/k−1, k ≥ 1; x̂0/0 = 0,

Cov[xk/Y
k] ' Pk/k = Pk/k−1 − P xνk/k−1Π−1

k/k−1P
νx
k/k−1, k ≥ 1; P0/0 = P0.

In these expressions, νk/k−1 denotes the innovation at time k (difference be-
tween the new measurement, yk, and its prediction from the previous ones),
Πk/k−1 is the conditional covariance matrix of νk/k−1 given Y k−1, and
P xνk/k−1 denotes the conditional cross-covariance matrix of xk and νk/k−1.

One-stage state predictor. Since the observation model is not used in the
prediction step, the prediction estimates and error covariance matrices
are approximated by the following expressions proposed in Sierociuk and
Dzieliński (2006) for fractional system estimation when there is no uncer-
tainty in the observations:



112 Filtering for fractional discrete systems with uncertain observations

x̂k/k−1 = Ax̂k−1/k−1 +Buk−1 −
k∑
j=1

(−1)jΥj x̂k−j/k−j , k ≥ 1.

Pk/k−1 = (A+Υ1)Pk−1/k−1(A+Υ1)T +Qk−1 +

k∑
j=2

ΥjPk−j/k−jΥ
T
j , k ≥ 2,

P1/0 = (A+ Υ1)P0/0(A+ Υ1)T +Q0.

Innovation νk/k−1 and covariance matrix Πk/k−1. From (2), using the
model hypotheses and the conditional expectation properties, we have that

νk/k−1 = yk − pkHkx̂k/k−1, k ≥ 1,

and, rewriting νk/k−1 = (γk−pk)Hkxk+vk+pkHk(xk− x̂k/k−1), we obtain

Πk/k−1 = pk(1− pk)Hkx̂k/k−1x̂
T
k/k−1H

T
k + pkHkPk/k−1H

T
k +Rk, k ≥ 1.

Conditional cross-covariance P xνk/k−1. Using the above innovation expres-
sion, we have

P xνk/k−1 = pkPk/k−1H
T
k , k ≥ 1.
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Abstract: We introduce the log-generalized modified Weibull regression model
based on the modified Weibull distribution (Carrasco et al., 2008a). This distribu-
tion can accommodate increasing, decreasing, bathtub and unimodal shaped haz-
ard functions. Other advantage is that it includes classical distributions reported
in lifetime literature as special cases. We obtain maximum likelihood estimates
for the model parameters by considering censored data and evaluate local influ-
ence on the estimates of the parameters by taking different perturbation schemes.
In addition, we define martingale and deviance residuals to detect outliers and
evaluate the model assumptions. We demonstrate that our extended regression
model is very useful to the analysis of real data and may give more realistic fits
than other special regression models.

Keywords: Generalized modified Weibull distribution; Log-Weibull regression;
Residual analysis; Sensitivity analysis; Survival function.

1 The Model

Most generalized Weibull distributions have been proposed in reliability
literature to provide a better fitting of certain data sets than the traditional
two and three parameter Weibull models. The GMW distribution with four
parameters α > 0, γ ≥ 0, λ ≥ 0 and ϕ > 0, introduced by Carrasco et al.
(2008a), extends the MW distribution (Lai et al., 2003) and should be able
to fit various types of data. Its density function for t > 0 is given by

f(t) =
αϕ
(
γ + λt

)
tγ−1 exp

[
λt− αtγ exp(λt)

]{
1− exp

[
− αtγ exp(λt)

]}1−ϕ . (1)

Henceforth, T is a random variable following the GMW density function
(1) and Y is defined by Y = log(T ). It is easy to verify that the density
function of Y obtained by replacing γ = 1/σ and α = exp(−µ/σ) reduces
to

f(y) = ϕ
[
σ−1 + λ exp(y)

]
exp

{(y − µ
σ

)
+ λ exp(y)− exp

[(y − µ
σ

)
+
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λ exp(y)
]}{

1− exp
[
− exp

{(y − µ
σ

)
+ λ exp(y)

}]}ϕ−1

, (2)

where −∞ < y, µ < ∞, σ > 0, λ ≥ 0 and ϕ > 0. We refer to equation (2)
as the LGMW distribution, say Y ∼ LGMW(λ, ϕ, σ, µ), where µ ∈ < is the
location parameter, σ > 0 is the scale parameter and λ and ϕ are shape
parameters. The random variable Z = (Y − µ)/σ has density function

f(z) = ϕσ(σ−1 + v) exp
[
ω − exp(ω)

]{
1− exp

[
− exp(ω)

]}ϕ−1
, (3)

where ω = v + z and v = λ exp(µ+ σz).
In many practical applications, the lifetimes are affected by explanatory
variables such as the cholesterol level, blood pressure, weight and many
others. Based on the log-generalized modified Weibull (LGMW) density, we
propose a linear location-scale regression model linking the response vari-
able yi and the explanatory variable vector x>i = (xi1, . . . , xip) as follows
yi = x>i β+σzi, i = 1, . . . , n, where zi the random error, β = (β1, . . . , βp)

>,
σ > 0, λ ≥ 0 and ϕ > 0 are unknown parameters. The parameter µi = x>i β
is the location of yi. The location parameter vector µ = (µ1, . . . , µn)> is
represented by a linear model µ = Xβ, where X = (x1, . . . ,xn)> is a
known model matrix.
Consider a sample (y1,x1), . . . , (yn,xn) of n independent observations, where
each random response is defined by yi = min{log(ti), log(ci)}. We assume
non-informative censoring such that the observed lifetimes and censor-
ing times are independent. Let F and C be the sets of individuals for
which yi is the log-lifetime or log-censoring, respectively. Conventional
likelihood estimation techniques can be applied here. The log-likelihood
function for the vector of parameters θ = (λ, ϕ, σ,β>)> has the form

l(θ) =
∑
i∈F

li(θ) +
∑
i∈C

l
(c)
i (θ), where li(θ) = log[f(yi)], l

(c)
i (θ) = log[S(yi)],

f(yi) is the density and S(yi) is survival function of the generalized modi-
fied Weibull of Yi. The total log-likelihood function for θ reduces to

l(θ) =
∑
i∈F

l1(λ, ϕ, zi, ui) +
∑
i∈C

l2(λ, ϕ, zi, ui), (4)

where

l1(λ, ϕ, zi, ui) = log
[
ϕ(σ−1 + ui)

]
+
[
zi + ui − exp(zi + ui)

]
+

(ϕ− 1) log
{

1− exp
[
− exp(zi + ui)

]}
,

l2(λ, ϕ, zi, ui) = log
{

1−
[
1− exp

{
− exp(zi + ui)

}]ϕ}
,

ui = λ exp(σzi+x>i β), zi = (yi−x>i β)/σ and r is the number of uncensored

observations (failures). The maximum likelihood estimate (MLE) θ̂ of the
vector of unknown parameters can be calculated by maximizing the log-
likelihood (4). We can use the likelihood ratio (LR) statistic for comparing
some special sub-models with the LGMW model.
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2 Application

Survival times for the Golden shiner data, Notemigonus crysoleucas, were
obtained from field experiments conducted in Lake Saint Pierre, Quebec, in
2005 (Laplante-Albert, 2008). Each individual fish was attached by means
of a monofilament chord to a chronographic tethering device that allowed
the fish to swim in midwater. A timer in the device was set off when the
tethered fish was captured by a predator. The device was retrieved ap-
proximately 24 hours after the onset of the experiment and survival time
was then obtained from the difference: time elapsed between onset of the
experiment and retrieval-time elapsed in device timer since predation event.
The Golden shiner data have been analyzed by Carrasco et al. (2008b)
using the LMW regression model. We now reanalyzed these data using the
LGMW regression model. First, we consider the equation

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + σzi, (5)

where the random variable yi has the LGMW distribution. The MLEs
(p-values in parentheses) are: λ̂ = 0.001, ϕ̂ = 12.855, σ̂ = 5.086, β̂0 =

−1.894(0.748), β̂1 = 2.197(0.001), β̂2 = 0.097(0.008), β̂3 = −0.125(0.001),

β̂4 = 0.035(0.001), β̂5 = 0.022(0.202) and β̂6 = 0.222(0.278). Further, we
calculate the maximum unrestricted and restricted log-likelihoods and the
LR statistics for testing some sub-models. An analysis under the LGMW
regression model provides a check on the appropriateness of the LW, LEW
and LMW sub-models and indicates the extent for which inferences de-
pend upon the model. For example, the LR statistic for testing the hy-
potheses H0:ϕ = 1 versus H1:H0 is not true, i.e. to compare the LMW
and LGMW regression models, is w = 2{−201.142 − (−204.577)} = 6.87
(p-value < 0.05) which yields favorable indications toward to the LGMW
regression model. A summary of the values of the Akaike Information Cri-
terion (AIC), the Bayesian Information Criterion (BIC) and the Consistent
Akaike Information Criterion (CAIC) to compare the LGMW and LMW
regression models is given in Table 1. The LGMW regression model out-
performs the LMW model irrespective of the criteria and can be used ef-
fectively in the analysis of these data. The explanatory variables x1, x2, x3

TABLE 1. Statistics AIC, BIC and CAIC for comparing the LGMW and LMW
models.

Model AIC BIC CAIC

LGMW 422.3 424.6 448.9
LWM 427.2 429.0 451.1

and x4 are marginally significant for the LGMW model at the significance
level of 5%.
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3 Concluding Remarks

We introduce the so-called log-generalized modified Weibull (LGMW) dis-
tribution whose hazard rate function accommodates four types of shape
forms, namely increasing, decreasing, bathtub and unimodal. We derive an
expansion for its moments. Based on this new distribution, we propose a
LGMW regression model very suitable for modeling censored and uncen-
sored lifetime data. The new regression model permits testing the goodness
of fit of some known regression models as special sub-models. Hence, the
proposed regression model serves as a good alternative for lifetime data
analysis. Further, the new regression model is much more flexible than
the exponentiated Weibull, modified Weibull and generalized Rayleigh sub-
models. We use the matrix programming language Ox (MaxBFGS function)
to obtain the maximum likelihood estimates and perform asymptotic tests
for the parameters based on the asymptotic distribution of these estimates.
We examine a simulation study. We discuss influence diagnostics and model
checking analysis in the LGMW regression models fitted to censored data.
We also discuss the sensitivity of the maximum likelihood estimates from
the fitted model via deviance component residuals and sensitivity analysis.
We demonstrate in one application to real data that the LGMW model can
produce better fit than its sub-models.

Acknowledgments: Special Thanks to CNPq and CAPES.
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1 Introduction

Often, we observe a disaster when it becomes important, for example, the
proximity of an important city. That is a main reason to use the Pareto
distribution to modelling in this scope. However, for some cases, the model
have no heavy tails; that is the main motivation to consider the gamma
distributions. On the other hand, the possible lack of data for low values
of the measure leads to work with truncated models, where to compute
MLE becomes more difficult. We propose to consider gamma truncated
models with a new parameter of truncation, we provide an algorithm for
determining MLE and we show the improvement in the fit. Remark, that
all the probability densities are on (0,∞). Finally, we apply it to Tropical
Cyclone data in the North Atlantic occurred between 1966 and 2009. To
measure the importance, we consider the power dissipation index (PDI)
from the work of Corral, A. et al. (2010).

2 Exponential dispersion models

Let X be a continuous non negative variable, for any threshold, u > 0,
the threshold excedances are the values of (X − u) conditional to X > u,
Xu = (X − u | X > u). If X has distribution function F (x) and density
function f (x) the density function of Xu is

fu (x) = f (x+ u) /(1− F (u)). (1)



118 An exponential dispersion family to modelling critical phenomenon

Let P be an exponential model, generated by the Lebesgue measure on
[0,∞), with canonical statistic T (x). The model P corresponds to the set
of densities

exp (θ · T (x)) /C (θ) (2)

for each θ ∈ D, where D denotes the set such that the Laplace transform

C (θ) =

∫ ∞
0

exp (θ · T (x)) dx. (3)

converges. D is called the natural domain of parameters. If D is an open
set, then the likelihood equations have one and only one solution provided
the observation is in the domain of the means, Barndorff-Nielsen (1978).
The domain of the means is the image of the interior of D by the map

θ 7→ ∇k(θ)

where k is defined by logC (θ). Given a sample x = {x1, · · · , xn} such that
the sample value of the statistic T , t(x) = 1

n

∑n
i=1 T (xi), is in the interior

of the domain of the means, then the likelihood estimator for the sample
is in the interior of the natural domain of parameters.
In the same way as in (1), given u > 0 be a fixed threshold, then we can
consider a new exponential model with statistic T (x + u), or equivalently
T (1+x/u). Therefore, we can extend the model to an exponential dispersion
model with statistic T (1 + x). This is a closed model by truncation and
scale.

2.1 Maximum Likelihood for exponential dispersion model

Let P be a model as described above, the exponential model associated to
P is the set of densities of the form f(x; θ, σ) = exp(θ · T (x/σ)− k(θ))/σ.
Given a sample x = {xi} of size n, the log-likelihood function is

l(x; θ, σ) = θ · t(x/σ)− k(θ)− log(σ)).

We take the derivatives in respect θ and σ, and we can describe the likeli-
hood equations by

t(x/σ)−∇k(θ) = 0 (4)

θ · ∇t(x/σ) · x/σ − 1 = 0 (5)

Define ψ = (∇k)−1 and use (4) to simplify (5) to get

ψ(t(x/σ)) · ∇t(x/σ) · x/σ = 1 (6)

This is the equation in σ which has to be solved.



Castillo and Serra 119

FIGURE 1. In the left, the ME-plot shows increasing line tendence for a small
thresholds. In the right, the CV-plot shows the tendence to 1 for near behavior
samples.

2.2 The Full Truncated Gamma model

The truncated gamma distribution is a three-parameter model of contin-
uous probability distributions with support on (0,∞) which probability
density function is given by

f (x;α, σ, ρ) = ρα (1 + x/σ)
α−1

exp (−ρ (1 + x/σ)) /(σΓ (α, ρ)) (7)

where Γ (α, ρ) is the incomplete gamma function. Indeed, this corresponds
to the dispersion exponential model associate to T (x) = (x, log(1+x)). Re-
mark, this model contains more distributions in addition to the truncated
gamma, for this reason we call full truncated gamma (FTG). In particular,
for ρ = 0 is the Pareto model.
To compute the MLE we can use the algorithm: solve the equation (6) to
determine σ and, in the case that σ gives us a value of the statistic t in
the interior of the domain of the means, use it to solve (4). Therefore, we
have to determine the domain of the means. From Castillo, J. et al., we
can prove that the domain of the means for the exponential model with
statistic T is

{(x, y) ; x > 0, log(1 + x) > y > x/(1 + x)}.

3 Tropical Cyclones

The measure considered to fit the Tropical Cyclones described on the intro-
duction is the PDI. This is defined as

∑
t v

3
t∆t, where t denotes time and

runs over the entire lifetime of the storm and vt is the maximum sustained
surface wind velocity at time t. The unit that we will use is 1010m3/s2.
From the evidence of lack of data for low values, we are going to consider
the TC with PDI bigger than 0.3, that is a sample of size 372 (75% of the
original data). We can see in Figure 1 that for differen thresholds don’t get
stability by the tail index of Pareto model. In fact, the tail is liked to an
exponential tail.
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TABLE 1. Likelihood ratio test

lv FTG α σ ρ lv Pareto α σ p-value

MLE -667.58 0.28 0.09 0.02 -680.06 -1.63 2.01 5.8e-7
s.e. 0.15 0.11 0.02 0.22 0.41

FIGURE 2. The fit of the empirical density using Pareto and FTG model in
logarithm scale for both axes.

The solution of (5) is σ = 0.09, then the value of t is (28.34, 2.55) and it
is in the interior of the domain of the means. Therefore, the MLE is in
the interior of the domain of parameters. Using the likelihood ratio test we
can conclude that the difference with the Pareto model is significative, it is
reject with p-value 5.8 10−7, we refer to Table 1. In Figure 2 we show the
fit using the methodology of Corral, et al. (2010). In fact, in both cases we
obtain goodness of fit, but the FTG model gives us stability in the tail.

Acknowledgments: We thank A. Corral for generously sharing their data
sets and spending his time with us. We thank to G. Letac that shared with
us his vast culture.
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1 Introduction

Disease mapping focused on relative risk surface estimation. This explain
why great emphasis was put on spatial patterns. The main goal was on in-
vestigating the geographical distribution of the risk. Since the seminal paper
of Clayton and Kaldor (1987) spatially-structured priors were considered
in almost all the proposed models in the literature. The Besag, York and
Mollié model (1991) is a benchmark because it combines spatially struc-
tured and un-structured random effects, gaining in flexibility. However,
inference on area-specific relative risks received little attention in the liter-
ature despite of the need to identify areas (or regions) at unusual (high or
low) risk. Stern and Cressie (2000) used cross-validation posterior predictive
distributions to explore model fitting and identify outlying areas in disease
mapping. The idea of cross-validation is to re-fit the model removing one
observation in turn. The model is thus fitted to a subset of data Y−i from
which the i-th observation is dropped. The posterior predictive distribution
P (Y repi |Y−i) for a replicate (Y repi ) of the i-th observation conditional to the
remaining data Y−i is then used to evaluation purposes. The extremeness
is usually measured by some summaries over P (Y repi |Y−i), for example the
posterior predicted p-values, P (Y repi ≤ yi|Y−i), or the conditional predic-
tive ordinate, p(Y repi = yi|Y−i). Marshall and Spiegelhalter (2003) noted
that “. . .There are essentially two reasons why observations/regions may
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be divergent. First, the statistical assumptions underlying the model may
be incorrect. . .[second], these regions could represent genuine ’hot-spots’
of disease requiring further investigation.” Poor model fit is a reasonable
explanation when a relevant number of observations/areas are identified
as divergent while the presence of real hot-spots or outliers is the usual
interpretation of few divergent ones. Stern and Cressie (2000) did not fully
exploited the potentiality of this approach: they stay essentially on model
checking. This is because the posterior predictive distribution was obtained
under the alternative hypothesis and any discrepancy detected was natu-
rally interpreted as a symptom of lack of model fit. Their approach is
computationally intensive and time consuming. Marshall and Spiegelhalter
(2007) proposed a mixed approach to perform cross-validatory checks in
disease mapping which can be easily implemented in WinBugs (Lunn et
al., 2000).
The aim of this work is to develop a hierarchical model to detect diver-
gent areas under hierarchical null models in the context of disease map-
ping. This is pursued by specifying appropriate hyperpriors and obtaining
cross-validation posterior predictive distributions (and related quantities
like posterior p-values). We take advantage of a the real example on the
distribution of Lung cancer in Tuscany.

2 Motivating example

Lung cancer death certificates were considered for males resident in the 287
municipalities of the Tuscany Region (Italy) for the period 1995-1999. Data
were made available by the Regional Mortality Register. A set of reference
rates (Tuscany, 1971-1999) have been used to compute the expected num-
ber of cases for each municipality, following indirect standardization and
classifying the population by 18 age classes (0-5, . . ., 85 or more). The goal
is to identify municipalities with a divergent risk from the general mean.

3 Methods

3.1 Models for disease mapping

Let Yi be the number of observed cases in the i-th area (i = 1, . . . , 287)
which follows a Poisson distribution with mean Eiθi, where Ei is the ex-
pected number of cases under indirect standardization and θi the relative
risk.
Clayton and Kaldor (1987), assumed a Gamma(κ, ν) prior distribution for
θi. We specify a full Bayesian model where the hyperparameters κ and, ν
are assumed to be exponentially distributed. In this model, Poisson random
variability is filtered out and relative risk estimates are shrunken toward
the general mean. Besag et al. (1991) specified a random effect log linear
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model for the relative risk log(θi) = ui + vi . The heterogeneity random
term ui represents an unstructured spatial variability component assumed
a priori distributed as Normal (0, λu) where λu is the precision parame-
ter modelled as Gamma. The clustering term vi represents the structured
spatial variability component assumed to follow a priori an intrinsic con-
ditional autoregressive (ICAR) model. In other words, denoting Si as the
set of the areas adjacent to the i-th area, vi|vj∈Si is assumed distributed as
Normal(v̄i,λvni) where v̄i is the mean of the terms of adjacent areas to the
i-th one (Besag and Kooperberg, 1995) and λvni is the precision, which is
dependent on ni, the cardinality of Si. Through these two random terms
the BYM model shrinks the relative risk estimates both toward the local
and the general mean.
We now look at these two models as hierarchical models for the null. The
problem becomes how to specify a portfolio of suitable prior distributions.

3.2 Priors specification

The choice of a suitable combination of hyperparameters leads to different
degree of prior vagueness on the extent relative risk heterogeneity among
areas.
The exploration is facilitated in the case of the conjugate Poisson-Gamma
model since we have a close solution and the problem reduces to parameters
specification of the predictive negative binomial distribution.
For the Besag et al. (1991) model we took advantage of the proposal of
Bernardinelli et al. (1995). The hyperpriors for the precision parameters
were parameterized in terms of the ratio between the 95th percentile and
the 5th percentile of the relative risk distribution.
In particular, the 90 per cent range of variation of RR mapped as a ratio of
RRs, is approximately θ0.95

θ0.05
= exp(2z1−α/2

√
σu + cσv) where the constant

c depends on the observed adjacency structure and the neighbour weight-
ing matrix, with 1/σu ∝ χ2

νu/su and 1/σv ∝ χ2
νv/sv. Such distributions

depends on the prior scale parameters su and sv and the prior degrees of
freedom parameters νv and νu.

3.3 Cross-validation predicted p-values

Divergence from the hierarchical null models is assessed via posterior pre-
dictive distribution.
The posterior predictive distribution is:
P (Y rep|Y ) =

∫
P (Y rep|Y, θ)P (θ|Y )dθ =

∫
P (Y rep|θ)P (θ|Y )dθ

assuming conditional independence of Y rep and Y given the parameters.
This is too confident since the data are used twice, for deriving poste-
riors and for obtaining replicates (Plummer 2008). To control for excess
in optimism the posterior predictive distribution is replaced by the cross-
validation (leave-one-out) posterior predictive distributions:
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P (Y rep|Y−i) =
∫
P (Y rep|θ)P (θ|Y−i)dθ

Cross validation posterior predicted distributions are computationally pro-
hibitive. Several approximations have been proposed. A mixed approach
was given by Marshall and Spiegelhalter (2007) and it is particularly con-
venient under WinBugs. At each Montecarlo iteration a replicate value for
the random parameters for the i-th observation is generated and then used
to generate a replicate observation Y repi . This approach is called mixed be-
cause random effects are drawn from their predictive distribution and not
from the posterior.
A measure of divergence can be the cross validation posterior predicted p
values defined, using mid-p for a discrete response, as:

• if Yi > Ei: Pr(Y
rep
i > Y obsi |Y−i) + 1

2Pr(Y
rep
i = Y obsi |Y−i)

• if Yi < Ei: Pr(Y
rep
i < Y obsi |Y−i) + 1

2Pr(Y
rep
i = Y obsi |Y−i)

where Yi is the observed and Ei the expected number of cases in the i-th
area.

4 Results

Table 1 and table 2 reports some possible choices of hyperprior parameters
for the Poisson-Gamma and Besag et al. models. Table 1 shows also the
prior 90% centile range of relative risk. These ranges represent different
reference beliefs about the background variability of disease risk among
areas. Each choice will produce a different set of divergent observations (see
Figure 1). Notice that the priors defined by the hyperparameters values
in the tables are very informative. We deliberately specify a bad-fitting
models on the basis of prior null expectation. A simple leave-one out cross-
validation has a very little effect on the posterior distributions of the model
parameters in the Disease mapping context (data not shown here).

5 Conclusion and Discussion

Similar approaches to hierarchical modelling of the null is described in
Ohlssen et al. (2009). The authors argued that fitting null model by leave-
one out cross-validation may be sufficient to detect divergent observations.
We disagree to this point, as we show in the results section. In Disease
mapping hierarchical modelling of the null can be reached by specifying a
full range of informative null priors.
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TABLE 1. Possible choices of priors for the Poisson Gamma model.

ν α µ σ 5% 95% RATIO

EB 34.6 35.3 0.98 0.17 0.72 1.26 1.75
large 95.0 99.0 0.98 0.10 0.82 1.14 1.39
small 266.8 272.2 0.98 0.06 0.88 1.07 1.22

TABLE 2. Possible choices of priors for the Besag et al. (1991) model and number
of divergent areas at different probability thresholds (5% and 1%).

DF 5% 1%

Prior 1 15 26 2
Prior 2 20 28 4
Prior 3 25 63 19

< 0.02
0.02 − 0.05
0.05 − 0.10
0.10 − 0.80
0.80 − 0.90
0.90 − 0.95
> 0.95

< 0.02
0.02 − 0.05
0.05 − 0.10
0.10 − 0.80
0.80 − 0.90
0.90 − 0.95
> 0.95

Prior 3 Prior 2

FIGURE 1. Cross validation posterior predicted p values under two different null
priors (prior 3 and prior 2 of Table 2). Lung cancer, males, 1995-1999, Tuscany.
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ric, analytic, convex, approximation to the LASSO. We compare them with “clas-
sical” stepwise search algorithms. The results show that both backwards elimi-
nation and forward selection algorithms select more parsimonious (i.e. sparser)
models which are always hierarchical, unlike the competing LASSO techniques.

Keywords: high dimensional contingency tables; LASSO; model selection; pe-
nalized likelihood; stepwise search algorithms.

1 Introduction

Conde and MacKenzie (2008) have recently developed new stepwise search
algorithms for binary variables, in the context of high dimensional contin-
gency tables and hierarchical log-linear models. They introduced the idea of
measuring dependence between binary comorbidities using interactions in
a hierarchical log-linear setting. The algorithms can work with any number
of binary variables, and constitute one approach to the problem of model
selection in this context.
In this paper we consider a different approach which has been more recently
developed in the literature, based on Penalized Likelihood. The idea is to
attach a penalty to the usual likelihood function. Different penalties may
be adopted to achieve various desirable properties: e.g., sparsity (Friedman,
2008) or smoothness of solutions (Eilers and Marx, 1996), etc. Here we are
primarily interested in encouraging sparse solutions in order to identify a
more parsimonious model in high-dimensional contingency tables.
We compare our methods with the penalized likelihood approach given
by Dahinden et al. (2007), who provided just such an extension for con-
tingency tables using the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996) penalty. We consider a multinomial likelihood,
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FIGURE 1. Graphs of Qω and Q′ω for ω = 1, 0.1.

with penalties: (a) the LASSO; (b) the LASSO only in the interactions; (c)
a parametric, convex, analytic approximation to the LASSO (Lee, 2010).
The latter two developments are novel.

2 Penalized Likelihood Inference

Given p binary variables, let consider the p-dimensional contingency table
with q = 2p cells. If we define µi = E(Yi), the expected value in the ith cell,
i = 1, . . . , q let consider a log-linear regression model with k parameters
(with k ≤ q):

ln (µi) =

k∑
j=1

aij θj . (1)

where A = (aij) is a (q × k) design matrix, k the number of linearly inde-
pendent parameters; and θ, the vector of unknown parameters measuring
the influence of the constant, main effects and interactions on the response.
The dimension of θ is that from the vector space spanned by the columns
of A. Thus, A has full rank = k. A log-linear model is a generalized linear
model.
For inference, we consider that the penalized negative log-likelihood is:

−`P(θ, λ) = −`mult(θ) + penλ
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where `mult(θ) is the log-likelihood of a multinomial random variable, and
penλ, the penalty term, is, for λ > 0

(a) : λ

k∑
j=2

|θj |, (b) : λ

k∑
j=2+p

|θj |,

and where for the case of the smooth approximation, we have that
∑
j | θj | ≈∑

j Qω(θj) with Qω(θj) = ω ln
[
cosh

(
θj
ω

)]
for a certain constant ω that

regulates the approximation of the function to that of the absolute value,
see Figure 1, whence the penalty term is

(c) : λ

k∑
j=l

ω ln

[
cosh

(
θj
ω

)]
where l = 2 or p + 2. Note that Qω(θj) ∈ C∞, the set of functions that
are infinitely differentiable, and is convex. We define then the maximum
penalised likelihood estimates (MPLEs), according to the terminology of
Green and Silverman (1994) as

θ̂P(λ) := arg min
θ ∈Θ

{−`mult(θ) + penλ} . (2)

For a large λ, all the estimates have gone to 0; and for λ = 0, there is
no constraint whence θ̂P(0) ≡ θ̂, the maximum likelihood estimates. We
estimated the regularization parameter using cross-validation with different
folds (5-, 10-, 20-) as required.
We also note that the LASSO penalty is a non-differentiable function, which
can complicate optimization. Muggeo (2010) proposes a penalty which is a
smoother parametric approximation to the LASSO; nevertheless, that ap-
proximation is only once differentiable (Conde, 2011) and standard Newton
algorithms require that the function is at least twice differentiable.

2.1 Hierarchical Log-Linear Models

We note too that the models derived from penalties encouraging sparsity
are not necessarily hierarchical: the penalty and the estimation procedure
do not take the hierarchical rules into account. Overall, this is a major
disadvantage of the methodology since non-hierarchical models are not in-
variant to the choice of design matrix (Conde, 2011) and, accordingly, are
of no scientific interest. This remark does not apply to simple main effects
analysis.

2.2 Computation

To compute the solutions of (2), we used the logilasso package, con-
tributed by Dahinden (2007). The package fits log-linear models in sparse
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contingency tables using penalized likelihoods. The penalties supported are
the LASSO, the group-L1, and the L2. The logilasso procedure calculates
the estimates of the parameters along a path of λs, estimating λ by cross-
validation. The functions in the package use a path following algorithm
(Dahinden et al., 2007). They re-scale λ∗ = 0 to 1 so that the latter value
corresponds to λ = +∞. The algorithm starts with λ∗ = 1, for which all
the parameters are 0. Then, in each step, it tries to add, to the active set,
which is the set of non-zero parameters, the parameters for which the con-
dition for a minimum in the previous inactive set, has been violated. The
estimates of the parameters are calculated using a Newton formula with
the current λ and the previous estimate. Our penalty (b) is not included
in the logilasso package and we used nlm in R and as (c) is an analytic
penalty we again used nlm, obtaining the standard errors directly.

3 Results

In this paper, merely as an illustrative example of the methodology, we
analyze a simulated contingency table, corresponding to p = 5, n = 2000,
sampled from the model with all two-way interactions present. We used a
design matrix up to and including all the 3-ways. Then, the model has the
constant, 5 main effects, 10 2-way interactions, and 10 3-way interactions,
a total of 25 parameters (without including the constant). The table is in
vector format and Fortran standard order:

Y∗ = (39, 23, 21, 27, 42, 7, 37, 21, 75, 70, 21, 56, 50, 21, 14, 28,

87, 55, 9, 21, 46, 13, 12, 4, 325, 520, 28, 129, 103, 61, 10, 25)T;

In Figure 2 we present the graph showing the MPLEs corresponding to the
10 3-way interactions along the path of λs, with a LASSO penalty: panel
(a) using the logilasso package (Dahinden, 2007). Irrespectively of the
fold of the cross-validation, the final model found is the same (i.e. 6 three-
ways went to zero); panel (b) using the nlm function in R with the LASSO
penalty; panels (c) and (d), using the nlm function in R with the smooth
LASSO for w = 1. The paths of the 3-ways are not stabilized until λ is
very large (panel (c)) and they go to 0 much slower than in the previous
cases. Note that the range of λs in panel (d) corresponds to those in panels
(a) and (b). Finally, panels (a) and (b) compare the use of the logilasso

package with nlm.
The final models found using each penalty are: for the LASSO, six three-
way interactions out of the ten went to zero; for the LASSO only in the
interactions, five three-ways went to zero; for the smooth LASSO, if we use
the 95% confidence interval includes 0 as a cut-off criterion, the method
found the correct model, i.e. the all two-way interactions model. Our step-
wise search algorithms (Conde and MacKenzie, 2008; Conde, 2011) found
either the true model (the backwards elimination algorithms), or a model
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FIGURE 2. MPLEs of the 3-way interactions, with a LASSO penalty. (a) Using
the package logilasso, λ∗ ∈ [0, 1]; (b) Using the nlm function; (c) and (d) Using
the smooth approximation for ω = 1. The range of λ in (a), (b), and (d) coincide.

with nine two-ways (the Forward Selection algorithm), i.e., in all cases a
more parsimonious (and hierarchical) model.

For this example table, the LASSO penalized likelihood method found the
least parsimonious or least sparse model, in “regularization” terminology.
This is just one table, but it illustrates a direct contradiction to the view
that penalized likelihood methods produce sparse(st) solutions. We have
many more examples including simulated and real data, and including cases
from the q � n scenario, with similar conclusions (Conde, 2011).
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4 Final Remarks

As far as we know, this is the first time that penalized likelihood approaches
have been compared with some “classical” stepwise search algorithms in
contingency tables. In the light of the results, we recommend the use of
the stepwise algorithms which outperform the LASSO penalized likelihood
approaches. We will present more detailed finding at the workshop.
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Tortosa-Ausina2,3

1 Universitat de València
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Abstract: In this work we undertake an analysis of the association between socio-
economic variables and the spatial distribution of bank branches in Spain in 2008.
In particular, a Poisson regression with random effects is used to model to number
of bank branches in each Spanish municipality. Bayesian approach is used to make
inference about parameters. The main result is that we can determine whether
a given municipality (or province) is under-branched, which would suggest the
existence of financial exclusion (in terms of bank service accessibility), or over-
branched, which could be indicative of misguiding expansion policies. .
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1 Introduction

During the last few years the geography of bank branching has been chang-
ing in several countries around the world. In the U.S., recent laws have ulti-
mately removed branching restrictions at both intra- and inter-state levels
(Jayaratne and Strahan 1996, 1999). In Spain, one of the five largest bank-
ing systems in Europe, these laws have allowed savings banks to enter other
markets different to their traditional markets, since they could set offices
in regions different from their regions of origin. This bank deregulatory ini-
tiative triggered off the morphing of the geography of Spanish banking, in
which, simultaneously to the Latin America forays of some large commer-
cial banks, savings banks expanded geographically throughout the country,
becoming the main actors in dimensions as important as the total number
of branches (Fuentelsaz et al. 2002).
However, the recent economic and financial crisis has questioned the valid-
ity of the geographic expansion policies set by most savings banks, and not
only the largest ones. Many of these firms based their expansions in financ-
ing the housing bubble, whose burst is closely related to the difficulties they
are going through nowadays. As a result of such difficulties, the 46 savings
banks existing by the end of 2009 have virtually reduced to 17 due to the
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merger process enforced by the Bank of Spain, whose principal aim was
to strengthen the Spanish financial system. In addition, prior to the start
of the merger process, some savings banks had already initiated a back off
policy, by closing some offices—the total number of bank branches in Spain
decreased for the first time ever in 2008, and the decline has intensified in
2009 and 2010.
One can therefore forecast the total number of bank branch offices to de-
crease further in the next few years, not only for savings banks but also
for commercial banks and credit unions—the other two types of firms op-
erating in the Spanish banking system. However, since this pattern is not
expected to reverse, some concerns might be raised on its likely negative
effects. In the particular case of Spain, although financial exclusion has
not been high in the political agenda, at least in comparison with other
countries, various institutions have pursued objectives aimed at helping
to reduce financial exclusion. In particular, Spanish savings banks offer
banking products that are designed specifically for vulnerable groups. The
concentration process in the Spanish banking industry has led to a much
lower number of savings banks which will ultimately operate as commercial
banks and, consequently, their contribution to financial inclusion could be
thwarted (Bernard et al. 2008).
Therefore, taking into account the relevance of financial exclusion and the
recent changes in the banking industry in general and the geography of
bank branching in particular, this work undertakes an analysis of the as-
sociation between socio-economic variables and the spatial distribution of
bank branches in Spain in 2008. Since the access to bank services is un-
likely to be improved simply by an increase in the number of bank branches,
the spatial distribution of branches need to address points of actual and
growing unmet demand—which could also be points of declining demand.
We tackle these issues using a Generalized Linear Mixed Model (in par-
ticular a Poisson regression with random effects). In order to make infer-
ence about parameters, we use the Bayesian approach. The main result
is that we can determine whether a given municipality (or province) is
under-branched, which would suggest the existence of financial exclusion
(in terms of bank service accessibility), or over-branched, which could be
indicative of misguiding expansion policies.

2 Modeling the number of bank offices

Taking into account that our interest is describing the number of branches
in each municipality Oi, we model these counts using a Poisson regression
model. This is a particular case of Generalized Linear Models where each
observation follows a Poisson distribution centered in the expected number
of cases by a multiplier λi:

Oi ∼ Po(Ei × λi) ,
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where the expected number of branches in each municipality is computed
taking into account the corresponding population:

Ei = pob08i ×
Total number of offices in Spain

Total population in Spain in 2008
.

The quantity λi is a factor which modifies the expected number of offices.
As a first step of the study, this parameter was modeled taking into account
several covariates. But we found that the variance of our observations is
quite larger than their mean (a variance of 2709.89 with a mean of 6.04
offices), which is far away from expected (same mean and variance for Pois-
son data). To solve this issue we introduced the extra variability through
a Generalized linear mixed model.
For this study we considered three different covariates. The population
density, the unemployment rate and the foreigners rate. In particular, the
population density is considered through its logarithm. This is because
of the magnitude of this variable. Also, we considered reasonable that a
variation of the density when it is small should have a larger effect than its
variation when the density is large.
The other effect affecting the number of bank offices is the geographical re-
gion (the province or the community of the municipality). This geographical
effect can considered in three different ways: as fixed effects, as an inde-
pendent random effect or as random effects with a dependence structure.
Although we have implemented all of them, we only present here the one
which better fits our data. In particular, the best geographical effect is a
fixed effect per province, taking Burgos to be the base province.
The resulting linear predictor is linked with λi in the usual way as:

log(λi) = α0 + α1 ∗ log(densityi) + α2 ∗ unemploymenti

+ α3 ∗ foreingi + β1 ∗ prov1i + · · ·+ β51 ∗ prov51i + Ui,

with Ui ∼ N(0, σ2) for i = 1, . . . , 8109 municipalities in Spain.
Once the model is determined, the next step is to estimate its parameters.
As we are using the Bayesian paradigm, we have to specify the (hyper) prior
distributions of each parameter involved in the model. We have considered
rather noninformative prior distributions, with the aim of expressing our
initial vague knowledge about the parameters. Expressions above jointly
with the priors of all the parameters contain all our knowledge of the system
but they do not yield to analytical estimates. Therefore, we have to resort
to numerical methods in order to obtain the posterior distributions of all
the parameters and also to make prediction about the presence/absence in
a series of unsampled locations. In particular, MCMC inference have been
carried out using WinBUGS (Spiegelhalter et al., 1999).
It is worth noting that this modeling is the one resulting after a model
selection process among the possible geographical effects. This process has
been done using the Deviance information criterion (DIC) (Spiegelhalter et
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al., 2002), the more useful criterion when comparing models whose posterior
distribution has been approximated by MCMC.
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Abstract: This study deals with the development of statistical methodology
for prospective spatio-temporal disease surveillance. Within the framework of
Bayesian hierarchical Poisson count models, we show how the conditional predic-
tive ordinate, a general Bayesian diagnostic which detects observations discrepant
from a given model, can be adapted in a surveillance context to detect small ar-
eas of unusual aggregation of disease as quickly as possible. As a local measure,
different alarms will be sounded for those areas of increased disease incidence.
In order to address the problem of multiple comparisons, a common prior prob-
ability that a given area signals an alarm when no change in risk takes place is
introduced into the model specification. Once an incident cluster is identified, our
model formulation allows us to determine the change in the relative risk pattern.
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1 Disease modeling and surveillance

The ability to rapidly detect any substantial change in disease incidence
is of critical importance to public health practitioners, thus facilitating
timely public health interventions. Unlike testing methods, modeling for
spatio-temporal disease surveillance is a relatively undeveloped arena of
statistical methodology. Most spatio-temporal models have been developed
for retrospective analyses of complete data sets. However, data in public
health registries accumulate over time and sequential analyses of all the
data collected so far is a key concept to early detection of changes in disease
risk over space and time.
When small area disease data in the form of counts are available, Bayesian
hierarchical Poisson models are commonly used to describe the behavior
of diseases. At the first level of the model, the Poisson distribution with
a mean which is a function of the expected counts of disease and the un-
known area-specific relative risks is considered for modeling the within area
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variability of the counts. At the second level of the model, the logarithm of
the relative risk is usually decomposed in additive components representing
spatial, temporal, and space-time interaction effects (Lawson, 2009, ch 11).
In this study we build on Poisson count models for prospective spatio-
temporal disease surveillance. In particular, we use the convolution model
to describe the behavior of disease under endemic conditions. Those are
simple and robust models where the relative risks are assumed to be con-
stant over time (Besag et al., 1991). Each time new observations become
available, we show how the conditional predictive ordinate (CPO, Geisser,
1980) can then be adapted in a surveillance context to detect small areas
of unusual disease aggregation. In particular, for each small area, we define
the surveillance conditional predictive ordinate (SCPO) as the conditional
predictive density of the new observation given the data from previous time
periods, values close to zero indicating that the new observation is not rep-
resentative of the data expected under the previously fitted model. As a
local measure, different alarms will be sounded for those areas of increased
incidence. Hence, the proposed surveillance technique can be used to detect
multiple clusters of varying size and magnitude simultaneously.
From a Bayesian viewpoint, there is no need to introduce a penalty term for
performing multiple comparisons simultaneously (Scott and Berger, 2006).
However, the multiple comparisons problem has to be carefully addressed
to assure a good performance of the surveillance procedure. We propose
to model the number of alarms at each time period under the null by the
Binomial distribution with parameters the number of small areas under
surveillance and the probability of each area signaling an alarm. We can
then evaluate, at each time period, the probability of observing at least the
same number of alarms. An alarm for an out-of-control system will be trig-
gered if this probability is below a critical level. All the alarms associated
with small areas of unusual aggregation of disease will then be reported.
Once an incident cluster of disease has been detected, an additional effect
representing the expected additive increase of disease counts due to the out-
break is added to the mean of the Poisson distribution. For non-infectious
diseases, we assume that the outbreak component follows a Gaussian ran-
dom walk. For infectious disease, the epidemic component is modeled as
a function of the previous numbers of cases in the area as well as in the
neighboring areas, which allows us to explain the spread of the disease.
It is important to emphasize that at each time period a new set of data
are included in the model. This implies restarting the MCMC simulation
process from scratch at each time period, which can be time consuming.
Here we propose to use a sliding window with fixed time units (Lawson,
2004) to estimate the convolution model describing the endemic state. That
is, only the most recent observations are used to estimate the model at
each time period. The observations corresponding to outbreaks of disease
are only used to model the epidemic state, and so they will be assumed to
be missing in the estimation of the convolution model.
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2 Numerical example

We analyze culture positive (C+) laboratory notifications of influenza in
South Carolina from October 2004 to April 2005, with a total of 13 biweekly
time periods. As we can see in Figure 1, a slightly high count can be
observed at time period 4. However, it is not until time period 6 when
we declare an epidemic state, with a length of 6 time periods. Figure 2
displays a selection of cumulative crude count maps for 4 time periods: week
beginning 15th December 2004, 15th January, 1st March, and 1st April
2005. Differential timing of incipient epidemic waves and also differences in
duration can be observed across the state.
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FIGURE 1. Biweekly C+ laboratory notifications of influenza in South Carolina.
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FIGURE 2. A selection of four county maps during the flu season of 2004/2005:
cumulative counts of C+ notifications.

Figure 3 displays the posterior average mean C+ notifications temporal
profiles for Charleston and Richland, 2 major urban regions of the state.
Because of the limited amount of historical data, we start the surveillance
exercise at time period 4, using the first 3 time periods to estimate the
endemic behavior of disease. Alarms for an epidemic state (solid points)
were properly sounded at those time periods of increased disease incidence.
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FIGURE 3. Real (solid line) and posterior mean (dashed line) C+ notifications for
Charleston and Richland. Solid points represent detected unusual observations.

3 Conclusions

In this study, we show how the conditional predictive ordinate can be
adapted in a surveillance context to detect areas of unusual aggregation
of disease. The results obtained in the analysis of influenza data at county
level are encouraging. Our surveillance procedure allows us to detect in-
fluenza epidemics at the very moment of their onset. In addition, our model
formulation provides a good description of the epidemic behavior.
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Abstract: This study deals with the prediction of time series using a Bayesian
forecast approach based on exponential smoothing models. In particular, we de-
scribe the Bayesian analysis of the Holt-Winters model formulated as a linear
heteroscedastic model. This alternative formulation simplifies the Bayesian anal-
ysis of the model, since it provides the joint distribution of the data vector. As
a consequence, any conditional distribution is also known, which allows us to
develop a straightforward approach for dealing with missing data problems. In
addition, we show how the linear formulation generalizes in a natural manner to
the multivariate case, which allows us to jointly forecast correlated time series.
The Bayesian analysis of the multivariate Holt-Winters model formulated as a
seemingly unrelated regression model is straightforward. MCMC simulation tech-
niques and Monte Carlo integration are used in order to approach the posterior
and predictive distributions, which are not analytically tractable.
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1 Exponential smoothing models

Exponential smoothing methods, due to their simplicity and robustness,
are widely used forecasting techniques (Gardner, 2006). Statistical foun-
dation for exponential smoothing was provided by the introduction of a
class of innovations state space models underlying exponential smoothing
methods (Hyndman et al., 2008). Within this framework, Bermúdez et al.
(2007) formulated the additive Holt-Winters model as a heteroscedastic lin-
ear model. This formulation simplifies the Bayesian analysis of the model,
since it shows the joint distribution of the data vector: a multivariate Nor-
mal distribution with mean vector and covariance matrix depending on the
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initial conditions and the smoothing parameters (Bermúdez et al., 2010). In
this study we present two practical applications of this linear formulation.
First, we develop a Bayesian forecast procedure that allows us to analyze
positive demand time series with a proportion of zero values and a high
variability for the non-zero data. The proposed procedure relies on the anal-
ysis of an unconstrained latent demand time series underlying the observed
data, which can take negative values but those can only be observed by the
value zero. Given that knowing the joint distribution of the data vector im-
plies that any conditional distribution is also known, the linear formulation
for the Holt-winters model provides a suitable framework for the analysis
of time series with missing and censored observations and, consequently,
for the analysis of positive time-series data with zero values.
On the other hand, it is common in practice to find sets of time series
subject to correlated random disturbances or where the observations of a
time series are related to past and present values of other series. On those
occasions, the use of a multivariate time series model accommodating the
existing interrelationship is necessary to improve the fit and forecast ac-
curacy with respect to the univariate analyses of the series. Here we show
how the linear formulation of the Holt-Winters model can be easily ex-
tended to the multivariate case. Assuming that each of the individual time
series comes from the univariate Holt-Winters model and that there is a
contemporaneous correlation between corresponding errors in the different
equations, a multivariate general model is obtained, which can be formu-
lated as a seemingly unrelated regression (SUR) model (Zellner, 1971).
From conventional non-informative prior distributions we derive the pos-
terior distribution of all the unknowns. This posterior distribution is not
analytically tractable but can be approached by MCMC simulation tech-
niques. In particular, we propose a Metropolis-within-Gibbs algorithm that
allows us to simulate from the full conditional posterior distributions of the
model parameters. The predictive distribution, which encapsulates all the
information concerning the future values of the time series and allows us to
calculate both point forecasts and prediction intervals, is finally estimated
using Monte Carlo integration (Corberán-Vallet, 2009).
The general multivariate Holt-Winters model includes previously studied
exponential smoothing models as particular cases. Of special importance
from a practical viewpoint is the homogeneous multivariate model, result-
ing from assuming that the univariate series share a common structure.
The multivariate model can then be formulated as a traditional multivari-
ate regression model (Zellner, 1971), which simplifies its Bayesian analysis
(Bermúdez et al., 2009). To decide between the general and the homoge-
neous multivariate Holt-Winters models we propose to use the deviance
information criterion (DIC, Spiegelhalter et al., 2002), which can be easily
calculated from samples generated by MCMC simulation techniques.
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2 Numerical examples

We first analyze the time series corresponding to the number of buses man-
ufactured in Spain from January 1998 to December 2004, with changing
local level and seasonal pattern over time. Figure 1 depicts the time plot of
the series together with the forecast obtained when we consider as historical
data the observations for the first six years and forecast the last one, 2004,
to measure the post-sample accuracy of our forecasts. The corresponding
forecast SMAPE is 16.13.
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FIGURE 1. Top half: Time plot of the series corresponding to the number of
buses manufactured in Spain from January 1998 to December 2004. Bottom half:
Monthly point forecasts (solid line) and 80% prediction intervals (dashed lines)
for year 2004. Real data are represented by solid points.

Second, we study the data bank that contains monthly hotel occupancy in
Castellón, Valencia and Alicante, the three provinces that make up the Va-
lencian Community, from January 2001 to December 2006. Figure 2 shows
the data series with a regular growth and additive seasonality. In addition,
it is reasonable to assume that the three series are correlated, so the joint
analysis of the series with the multivariate Holt-Winters model is justified.
In order to illustrate the performance of the multivariate model, we con-
sider as historical data the observations for the first 5 years, 2001-2005,
and forecast the last one, 2006. The first step in the analysis of the time
series is to select the most adequate multivariate model for describing their
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FIGURE 2. Monthly hotel occupancy in Castellón, Valencia and Alicante, in
thousands of travelers.

behavior. The values of the DIC criterion are 868.11 and 884.08 respec-
tively for the general and the homogeneous model. Thus, the assumption
of a common structure for the time series is not appropriate in this exam-
ple and the general multivariate model is advisable for the joint analysis
of the series. Table 1 shows the SMAPE forecast errors obtained, for each
time series, with the general multivariate Holt-Winters model. For compar-
ative purposes, we also include the corresponding errors obtained from the
homogeneous model and the univariate analyses.

TABLE 1. Forecast SMAPE obtained, for each time series, from both the general
and homogeneous multivariate Holt-Winters models and the univariate models.

Castellón Valencia Alicante Mean

General multivariate H-W 10.57 28.58 17.78 18.98
Homogeneous multivariate H-W 12.95 37.04 18.77 22.92
Univariate Holt-Winters 10.13 35.00 17.58 20.90
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Abstract: In order to evaluate the development of websites of the 308 Por-
tuguese municipalities in this work it was performed an analysis using regression
models and clustering techniques. That analysis allowed recognizing a group of
socioeconomic variables that are significant to characterize homogenous groups
of municipalities in what concerns e-government maturity.
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1 Introduction

Public attention to performance analysis in the public sector has grown
considerably in recent decades (Heinrich, 2008) and, particularly, in recent
years, in the area of e-government. Statistical analysis on the performance
assessment of e-government issues is also very recently. Most of these works
apply linear regression models and correlation analysis as Mitra and Gupta
(2008) or Kumar and Best (2006). To investigate the ’demand’ side of e-
government, Gauld et al. (2010) applied the multiple logistic regression.
Principal components analysis (PCA) was applied in an study about citi-
zens’ attitudes towards e-government and e-governance in United Kingdom
by Kolsaker and Lee-Kelley (2008). This paper focuses on the evaluation
of website maturity of the 308 Portugal’s municipalities regarding the fea-
tures they offer. A combination of multivariate techniques, as regression
models and clustering procedures, allows recognizing a group of variables
that are significant to characterize some homogeneous groups of municipal-
ities identified by cluster analysis.
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2 Methodology

The websites of the 308 municipalities were classified according to the fea-
tures available, namely, into three dimensions: information online (Info),
online services (Serv) and online participation (Particip). Each compo-
nent was classified according to an evaluation grid translating into a score
from an ordinal scale (0-4 points). Thus, each municipality is characterized
by a vector with three scores (Info, Serv, Partic). Moreover, a large set
of variables was collected (19 variables almost all the National Institute
of Statistics of Portugal, INE) that includes variables related with demo-
graphic characteristics, economic development, education levels, participa-
tion in government modernization programs, etc. Firstly, it was performed
an exploratory analysis of variables and outliers were identified for some of
them. From a global point of view, the analysis focuses on the sum of the
three variables collected, i.e., in a new variable Total that indicates a global
measure of the maturity of a website. The preliminary analysis indicated
possible quadratic relations between some independent variables and To-
tal that were considered in modelling procedure. An ordinary least squares
(OLS) multiple regression model with backward procedure was fitted to
identify a restrict group of exogenous variables that describes significantly
the global indicator Total as a dependent variable, removing the indepen-
dent variable with largest p-value (since more than 5%). The final model
was validated by verification of the usual assumptions. In a supplemen-
tary analysis, a clustering procedure was performed to identify homoge-
nous groups taking into account the websites’ scores (Info, Serv, Partic).
The clusters analysis considered the squared euclidian distance as dispar-
ity measure and the average linkage to hierarchical clustering process. The
choice of number of clusters is performed analyzing clusters distance and
R-squared criterion. Finally, the solution obtained in the clusters analysis
was interpreted through an analysis of the variable’s statistics.

3 Regression analysis

Table 1 summarizes the results of the final regression model

Totali = β0 +β1IRSi+β2S1EdInitiali+β3Digitali+β4Population100i+

+β5PercUrbPopi + β6MTTiβ7MTT 2
i + β8MTVi + β9EHR

2
i + εi

with i = 1, 2, ..., 308. It is possible to identify that the demand of digi-
tal services, as the online submission of tax forms (IRS ), is significant to
the municipality’s score as well as the participation of the municipalities
in the modernization program Simplex 2008/09 (S1EdInitial). Variables
Population100 (number of residents, unity=100 000) and %UrbPop (% of
population residing in an urban area) represent a demographic character-
ization. The economic development of municipality is represented by tax
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TABLE 1. Regression results.

variable β̂ std. error p-value

Intercept 3.024 0.526 .000
IRS .021 .009 .015
S1EdInitial 1.326 0.579 .023
Digital .413 .179 .021
Population100 −1.764 .613 .004
%UrbPop 1.036 .377 .006
MTT .049 .022 .025
MTT 2 −.001 .000 .011
MTV .938 .442 .035
EHR2 −.001 .000 .019
R2 = .224

variables as MTT (municipal tax on transfers of property, in millions of
euros) and MTV (municipal tax on vehicles, in millions of euros). Last
variable ERH (expenditure on human resources) incorporates one factor
related with staff dimension, namely the expenditure on human resources.
The assumptions of normality of errors was verified with the Kolmogorov-
Smirnov test (Statistic=.038; p-value=.200).

4 Clustering analysis

A clustering procedure was performed to identify homogenous groups of
municipalities considering the vectors of the initial three variables. It was
considered the square euclidian distance as measure of disparity and the
average linkage approach in the hierarchical clustering procedure. As there
are 308 objects, it is very difficult to choose the number of clusters based
on dendogram because the graphic is huge. Therefore, two approaches were
implemented to support this choice:

• R-squared criterion (greater than 80%), R2 =
∑∑

nij(Xij−X̄ij)2∑∑∑
(Xijk−X̄)2 per-

formed with the support of the usual ANOVA one-way;

• distance between clusters obtained in the agglomeration process.

Combining these approaches, seven clusters were adopted. Figure 1 shows,
in a geographical view, the classification of the 308 municipalities according
to the solution of clusters procedure. Attending to statistics of variables in
each cluster, presented in Table 2, the clusters analysis allowed the iden-
tification ofseven main profiles of websites with different median scores in
the three assessment components.
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TABLE 2. Characterization of clusters solution (medians for ordinal variables
and averages to quantitatives.

Cluster Info Serv Partic Total IRS %UrbPop MTV
1 (6.2%) 3 3 2 8 69.2 59.5 .81
2 (6.8%) 3 3 1 7 67.1 40.7 .50
3 (11.6%) 3 1 2 6 62.7 32.1 .30
4 (32.1%) 3 1 1 5 61.0 32.0 .34
5 (14.9%) 2 1 1 4 60.3 32.7 .28
6 (17.9%) 3 1 0 4 61.9 23.8 .20
7 (10.4%) 2 0 0 2 56.6 12.5 .09

FIGURE 1. Representation of clusters analysis solution in Portugal’s map.
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Abstract: The aim of the study is to investigate the excess health care ex-
penditures for persons with pneumococcal disease, not only at the moment of
diagnosis, but also long before and after diagnosis. The dataset contains health
care costs and the occurrence time for patients diagnosed with the disease and for
a matched control. Joint modeling of costs and the gap times is performed using
mixed models. Exponential, Weibull and Gamma distributions with a different
link functions to model the gap times are compared. The costs themselves are
modeled conditional on the time-to-recurrent-event.
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1 Introduction

Streptococcus pneumoniae (or “pneumococcus”) is a bacterial pathogen
that affects children and adults worldwide. It can cause disseminated inva-
sive disease (including meningitis, bacteraemia and pneumonia) as well as
non-invasive disease, including otitis media, non-invasive pneumonia and si-
nusitis. Anyone can acquire pneumococcal infection, but the invasive pneu-
mococcal disease mostly affects children, the elderly and immunocompro-
mised individuals. Here, we will focus on pneumococcal infections, which
are so severe or persistent that they warrant diagnosis by a positive isolate
(these are predominantly, though not necessarily, cases of invasive pneu-
mococcal disease).
We focus on the medical costs incurred by people who acquire pneumococ-
cal infections. In the health economic literature there is much theoretical
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debate about the inclusion of future unrelated costs in economic evalu-
ations of interventions. Future unrelated costs are often taken to be the
discounted population-averaged accumulated health care costs after the
age at intervention (i.e. future costs accumulated during years of life that
would not have been lived or would have been lived differently without
the intervention). However, heterogeneity in susceptibility to illness im-
plies that persons who suffer from particular diseases (especially those who
die) are more likely to suffer from other diseases during their hypothesized
remaining life span than the average person of the same age. In an attempt
to contextualize the costs associated with pneumococcal infections in this
manner, we aim to study the overall health care costs after the infection
was cleared (i.e. for patients who are vulnerable to the more severe expres-
sions of the disease, but survive the episode), as compared to costs incurred
by undiagnosed persons. Furthermore, in addition to analyzing these un-
related costs for the future (i.e. after the time at diagnosis), here we also
analyse these for the past (i.e. before the time at diagnosis).

2 The Dataset

The dataset that will be considered in this paper was obtained by merging
two databases, one from the National Reference Laboratory, containing all
positive pneumococcal isolates in Belgium, the other from the National
Alliance of Christian Sickness Funds (NACSF), containing all resource use
information of members of the largest sickness fund in Belgium.
Merging the two databases described above, resulted in a dataset of re-
source use by cost category of 876 people who have had a pneumococcal
infection at a known point in time and could be matched with 876 pa-
tients in terms of municipality, age, gender and social category to unre-
lated NACSF members in other aspects. Thus, the final dataset contains
all medical costs incurred by 1752 NACSF members.
The considered NACSF members were divided into four age groups based
on expected differences in levels of severity of experienced pneumococcal
disease. Age group 1 contains all diagnosed members and matched members
younger than 5 years (in total 2 × 316 patients), age group 2 the members
between 5 and 49 years (2 × 253 patients), age group 3 all members between
50 and 64 years (2 × 113 patients) and age group 4 the members aged 65
years or more (2 × 194 patients).
Not only the size of the costs are considered, also the times at which these
costs took place are taken into account. One might expect that diagnosed
patients on average not only have higher costs, but also have more frequent
costs, i.e. when a member performs a cost at a certain time, it will take
less time for a diagnosed member to have the next cost, compared to an
undiagnosed member. Creemers et al. (2011) analyzed these data for the
first time and they did take this concept into account by analyzing the
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cumulative costs rather than the original costs. By doing so, the time of
the costs is (implicitly) included in the analysis. Here, we will explicitly
include the time at which the costs are made in analysis, by modeling
jointly the time to the next cost and the magnitude of the cost.

3 The Joint Model

Denote tkij the jth month for the diagnosed (k=1) or the undiagnosed (k=2)

member of pair i, i = 1, . . . , 876 and j = −nkbi, . . . , nkai. Negative months
coincide with timepoints before the diagnosis, positive months with time-
points after diagnosis. The moment of diagnosis (or in case of a matched
member: the moment of diagnosis of the corresponding diagnosed member)
takes place at time 0. In stead of looking at the time the costs take place,
one can define a variable that describes the time to the next cost (when
the considered timepoint is after diagnosis) or the time to the previous cost
(when the considered timepoint is before the diagnosis):

skij = tkij+1 − tkij ; k = 1, 2 and j = 0, . . . , nkai,

skij = tkij − tkij−1; k = 1, 2 and j = −nkbi, . . . ,−1.

skij is referred to as the gap time, i.e. the time between two successive costs.

The gap times for an individual i are grouped into a vector ski .
It might be interesting to model jointly these gap times and the costs. One
then would like to consider and estimate the joint density f(y1

i ,y
2
i ), where

yki = (ski , c
k
i ), with ski and cki the vector of respectively gap times and costs

for the diagnosed (k=1) or undiagnosed (k=2) patient of pair i. Several
modelling assumptions can be made and in most cases, some factorization
of the joint density is applied. One possible factorization is as follows:

f(y1
i ,y

2
i ) =

∫ ∫
f(y1

i |ui)× f(y2
i |vi)× f(ui, vi)duidvi

=

∫ ∫
f(s1

i , c
1
i |ui)× f(s2

i , c
2
i |vi)× f(ui, vi)duidvi

=

∫ ∫ [
f(c1

i |s1
i , ui)× f(s1

i |ui)
]︸ ︷︷ ︸

F1

×
[
f(c2

i |s2
i , vi)× f(s2

i |vi)
]︸ ︷︷ ︸

F2

×f(ui, vi)duidvi.

(1)

The first factor F1 in (1) refers to the diagnosed patients, while the second
factor F2 refers to the undiagnosed patients. Diagnosed and undiagnosed
patients are linked by the joint random-effects distribution f(ui, vi). For
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this joint distribution, a bivariate distribution (for example a bivariate
normal density) can be assumed. Another option is to assume that the
random effects are independent, and thus f(ui, vi) = f(ui) × f(vi), which
simplifies the model drastically.

4 Results and Discussion

Firstly, we only focus on the gap times (i.e. the second terms of F1 and
F2). Within each age group, a covariate effect of age is included and the
mean structure is described in the following ways:

(a) G
(
µkij
)

= before×
(
α1 + β1age

k
ij

)
+ after×

(
α2 + β2age

k
ij

)
+ bki

b1i , b
2
i ∼ N

[(
0
0

)
,

(
σ2
b1 σb1b2

σb1b2 σ2
b2

)]
, and

(b) G
(
µkij
)

= before×
(
α1 + β1age

k
ij + γ1s

k
ij−1

)
+

after×
(
α2 + β2age

k
ij + γ2s

k
ij−1

)
+ bki

b1i , b
2
i ∼ N

[(
0
0

)
,

(
σ2
b1 σb1b2

σb1b2 σ2
b2

)]
,

(2)

with G the considered link function. (identity or log link). The Gamma
distribution did not lead to convergency in any of the cases and therefor will
not be discussed here. Until now, results for the full structures as described
in (2) could be obtained only for the exponential distribution with identity
link and without effect of the previous gap time. However, results for all
models could be obtained when assuming independency between random
effects b1i and b2i . Comparing the situation with a general covariance and
independency under an exponential distribution, identity link and effect of
only age, suggested that this independency assumption might be a good
approximation. However, when more results for the general covariance case
are available, it should be checked if this indeed is valid.
The Weibull distribution gives smaller AIC values compared to the ex-
ponential distribution, a log link behaves better compared to the identity
link and including an effect of the previous gap time results in seriously
reduced AIC values. In Table 1 parameter estimates and standard errors
for the Weibull distribution with a log link and with a mean structure in-
cluding the previous gap time are summarized. The effect of the covariate
age (within an age group) was significant only in age group 4 and in age
group 1 before the diagnosis. In the oldest age group, the effect of the age
of the member is negative, inducing that in this group, the older patients
will make more frequent costs. In the youngest age group, before diagnosis,
the effect of age is positive, inducing that in age group 1, the younger mem-
bers will make more frequent costs. The effect of the previous gap time was
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TABLE 1. Parameter estimates and standard errors for the Weibull distribution
with a log link and with a mean structure including the previous gap time.

Group Before After
α1 β1 γ1 α2 β2 γ2 σ2

b k∗

P1 0.23 0.06 0.06 0.67 -0.02 0.05 0.13 1.57
(0.05) (0.02) (0.01) (0.04) (0.02) (0.01) (0.01) (0.37)

P2 0.66 0.004 0.03 0.75 -0.002 0.05 0.20 1.43
(0.07) (0.002) (0.003) (0.08) (0.002) (0.005) (0.02) (0.009)

P3 -0.64 0.02 0.10 -0.58 0.02 0.07 0.22 1.75
(0.67) (0.01) (0.005) (0.67) (0.01) (0.01) (0.03) (0.03)

P4 1.95 -0.02 0.07 1.03 -0.01 0.06 0.25 1.98
(0.41) (0.005) (0.004) (0.41) (0.005) (0.01) (0.03) (0.01)

M1 0.41 0.05 0.05 0.86 -0.01 0.04 0.15 1.46
(0.05) (0.02) (0.01) (0.04) (0.02) (0.01) (0.01) (0.01)

M2 0.85 -0.001 0.03 0.82 -0.001 0.03 0.20 1.43
(0.07) (0.002) (0.004) (0.08) (0.002) (0.004) (0.02) (0.009)

M3 1.79 -0.02 0.03 1.16 -0.01 0.03 0.23 1.58
(0.69) (0.01) (0.004) (0.69) (0.01) (0.006) (0.03) (0.03)

M4 2.22 -0.02 0.08 1.78 -0.02 0.05 0.19 1.85
(0.35) (0.005) (0.004) (0.36) (0.005) (0.007) (0.02) (0.01)

highly significant in all cases (p < 0.0001). Estimates for this effect were
positive, meaning that a large gap time between the previous cost and the
current cost will result in a large mean gap time between the current cost
and the next cost. The random effects were found to be significant in all
cases, with p values all < 0.0001 using a mixture of χ2 distributions.
Figure 1 shows the average observed and average predicted profiles in func-
tion of the previous gap times for age group 1. Predictions are made using
the model that results from Table 1: the covariate age is included only
before diagnosis. The average predicted profiles approximate the average
observed profiles well in most cases. For longer previous gap times, pre-
dicted averages can deviate from observed averages. This might suggest
there is still room for improvement in the model. Possible generalizations
include different random effects before and after diagnosis, and the inclu-
sion of random slopes.
Secondly, the full joint model as described in (1) is fitted. However, models
are still running and results could not be obtained yet. More details will
be given in the presentation.
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FIGURE 1. Average observed (full lines) and average predicted (dotted lines)
profiles in the diagnosed group and the undiagnosed group for age groups 1,
before and after the diagnosis.
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1 Heteroscedastic Symmetric Nonlinear Models

We consider an heteroscedastic symmetric nonlinear model where both
mean and dispersion parameters vary across observations through nonlin-
ear regression structures. Homoscedasticity of the dispersion parameter is a
common assumption in nonlinear models. However, this may not be appro-
priate in some situations and for others may not show the dependence of the
dispersion parameter on covariates available in the data. This type of hete-
roscedastic regression has been discussed in many areas of applied statistics.
The random variables Y1, . . . , Yn are assumed to be independent, and each
observation Y` has a symmetric density with mean parameter µ` ∈ IR and
dispersion parameter φ` > 0 given by π(y;µ`, φ`) = 1√

φ`
g(u`), y ∈ IR,

where g : IR→ [0,∞) is such that
∫∞

0
g(u)du <∞ and u` = φ−1

` (y`−µ`)2.
The function g(·) is typically known as the density generator. We will de-
note Y` ∼ S(µ`, φ`, g), ` = 1, . . . , n. The symmetrical class includes all sym-
metrical continuous distributions with heavier and lighter tails than the
normal ones. First, we assume that the mean response is µ = (µ1, . . . , µn)>

with µ` = f(x`;β), where x` = (x`1, . . . , x`m)> is an m×1 vector of known
explanatory variables associated with the `th response, f(·; ·) is a twice
continuously differentiable function in β and β = (β1, . . . , βp)

> is a vector
of unknown regression parameters to be estimated. We also assume that β
is defined in a subset ∈ Ωβ of IRp (p < n). Furthermore, the n× p matrix

of derivatives of µ with respect to β, denoted by X̃ = ∂µ/∂β, is assumed

to be of full rank, i.e., rank(X̃) = p for all β. Second, we introduce a sys-
tematic component for the dispersion parameter vector φ = (φ1, . . . , φn)>
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given by φ` = h(τ`), where h(·) is a known one-to-one continuously differ-
entiable function of the dispersion linear predictor defined by τ` = z>` γ,
where z` = (z`1, · · · , z`q)> is a q × 1 vector of explanatory variables that
may have components in common with x` and γ = (γ1, · · · , γq)> is a vec-
tor of unknown parameters to be estimated. The function h(·) is usually
called dispersion link function and should be a positive-value function.
One possible choice for h(·) is h(τ) = exp(τ). We introduce the follow-

ing notation: δabcde = E{t(1)at(2)bt(3)ct(4)dze} for a, b, c, d, e = 0, 1, 2, 3, 4,
where t(r) = drt(z)/dzr and t(z) = log h(z2). Fisher’s information ma-
trix for (β, γ) is block diagonal and is given by K = diag{Kβ ,Kγ}, where

Kβ = δ(2,0,0,0,0)X̃
>ΛX̃ with Λ = diag{φ−1

1 , . . . , φ−1
n } and Kγ = P̃>V P̃ ,

V = diag{v1, . . . , vn} with vi =
(α2,0,0,0,2−1)h′2i

4φ2
i

and P̃ is the n× q matrix of

derivatives of φ with respect to γ, denoted by P̃ = ∂φ/∂γ. The parameters

β and γ are globally orthogonal and then the MLEs β̂ and γ̂ are asymp-
totically independent. A nonlinear optimization method, such as Fisher’s
scoring algorithm, is needed for obtaining β̂ and γ̂; see Cysneiros et al.
(2010).

2 Improved score tests

The basic idea of transforming the score test statistic in such a way that
it becomes better approximated by the reference chi-squared distribution
is due to Cordeiro and Ferrari (1991). The corrected score statistic S∗R
proposed by these authors is given by S∗R = SR{1 − (c + bSR + aS2

R)},
where the coefficients a, b and c are of order n−1 and come from the ex-
pansion of the distribution function of SR under the null hypothesis given
by Harris (1985). Also, the coefficients a, b and c depend on the functions
of joint cumulants of log-likelihood derivatives up to the fourth order. The
null distribution of S∗R is chi-squared with approximation error reduced
from order O(n−1) to O(n−3/2). The improved statistic S∗R is not always
a monotone transformation. To overcome this, Kakizawa (1996) sugges-
ted the monotone transformation K(SR) = S∗R + P (SR), where P (SR) =
1
4

{
c2SR + 2bcS2

R +
(
2ac+ 4

3b
2
)
S3
R + 3abS4

R + 9
5a

2S5
R

}
. Also, Cordeiro et

al. (1998) found an alternative formula to the modified score statistic S∗R,
which is a monotone transformation of SR. If a = 0 and b 6= 0, the al-
ternative statistic, S̃R, is given by S̃R = 1

2b exp(−c){1 − exp(−2bSR)}.
If a = b = 0, S∗R is a monotone transformation of SR and there is
no need to define an alternative corrected statistic. The three statistics
S∗R, K(SR) and S̃R are equivalent up to order n−1, i.e., they typically dif-
fer by Op(n

−3/2). Partitioned the parameters vectors γ as γ = (γ1
>, γ2

>)>,
where γ1 = (γ1, · · · , γq1)> is a vector of parameters of interest, γ2 =
(γq1+1, · · · , γq)> and β = (β1, · · · , βp)> are nuisance parameters. We are

interested in testing the null hypothesis H0 : γ1 = γ
(0)
1 against the al-
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ternative hypothesis H1 : γ1 6= γ
(0)
1 where γ

(0)
1 is a specified vector of

dimension q1 (q1 ≤ q). Corresponding to this partition, we write P̃ =

(P̃1, P̃2) where P̃1 and P̃2 are full rank matrices with dimensions given by
n × q1, n × (q − q1), respectively. We can now express the score statis-
tic SR for testing H0 in the heterocedastic symmetric nonlinear model

as SR = ζ̃> P̃1

(
P̃>1 V P̃1

)−1

P̃>1 ζ̃, with the functions being evaluated at

(γ
(0)>
1 , γ̃>2 , β̃

>). Here, the quantities above are S = diag {s1, · · · , sn}, sl =
−2g

′
(ul)

g(ul)
, ζ = (SF1u − F1ι)(δ(2,0,0,0,2) − 1)−1/2Λ, u = (u1, · · · , un)

>
, ul =

(yl−µl)2

φl
, F1 = diag {h′1, · · · ,h′n} where the primes denote differentiation

with respect to τ and ι is an n × vector of the ones, l = 1, · · · , n. The
general expressions for the A′s consider a test on all elements of γ, i.e.,
γ = γ(0) become A1 = b1a0 ι

>Λ4ZβdZγZβdΛ4ι+3a1 ι
>Λ4Zβ�Zγ�ZβΛ4ι+

b2 tr{Λ7ZβdZγd}, A2 = b3a3 ι
>Λ1ZγdZγZγdΛ1ι − a4 ι

>Λ4ZβdZγZγdΛ1ι +

a6 tr{Λ9Z
(2)
γd }, and A3 = −b9a3ι

>Λ1ZγdZγZγdΛ1ι− 2b9
3 a3ι

>Λ1Z
(3)
γ ι, where

Zβ = δ−1
(2,0,0,0,0)X(X>ΛX)−1X>, Zγ = δ−1

(2,0,0,0,0)P̃ (P̃>V P̃ )−1P̃>, a0 =

−δ(0,0,1,0,1) + 2δ(0,1,0,0,0), a1 = (δ(3,0,0,0,1) − δ(1,0,0,0,1)), a2 = δ(0,1,0,0,2) −
δ(0,0,1,0,3), a3 = (1 − 3δ(0,1,0,0,2) − δ(0,0,1,0,3)), a4 =

4 b1 δ(2,0,0,0,0)

(δ(2,0,0,0,2)−1)a3, a6 =
3

(δ(2,0,0,0,2)−1)2 a5 with a5 = −6 + δ(2,0,0,0,2)(12− 3δ(2,0,0,0,2)) + 4δ(3,0,0,0,3) +

δ(4,0,0,0,4), b1 =
3(δ(1,1,0,0,1)−δ(0,1,0,0,1))

(δ(2,0,0,0,2)−1)δ(2,0,0,0,0)2
, b3 =

−12(1−3δ(0,1,0,0,2)−δ(0,0,1,0,3))

(δ(2,0,0,0,2)−1)2 and

b2 =
−6(δ(2,0,0,0,2)δ(0,1,0,0,2)+2δ(3,0,0,0,1)+δ(4,0,0,0,2))

(δ(2,0,0,0,2)−1)δ(2,0,0,0,0)2
.

3 Numerical Evidence

In Table 1, we report some simulation results in order to compare the sizes
of the usual score test and of the tests based on the following modified score
statistics: S∗R, K(SR) and S̃R. We use the following nonlinear regression
model that assumes the predictor: η` = β0 + β1x1` + exp(β2x2`) with φ` =
exp(z>i γ) being τ = γ1 + γ2z2i` + γ3z3`, ` = 1, · · · , n. The null hypothesis
that we consider is γ1 = 0 and the response was generated from a type–
I logistic distribution. The independent variable x1, x2, z2 and z2 were
chosen as random draws from a uniform U(0,1) distribution and their values
were held fixed throughout the simulations with equal sample sizes. Ten
thousand samples of 30, 35, 40, 45 and 100 observations were generated
with β1 = 5, β2 = 2, β3 = 1, γ2 = 0.3 and γ3 = 0.5. Table 1 displays
the null rejection rates of the three tests for 10% and 5% nominal levels
(α). The Table 1 reveal important information. The score test is largely
conservative for small samples and the corrections are really necessary for
small and moderate sample sizes. Simulation studies (omitted here) they
show that the powers of the three corrected tests are similar and larger
than the power of the original score test.
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TABLE 1. Size simulations: rejection rates of the score and three corrected score;
entries are percentages.

n α Type I logistic model

SR S∗R K(SR) S̃R
30 5 2.3 2.7 2.8 2.8

10 5.2 6.2 6.4 6.3

35 5 2.5 3.2 3.3 3.3
10 5.2 7.2 7.4 7.3

40 5 2.7 3.5 4.1 4.0
10 6.4 7.7 7.9 7.8

45 5 2.8 3.9 4.5 4.4
10 6.5 8.0 8.1 8.1

100 5 4.1 4.5 4.9 4.9
10 8.9 9.9 10.0 9.9
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Abstract: This paper proposes a robust regression method for large data sets
using symbolic data analysis. Large standard data sets are transformed into sym-
bolic interval data sets based on a generalization process. Each interval of the
input data is described by range and mid-point variables. To validate this model,
experiments to software size estimation using two large data projects from the
NASA repository are considered. The prediction quality is assessed by a mean
magnitude of relative errors calculated from test data sets.

Keywords: symbolic data analysis; robust regression; software size estimation.

1 Introduction

Due to the explosive growth in the use of databases, new approaches have
been proposed for discovering regularities and summarizing information
stored in large data sets. In real-world applications of decision making is
usual that inaccuracy, uncertainty or variability must be taken into account
to represent available information. In these cases, classical data are not able
to represent these nuances and other kinds of data, such interval-valued
data are required. Symbolic Data Analysis (SDA) has been introduced as a
new domain related to multivariate analysis, pattern recognition and arti-
ficial intelligence for extending classical exploratory data analysis and sta-
tistical methods to symbolic data. SDA (Diday and Noirhomme-Fraiture
(2008)) aims allows multiple (sometimes weighted) values for each vari-
able and new variable types (interval, categorical multi-valued and modal
variables) have been introduced. In particular, SDA is a powerful tool to
represent units that may be derived through a definition or an aggregation
data and can be applied to situation where inaccuracy and uncertainly
must be by considering to faithfully represent the real world.
This paper introduces a regression approach for large data sets using a
robust model for interval data. Here, this regression model is over a statis-
tical view of learning in an application with software size estimation. An
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accurate estimate of software size is an essential element in the calculation
of estimated project costs and schedules. Two large projects of the NASA
data base containing software modules are considered in this application.
Initially, each large data set is preprocessed in order to generate interval
data from of standard data. The intervals are formed through an aggrega-
tion way using a discrete variable. In the following, the robust regression
method is applied to these interval data sets. A comparative study between
(linear and robust) regression methods for interval data is carried out. The
performance of the methods is measured by the prediction accuracy that
is assessed based on the mean magnitude of relative errors (MMRE).

2 Generation of symbolic data

Software estimation (Bielak (2000)) is responsive to the widespread prob-
lems the software industry has experienced in creating meaningful cost
and schedule estimates. Two traditional size measures for estimating are
source lines of code and function points. The lines of code that a project
generates are strongly influenced by the software languages used, indi-
vidual coding style, and organizational standards. The NASA repository
(http://mdp.ivv.nasa.gov/ ) contains 13 projects. Each project is formed
by software modules described by a set of variables. Here, we consider the
projects MC1 and PC2 of sizes: 9466 and 5586 respectively. The project
MC1 is a combustion experiment that is designed to fly on the space shut-
tle. This project consists of more than 63 KLOC of C and C++ codes. The
project PC2 is a dynamic simulator for attitude control systems. It con-
sists of 26 KLOC of C code. In this work, the software size estimation for
these projects is based on symbolic regression model in which the number
of code lines NL is used as the response variable and the predictor vari-
ables are: number of operators NO, number of operands NA and branch
count BC. Interval data can be generated from standard data according to
a generalization process based on the difficulty level (LD) variable. This
variable has a variability that allows us to represent maximum and min-
imum values and to obtain intervals. Therefore, the numerical variables
describing project modules lead to interval variables describing groups of
project modules. Consider the intervals [a, b], [c, d], [e, f ], [α, β] and a value
v of the variable LD. The symbolic description of a group of project mod-
ules is accomplished in the following way: given a value v of the variable LD
compute a = min {NO}, b = max {NO}, c = min {NA}, d = max {NA},
e = min {BC}, f = max {BC} α = min {NL} and λ = max {NL} ∀i
such that LD = v. In the situations in which the frequency of LD = v is
equal 1, we aggregate the data by groups of values of the variable LD. After
generalization process, the projects MC1 and PC2 concerns of 112 and 61
groups of software modules, respectively. For example, the project PC2 is
a description of: (NO = [5, 17];NA = [3, 9];BC = [3, 6];NL = [18, 81]) for
LD = 10.
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3 Robust regression model for interval-valued data

Let Ω = 1, . . . , n be a data set of n objects described by the response
interval-valued variable Y and p predictor interval-valued variable (X1,
. . . , Xp). Each object i of Ω is represented as an interval feature vector
zi= (xi, yi), xi = (xi1, . . . , xip) where xij = [aij , bij ] ∈ = = {[a, b] : a, b ∈
<, a ≤ b} (j = 1, . . . , p) and yi = [αi, λi] ∈ =.
Let Y c and Xc

j and Y r and Xr
j be, respectively, quantitative variables that

describe the midpoints and the ranges of the intervals yi ∈ Y and xij ∈ Xj

(j = 1, 2, . . . , p). This means that each example Ω = 1, . . . , n is represented
by pairs vi = (xci , y

c
i ) and ri = (xri , y

r
i ) with xci = (xci1, . . . , x

c
ip) and xri =

(xri1, . . . , x
r
ip) where xcij = [aij + bij ]/2, xrij = bij − aij , yci = [αi +λi]/2 and

yri = λi − αi are respectively, the observed values of Xc
j , Xr

j , Y c and Y r.

Consider βc = (βc0, β
c
1, . . . , β

c
p)
′

and βr = (βr0 , β
r
1 , . . . , β

r
p)
′

as being two vec-

tors of p+ 1 parameters and εc= (εc1, ε
c
2, . . . , ε

c
n)
′

and εr= (εr1, ε
r
2, . . . , ε

r
n)
′

as being two vectors of n unknown errors on the midpoint and range of the
intervals. Two linear regression equations, respectively, on midpoint and
range values are given by: yci = x

′c
i β

c + εci and yri = x
′r
i β

r + εri .
The vectors βc and βr are estimated minimizing a criterion function based
on a function ρ for both the residuals eci = yci −x

′c
i β̂

c
and eri = yri −x

′r
i β̂

r
.

The function ρ is related to the likelihood function for an appropriate choice
of the error distribution. Here, both the errors εci and εci are independent
and identically distributed according to a distribution L(·/σ) where σ is
a scale parameter (usually unknown). The criterion function is given by∑n
i=1 ρ

(
εci
s

)
+ρ
(
εri
s

)
where s is a robust estimate of scale and ρ is particular

function. The Fisher scoring method can be easily applied to get β̂c and
β̂r that one can be interpreted as a modified least square.
The i -th prediction of the lower and upper bounds ŷi = [α̂i, λ̂i] of a new
example is based on the prediction of ŷc and ŷr. Given a interval vector
xi = ([ai1, bi1], . . . , [aip, bip]) with xcij = (aij + bij)/2 and xrij = bij − aij
(i = 1, . . . , n) (j = 1, . . . , p), the interval ŷi = [α̂i, λ̂i] is obtained as follows:

α̂i = ŷci − ŷri /2 and λ̂i = ŷci + ŷri /2 where ŷci = x
′c
i β̂

c
and ŷri = x

′r
i β̂

r
.

An experimental evaluation of the robust regression method for interval-
valued data developed in this work using two NASA projects that were
preprocessed in order to transform quantitative data into interval data.
Moreover, a comparative study regarding this robust regression method
and the linear regression one introduced in Lima Neto and De Carvalho
(2008) is also discussed.
The accuracy prediction of the method is measured by the mean magnitude
of relative error (MMRE) that is estimated by the hold-out method in the
framework of a Monte Carlo simulation with 200 replications. According
to the robust regression method using Tukey’s biweight criterion function
and the linear regression method introduced in Lima Neto and De Carvalho
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TABLE 1. MMRE for interval data sets

Project Linear Regression Robust Regression

MC1 0.16 ± 0.08 0.08 ± 0.04
PC2 0.18 ± 0.22 0.12 ± 0.14

(2008) using least squares criterion function, the MMRE is given by

MMRE =
1

n

n∑
i=1

1

2

{∣∣∣∣αi − α̂iαi

∣∣∣∣+

∣∣∣∣∣λi − λ̂iλi

∣∣∣∣∣
}
.

Table 1 shows the average and the standard deviation of the MMRE for
projects MC1 and PC2 considering the linear and robust regression meth-
ods for test data sets (25% of the interval data set). The results in this table
points out that, the robust method is the best option in terms of MMRE.

4 Conclusion

In this paper, we have introduced a robust regression model for large data
sets using symbolic data analysis. Here, a generalization processing is ap-
plied to large point data sets in order to obtain symbolic interval data
sets. Experiments using two large data projects of the well-known NASA
data set for software size estimation were carried out. We have compared
the proposed regression method with a linear regression one and the results
showed that the robust regression model is better than the linear regression
one in terms of prediction quality. In addition, the use of symbolic interval
data allowed to describe projects modules taking into account variability.
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Abstract: Pair copula constructions (PCCs) allow for the construction of flex-
ible multivariate copulas. These multivariate copulas are formulated only using
bivariate copula terms. One such PCC class is the class of D-vines, which al-
lows to incorporate asymmetric and tail dependencies for different pairs of vari-
ables. In this paper we combine D-vines for modelling the residual dependency
among stock indices after marginal time dependencies are captured by univariate
GARCH margins. We follow a Bayesian approach, where marginal and copula
parameters are estimated jointly in a MCMC setup and show how they can be
used to quantitify value-at-risk. Model selection of the D-vine structure as well
as the family of bivariate copula families is discussed and illustrated by the anal-
ysis of four major stock indices. Comparison to corresponding standard GARCH
models show the superiority of the discussed models.

Keywords: multivariate copula; D vines; GARCH, value-at-risk

1 Introduction

Pair copula constructions (PCCs) (see Kurowicka and Cooke (2006), Aas
et. al. (2009), Czado (2010) and Kurowicka and Joe (2011) and references
therein) have become quite popular choices for multivariate copulas, since
they allow to construct very flexible dependency models and thus extending
standard multivariate copula models such as elliptical copulas. In partic-
ular they can be used, when different pairs of variables exhibit different
asymmetric and tail dependencies. They are defined by a sequence of trees,
which determine pairs of variables together with a set of variables. The dis-
tribution of these variables conditioned by the indicated set of variables are
subsequently modeled by a bivariate copula. These bivariate copula terms
can be chosen arbitrarily from a large catalogue of bivariate copulas. The
resulting joint density can be written as a product of the corresponding
bivariate copula densities. The structure of the allowable trees are quite
general allowing for many different PCC’s. Both the normal as well as the
multivariate Student t-copulas with common degree of freedom are special
cases. One particular simple structure are the ones corresponding to D-vine
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copulas. The resulting d dimensional D-vine copula density is given by

f(u1, . . . , ud) = (1)

d−1∏
j=1

d−j∏
i=1

ci,(i+j)|(i+1)··· ,(i+j−1)(F (ui|ui+1, · · · , ui+j−1), F (ui+j |ui+1, · · · , ui+j−1))

for cr,s|i1,··· ,il(·, ·) an arbritrary chosen bivariate copula density. The argu-
ments in (1) are conditional cdf’s, which can be recursively determined in
PCC models. In the application we utilize as bivariate copulas normal, Stu-
dent t-, BB1 and BB7 copulas, respectively. The BB1 and BB7 copulas of
Joe (1997) have the advantage that they allow for different tail dependence
in the upper and lower tail in contrast to symmetric tail dependence for
the Student t-copula or no tail dependence of the Gauss copula. For some
bivariate copula components also the independence copula is chosen.

2 D-vine copula based GARCH models

To utilize copulas for the analysis of financial time series data, we first
have to remove the marginal time dependencies before we can construct
an i.i.d distribution to be modelled by a copula model. For modeling the
time dependence within each margin we use separate GARCH(1,1) models
with t innovations. The corresponding d dimensional vector of standardized
innovations at time t are now i.i.d distributed over different time points.
The margins are t distributed with the marginal degree of freedom deter-
mined by the corresponding univariate GARCH model. The dependency
among the components of the standardized innovation vector is modeled
by a D-vine copula.
For the complete specification of a D-vine copula we have to specify the
D-vine tree structure and the family of bivariate copulas to be chosen for
each bivariate copula term. From (1) we see that for j = 1 we model
unconditional dependencies between pairs of variables and that the com-
putational complexity of the likelihood increases as j increases, since the
recursive calculations of the conditional cdf’s increases. Therefore it is
desirable to model those pairs of variables with highest dependence (as
measured for example with Kendall’s τ) directly in (1) for j = 1. There-
fore we find an order of the variables from 1 to d, such that the depen-
dency between (Ui, Ui+1) is large for many i = 1, · · · , d. This specifies
the bivariate copula terms to be modeled. For the unconditional ci,i+1

we use for example empirical contour plots with standard normal mar-
gins based on data (ui,t, ui+1,t, t = 1, · · · , T . Once these families are cho-
sen then the corresponding parameter value is estimated using for ex-
ample the inversion of the empirical Kendall’s τ value. Once all uncon-
ditional bivariate copula families are determined (denoted by Si,i+1 and

their parameter values estimated (denoted by θ̂i,i+1), we create pseudo
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data given by (F (ui,t|ui+1,t, Si,i+1, θ̂i,i+1 and (F (ui+1,t|ui,t, Si,i+1, θ̂i,i+1 for
i = 1, · · · , d − 1 and use this data in a similar way to choose the copula
family and its parameter estimate for ci,i+2|i+1. We continue in this way un-
til all bivariate copula families are determined. This sequential proceeding
gives a first set of parameter estimates, which are used as starting values in
maximum likelihood estimation (see e.g. Aas et.al (2009)). We could also
use these to construct prior distributions for the copula parameters in a
Bayesian set up.
A major advantage of the D-vine copula based GARCH model over the
standard multivariate CCC GARCH model is that asymmetric dependency
effects can be captured and the model specification allows for independent
choices of the copula terms, while in a CCC GARCH model extra care is
needed to achieve the a positive definite correlation matrix.

3 Bayesian inference for D-vine copula based
GARCH models

For statistical inference D-vine copula based GARCH models have to esti-
mate marginal and copula parameters. Commonly in classical statistics a
two step approach is taken, i.e. first the marginal parameters are estimated
separately ignoring the dependency between the margins. In a second step
the likelihood of the copula parameters is considered, where the marginal
parameters are set to their estimated values to reduce the dimension of the
optimisation. This might introduce bias. To facilitate joint estimation we
follow a Bayesian approach. This allows us to construct credible intervals,
while confidence intervals are difficult to obtain due to the possible non pos-
itive definiteness of the Hessian matrix. A further advantage of a Bayesian
approach is that we can assess the uncertainty of derived quantities such
as the value-at-risk.
We developed a Markov Chain Monte Carlo (MCMC) algorithm for joint
estimation of all parameters. Performance was improved by using a joint
update for marginal GARCH parameters. More details can be found in
Hofmann and Czado (2010).

4 Application

For daily stock indices (DAX, S&P500, Nikkei 225, MSCI) from March
31, 1999 until December 15, 2009 were chosen for our analysis. For de-
termining appropriate D-vine copula based GARCH models we fitted 4
separate GARCH(1,1) models with Student t-innovations. Then we ap-
plied the probability integral transform to standardized residuals based on
a univariate t-distribution with fitted degree of freedom for each margin.
The resulting four dimensional copula data is now used to allow for deter-
mine 5 plausible D-vine copula models involving 2 D-vine tree structures,
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bivariate t-copulas for copula terms and copula terms with different bivari-
ate copula specifications using the considerations for model selection given
before. As benchmark models we considered three CCC GARCH models,
each with GARCH(1,1) margins and t-innovations together with a multi-
variate Gauss, t-copula with common degree of freedom and the indepen-
dence copula, respectively. For these benchmark models we also developed
a Bayesian MCMC algorithm to jointly estimate all marginal and copula
parameters. To allow for time dependence, we selected 5 low and 5 high
volatility periods and fitted separate models for each period.
The Bayesian estimation results for all investigated models and sub periods
were compared based on the deviance information criterion showing that
the D-vine based models are superior to the benchmark models especially
in periods of high volatility. Bivariate t-copulas are often sufficient as choice
for the copula families. Extensive backtests for the value-at-risk shows that
the D-vine based models are clearly preferred over the benchmark models
especially in high volatility periods. More detailed results can be found in
Dill (2010).

5 Conclusions

This work extends the Bayesian D-vine copula estimation of Min and Czado
(2010) to joint estimation of marginal and copula parameters and considers
more than 2 dimensions as was done by Ausin and Lopes (2010). The appli-
cation shows that they are useful extensions in the context of multivariate
financial time series data. Extensions to include time varying copula effects
will be pursued in the future.
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Abstract: The vast majority of Phase I trials in oncology are using the classical
3+3 design. This design has been criticized for providing rather crude estimates
of the Maximum Tolerated Dose (MTD), the estimation of this MTD being the
primary objective of phase I trials. Cancer treatments often use combination of
agents to provide better activity, and many studies thus involve the combination
of a novel agent with an existing one (standard of care). A major challenge is
to estimate the MTD in the context of a relatively high incidence of toxicity
(Hamberg 2010). When assessing the MTD in such studies, we propose a design
that takes advantage a standard of care is involved to obtain 1) a more accu-
rate estimate of the MTD and 2) more accurate information on the toxicity of
the combination compared to the control. Our design (BDED) is based on the
Bayesian dose escalation design (O’Quigley 1990) and randomizes subjects to a
novel combination or a control group. We show that BDED provides a better
estimate of the MTD as well as a highest posterior density (HPD) interval for
the difference of probability of toxicity.

Keywords: Phase I design, Bayesian dose escalation, adaptive design

1 Introduction

The primary objective of a Phase I dose escalation study in oncology is to
find the dose at which the drug (or combination of drugs) will be tested in
the subsequent phase II and III trials (Maximum Tolerated Dose or MTD)
(see Piantadosi 2005). For cytotoxic anti-cancer drugs, the dose should
be chosen as the highest dose for which the toxicity is still acceptable,
because it defines the upper boundary of safe dosing. In order to maximize
the activity of the treatment, drugs to treat cancer are combined with
each other. The combination usually associates drugs that have different
mechanisms of action. A different toxicity profile enables to maximize the
tolerance of the combination involved.
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The vast majority of the phase I dose escalation studies for single agents and
combination of agents implement a “3+3” dose escalation scheme (CLD)
to find the MTD (Rogatko 2007). This phase I design has been criticized
for treating too many subjects at suboptimal doses and providing a rather
crude estimated of the MTD estimate (Ratain 1993). Also, this design pro-
duces an unreliable estimation of the true rate of toxicity at the optimal
dose (Ratain 1993). The 3+3 design is hindered to a great extent by chance
(Hamberg 2010) and the alternative 3+3+3 design has been proposed. Al-
though this decreases the impact of chance, the problem basically remains
the same. One cause of unreliability is the design itself: the toxicity of the
optimal dose is estimated from a small subset of treated subjects, as the
majority of subjects in the trial are treated with doses lower or higher than
optimal doses.
We propose a randomized Bayesian dose escalation design for combinations
of drugs (BDED) that takes advantage of the fact that a standard of care
drug is involved in the combination. We aim to obtain, via Bayesian esti-
mation, an improved estimation of the MTD and the toxicity level at the
MTD.
Our proposal uses a Bayesian approach and exploits the fact that the reg-
imen is a combination of a new drug with a standard of care, i.e. a drug
that is commonly used to treat the disease of the subjects enrolled in the
trial. The proposed design implements a randomization between standard
of care (also referred to as the control) and the combination regimen for
which we want the dose. We estimate the difference between the toxicity
of the control and the combination to search for the MTD.

2 Bayesian dose escalation in combinations of drugs
with control

The principle of this design it to dynamically adapt the dose at which
subjects are treated, based on the excess of probability of toxicity in the
combination compared to the control. The excess of probability of toxicity
is estimated from the occurrence of toxicity observed in previously treated
subjects. If, at a given dose, the probability of toxicity in the combination
is too high compared to the control, the subsequent dose will be lowered,
and if the probability of toxicity in the combination is close compared to
control, the dose will be increased. The randomization and treatment of
subjects stops at a given number of subjects (eg. 50).
Let F (d, β) be the model of the probability of toxicity in the combination
regimen, depending on the dose and parameters β. This model can be a
simple logistic model with F (d, β0, β1) = 1

1+e−(β0+β1d) or a more sophisti-
cated model taking into account eg. the severity of the toxicity or the time
to get the toxicity.
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Let q be the probability of toxicity in the control, which does not depend
on the dose as the dose of the control is fixed and let

℘(θ, d) = Pr[F (d, β)− q < θ]

the probability of the excess of probability of toxicity of the combination
compared to the control. For subject i, we compute the posterior distribu-
tion of the parameters β and q and estimate the distribution ℘(θ, d) from
the posterior distribution of the parameters:

℘̂(θ, d) =

∫
β,q

I[F (d, β)− q < θ]
∏i
j=1 Lj∫

β,q

∏i
j=1 Lj

where Li is the likelihood of the data:

Li =
(
F (di, β)xi(1− F (di, β))1−xi

)e(
qxi(1− q)1−xi

)c
where xi is 1 if a toxicity was observed in subject i and 0 otherwise and
e = 1− c is 1 when the subject has been randomized into the combination
and 0 otherwise.
Once ℘̂(θ, d) is determined, we propose to choose the next dose to be ad-
ministered (denoted di+1) as the highest dose d such that ℘̂(θ, d) is above
a certain predetermined value (preferably high). The (i + 1) subjects, if
randomized to the combination, will be treated at dose di+1. Subjects are
randomized and treated following the algorithm described above, until the
maximum number of subjects is reached. The recommended phase II dose
will be the dose administered to the last subject randomized to the combi-
nation.

3 Simulation Study

To compare the proposed design to the CLD, we simulated data from a
phase I study reported by Diaz-Rubio (2002) who tested the combination
Oxaliplatin + Capecitabin. The control is Oxaliplatin given at a dose of 130
mg/m2, while the dose of Capecitabin was to be chosen between 500 and
1250 mg/m2. Based on the data from Diaz-Rubio (2002), the recommended
phase II dose would be 750 mg/m2. The results given in table 1.
For the BDED, we further obtain an HPD that, at the average recom-
mended dose of 725 mg/m2, the difference between the probability of toxi-
city in the combination and the control is included in the 95% HPD interval:
[0%, 18%].

4 Conclusions

The number of subjects treated with the BDED is 50 while for the CLD,
it is on average 22.5. However, since 33 subjects are treated with the com-
bination in the BDED (on average), the difference between the BDED and
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Criteria CLD BDED

Average number of subjects treated 22.5 50
Average MTD (True MTD = 750) 703 721

Max MTD 1250 960

Extreme MTD

% MTD below 700 55% 46%
% MTD above 800 22% 27%
% MTD above 1000 12% 0%

TABLE 1. simulations results

the CLD is only 11 subjects treated with the combination. This increase in
the number of subjects allows for a more accurate estimation of the MTD.
The recommended phase II doses given by the BDED is closer to the true
MTD. Further, extreme doses (too low doses, or too high doses) are much
more frequent in the CLD that in the BDED. This may be due to the
increase of number of subjects treated. It may also be due to the fact that
the toxicity is estimated from a model that takes into account all doses.
We believe that a big advantage of the BDED is the fact that we obtain
the distribution of the excess of probability of toxicity, with the advantage
that an HPD interval can be derived. Since there is no comparator in CLD,
this distribution is not available.
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Abstract: We propose a model in which a prior and observed data are combined
in order to derive a sparse network of interacting genes. We show how to derive
useful information from external sources using text mining tools and translate
this into a prior that can be used within the framework of penalized regression.
The method is applied to a set of microarray gene expression samples.
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1 Introduction

Many researchers in genetics are concerned with gene interaction networks.
Major questions are which genes interact with each other and whether
we can distinguish separate groups or clusters of associated genes. The
networks derived from the data are often depicted as a graph, in which each
gene is represented as a node, a relation between two genes is visualized
by an edge between the nodes. Because genetical networks are considered
sparse, most of the nodes of the final network should be connected to a
single or only a few other nodes.
The task of building a network is often troubled by a low number of ob-
servations while the number of variables is large. In an attempt to improve
the quality of the network it becomes more common to include secondary
data sources in the process of network building. Secondary data used to
build a prior can be derived from various sources.
In this paper we introduce a penalized regression model related to the
weighted lasso, in which the data and a prior are combined in order to
estimate the network. Furthermore we discuss a text mining procedure to
translate knowledge from online publications into a usable prior.
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2 Constructing a prior

Prior data can be extracted from various sources, examples are online
databases like MsigDB, Reactome or KEGG where pathways or networks
are curated. Second, additional datasets similar to the primary data under
study can be used to build a prior. A third option is to use text mining
tools in order to derive a prior based on online publications.
A frequently used method in this context is to represent genes by a set of
relevant documents (e.g. Glenisson et al., 2004) and subsequently use the
vector space model (see e.g. Liu, 2007) to establish some measure of distance
between the genes involved. Here we use a more simple model and derive
a co-occurrence prior by querying PubMed using keywords relevant to our
data. All retrieved documents are scanned for the presence of gene names.
The assumption underlying the method is that genes that are mentioned in
the same article have a biological relationship of some type (see e.g. Jenssen
et al., 2001).
The co-occurrence of the genes within the documents of the total document
set are represented in an term-document incidence matrix Γ. This is a
binary matrix, with for every element a one if a certain gene t is cited at
least once in document d, and a zero otherwise. To determine the closeness
of any pair of genes involved we take the average score for gene j of the
document vectors in which gene i appears:

w∗ij =
1

N

N∑
d=1

γdiγdj
Ni
N
, (1)

with N the size of the total document set and a weighting factor Ni/N .
Subsequently the weights are normalized and gives the weight matrix:

W =

{
w∗ij

max(w∗ij)

}
. (2)

3 Discovering networks using penalized regression

Sparse genetic networks are derived from expression data and can be rep-
resented as a graphical Gaussian model. Let X = (X1, X2, ..., Xp)

T be
a p-dimensional random vector having a multivariate normal distribution
with mean µ and covariance matrix Σ. We have G = (V, E) an undirected
graphs with V = 1, ..., p being the set of nodes and E = {eij}1≤i<j≤p the
set of edges. The edge set describes the conditional independence among
the genes, in a discrete model this means that eij is 0 or 1. If not only the
presence or absence of a node is relevant but also is weight, eij could also be
a continuous variable with a certain range. The conditional relationships
are derived from the inverse of the covariance matrix, Φ = Σ−1. A zero
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in the inverse covariance matrix corresponds to conditional independence
between two nodes:

φij = 0⇔ eij = 0⇔ Xi ⊥ Xj |X−j . (3)

The general aim is to identify the non-zero elements in the precision ma-
trix Φ. Given that p < n and assuming that we have a positive definite
covariance matrix Φ we can simply take its inverse and from this calculate
the partial correlations. In genetics it is most often the case that p > n.
As a result the covariance matrix will be singular and its inverse cannot be
calculated. The literature provides various solutions to this problem, the
one we sue here is the application of penalized regression.
Penalized regression comes in different types, to derive a network of inter-
acting genes the lasso is often used. Here we rely on the implementation
proposed by Meinshausen and Bühlmann (2006), where a separate regres-
sion model is fit for each variable in the model with all others as predictors.
From the regression coefficients we can calculate the partial correlations as:

ρ̂ij = sign(β̂ij)

√
β̂ij β̂ji. (4)

A simple way to incorporate the prior information into the penalty is to
weight the tuning parameter according to the prior weight assigned to the
particular relation, an approach that is similar to the weighted lasso as
introduced by Zou (2006) which looks:

β̂ = argmin
β
||Xβ − y||22 + κυ||β||1. (5)

The first part of the equation is the familiar least squares estimator, the
second is the lasso penalty function, with the additional parameter υ being
the vector of weights. We propose the following penalized model:

β̂ = argmin
β
||Xβ − y||22 + κ2||β||22 + κ1(I−W)||β||1. (6)

In order to make the model estimable irrespective of the prior, we add an
l2 penalty with κ2 as a small constant. The last part of the equation is
an l1 penalty with, I being an identity matrix, a tuning parameter κ1 and
the set of prior weights in a diagonal matrix W. These weights are one
row taken from the matrix W, corresponding with the current y of the
regression model. With κ1 we can balance between the prior and fidelity to
the data and is optimized using cross-validation, or can be tuned by hand.
By setting all weights in W to one and choose a large value for κ1 the prior
will be imposed entirely on the data.
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4 Application

The method is applied to 292 microarray gene expression samples (Graven-
deel et al., 2009). A network is built using penalized regression in combina-
tion with a prior based on a literature search through PubMed. In order to
generate a (very) small but insightful example we restricted the number of
documents to the first 1000 hits. From the 109 unique genes derived from
the document set, 45 were found to be co-cited. Next to the genes present
in the prior we included 100 additional genes from the dataset, which are
selected based upon their variance. Subsequently we estimated the optimal
model using the model explained in the previous paragraph. The posterior
network is showed in Figure 1. The green edges are confirmations of rela-
tions also present in the prior, the red edges are new relations estimated
from the data. The application shows that the procedure is able to verify
relations posed in the prior and at the same time determines novel relations
from the data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

VEGFA

CD14

CD44

MMP9

SST

CXCR4

EGFR

ID1

BEX1

MELK

EZH2

BEX2

UNC5A

MMP2

ID3

CDC42

MAP2

CDK4

TSPO
TACC3

PDK1

NES

JAG1

ASPM

CHSY1

ATAD2

EGF

TP53

GNS

PCNA

CCR5
TK1

VIP

MDM2

IDH1

NDC80
CD14

C1QB

S100A11

CENPE ZWINT
CD53

SULT4A1

APOBEC3G

GINS2

GPM6A

PPP3CB

TK1

SH2D5

FIGURE 1. The posterior model presented in a graph. Green edges are confir-
mations of prior edges, red edges are estimates only coming from the data.
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5 Discussion

A simple method to build a prior using text mining tools is combined
with the framework of penalized regression. The shrinkage estimators seem
to fit well with the concept of a weight matrix. Other penalties than the
applied l1 are also considered. In this abstract the prior was built only using
text mining tools, however other sources can be used as well. Functional
databases can provide binary weight matrices, or auxiliary experiments can
be included by e.g. using correlations as weights in the prior matrix. An
issue that is not addressed here but should be covered, is the distinction
between no evidence and negative evidence with respect to the weighting.
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Abstract: This paper reports on concepts and methods to incorporate the
Markov-Switching Multifractal model for stochastic volatility introduced by Cal-
vet and Fisher (2004) within the GAMLSS model introduced by Rigby and
Stasinopoulos (2005), allowing generalization to a non-normal distribution. The
software implementation is written in R and the models are fitted and compared
using maximum likelihood estimation.
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1 Introduction

Generalised additive models for location, scale and shape (GAMLSS) is a
general framework for fitting regression type models where the distribu-
tion of the response variable does not have to belong to the exponential
family and includes highly skew and kurtotic continuous and discrete dis-
tribution. GAMLSS allows all the parameters of the distribution of the
response variable to be modelled as linear/non-linear or smooth functions
of the explanatory variables, (Rigby and Stasinopoulos 2005). In this pa-
per, we describe functions in R for simulating, estimating and forecasting
the stochastic volatility, incorporating the Markov-Switching Multifractal
(MSM) model within the GAMLSS model, allowing generalisation of the
MSM model to a non-normal distribution. The Multifractal processes have
recently been proposed as a new formalism for modelling the time series of
returns in finance. The major attraction of these processes is their ability
to generate various degrees of long memory in different powers of returns.
Initial difficulties stemming from non-stationarity and the combinatorial
nature of the original model proposed by Mandelbrot et al. (1997), the
Multi-Fractal Model of Assets Returns (MMAR), have been overcome by
the introduction of an iterative Markov-Switching Multifractal model in
Calvet and Fisher (2001) which allows for estimation of its parameters via
maximum likelihood (Lux 2006).
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Section 2 defines the original GAMLSS model. Section 3 defines the Markov-
Switching Multifractal (MSM) Model. Finally in section 4 we use daily re-
turns for oil, to fit and compare the stochastic volatility MSM model with
the original GAMLSS (smoothing) model, and with a standard GARCH
model. Different distributions were used for the comparison including nor-
mal, t and skew t.

2 The GAMLSS Model

A GAMLSS model, assumes independent observations yi for i = 1, 2, . . . , n
with probability (density) function f(yi|θi) conditional on θi where θi =
(µi, σi, νi, τi) a vector of four distribution parameters, each of which can
be a function to the explanatory variables. The model is defined as follows.
Let yT = (y1, y2, . . . , yn) be the n length vector of the response variable.
Also for k = 1, 2, 3, 4, let gk(.) be a known monotonic link function relating
the kth distribution parameter to explanatory variables by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk) (1)

where θk, ηk and xjk for j = 1, 2, . . . , Jk and k = 1, 2, . . . , 4 are vectors
of length n. The GAMLSS model has been implemented in a series of R

packages and can be obtained in CRAN or at http://www.gamlss.org/.

3 The Markov-Switching Multifractal Model

A Markov-Switching Multifractal model with normal errors is defined by
the process yt = σtεt. The innovations εt are assumed to drawn from a
standard normal distribution N(0, 1), an assumption we will relax. The
instantaneous volatility, σt, is determined by the product of k̄ volatility

state components or multipliers M
(1)
t ,M

(2)
t , . . . ,M

(k̄)
t and a constant scale

factor σ̄:

σt = σ̄(
k̄∏
i=1

M
(i)
t )1/2. (2)

It is assumed that each volatility state component can take one of two
values m0 and m1 = 2 −m0. Each volatility state component is renewed
at time t with probability γi depending on its rank within the hierarchy
of multipliers or remains unchanged with probability 1− γi, (Lui and Lux,
2006).
Hence for i = 1, 2, . . . , k̄ ,

M
(i)
t+1 =

{
M

(i)
t , with probability 1− γi/2,

2−M (i)
t , with probability γi/2.

(3)
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Let Mt =
[
M

(1)
t ,M

(2)
t , . . . ,M

(k̄)
t

]
be the vector of state components at

time t. Since each state component can take one of two possible values m0

and m1 = 2−m0, there are 2k̄ possible states for the vector Mt. Hence the
transition matrix A from Mt to Mt+1 is a 2k̄ x 2k̄ matrix. For example for
k̄ = 3 the transition matrix A is 8 x 8. The transition probabilities can be
obtained using (3). For example the transition from Mt = (m0,m1,m0) to
Mt+1 = (m0,m1,m1) is given by

(
1− γ1

2

) (
1− γ2

2

) (
γ3

2

)
.

The relationship between the γ′s is specified by

γk = 1− (1− γ1)
b(k̄−1)

(4)

for i = 1, 2, . . . , k̄. Estimation of MSM model involves estimating the pa-
rameters m0, γk̄, b and σ̄. Lux (2006) suggested the Generalised Method
of Moments (GMM) approach to speed up the computational limitation
choice of k̄ when the k̄ is higher than 10 because of the implied evaluation
of the transition matrix in each iteration. For fitting the models in R, we
have built a function which, in order to avoid loops, builds a transition
matrix index as a way to calculate the probability transition matrix. Our
function also has the facility of including different gamlss.family distribu-
tions, (Stasinopoulos et al., 2008), so the normality of the innovation in
the original assumption of MSM can be relaxed by using a kurtotic or skew
distribution, providing a new framework for modelling stochastic volatility.
The likelihood function for MSM model is defined as:

 L =

n∏
t=1

f(yt|Ht), (5)

where Ht = [ M0,M1, . . . ,Mt] is the history up to time t. The individual
contribution to the likelihood is given by:

f(yt|Ht) =

2k̄∑
j=1

f(yt,Mt = Sj |Ht) =

2k̄∑
j=1

f(yt|Mt = Sj)ξtj , (6)

where, Sj for j = 1, 2, . . . , 2k̄ represent the 2k̄ possible state vector that
Mt can take, and ξtj = P (Mt = Sj |Ht). Let ξt = (ξt1, ξt2, . . . , ξt2k) then
ξt = Aξt−1.

4 The Data

In this section shows some of our preliminary results in comparing the
MSM(7) model to both the standard GARCH(1,1) and original GAMLSS
models. For the comparison we analysed oil daily returns for the period of
13-6-2003 to 30-11-2010. Here we model the oil daily returns. The Figure 1
shows the 2.5% and 97.5% centile estimates for the MSM(7), GARCH(1,1),
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and a GAMLSS model with a smoothing term for time for each of the four
parameters of the distribution, using a Skew Student-t distribution.
The table 1 shows the Akaike Information Criterion in-sample goodness of
fit for the three models with different distributions.

TABLE 1. In-sample model comparison

AIC Normal Student-t Skew Student-t
GAMLSS -12614.3 -12694.7 -12696.9

MSM -12647.2 -12662.8 -12666.4

GARCH -12582.9 -12692.5 -12695.9

FIGURE 1. Retuns and fitted σ model for GAMLSS, GARCH(1,1) and MSM(7)
models
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Abstract: We consider grouped longitudinal data where the functional form of
the effect of time varies across groups. One approach to capturing these functional
forms uses penalized splines with truncated polynomials as bases for the smooth
functions. This, together with a standard assumption on the covariance structure,
allows the model to be expressed as a mixed model. We show that this approach
can be seriously biased. We propose an alternative approach where the covariance
structure is derived via a penalty argument. We illustrate our methods with some
Canadian weather data.
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1 Introduction

Repeated observations on the same subjects over time are common in many
areas such as medicine, psychology, environmental science, etc. Such data
are referred to as longitudinal data and often have a grouped or nested
structure. A popular inferential approach is through mixed models and,
when the number of observations permits, the modelling process can addi-
tionally incorporate smoothing. In this context, one approach to modelling
the time varying trends at both group and subject levels uses truncated
polynomials as bases with a standard covariance structure for the “ran-
dom” effects. To our knowledge, the impact of this covariance structure
on the estimation of model terms has received very little attention. Here,
we first illustrate some of its unfortunate effects, and then derive a more
appropriate covariance structure via a penalty argument.

2 Standard approach for nested curves

Data are collected on n subjects, partitioned into k groups of sizes r1, . . . , rk,
with data on subject i represented by (g(i), ti,j , Yi,j), j = 1, ..., ni; here Yi,j
is the value of the response collected on subject i at time ti,j , and g(i)
is the group to which subject i belongs. For notational convenience, we
assume that the data are entered in group order. We will denote by Yi
the response vector on subject i and by ti the corresponding time vector.
A typical example, illustrated by panel (a) in Figure 1, shows the daily
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average temperature in 35 Canadian cities; these cities have been grouped
into four regions. Such data can be modelled as

Yi,j = Sg(i)(tij) + Si(ti,j) + εi,j , εi,j ∼ N (0, σ2), (1)

where Sg(i) measures the group/region effect to which subject i belongs,
and Si captures the ith subject/city effect relative to its group effect. These
functions are designed to capture the underlying patterns in the data, and
depending on the structure of the data, a simple approach may be to treat
them either as straight lines or as some low degree polynomials. But for
general modelling purposes, a flexible structure may be required to reflect
the true dynamism driving the data. One popular approach is to account
for this flexibility with truncated polynomials. In this setting, truncated
lines are often used, since truncated polynomials of high order tend to be
more unstable. With truncated lines, these functions can be expressed as

Sg(i)(t) = δg(i),0 + δg(i),1t+
q∑

k=1

ξg(i),k(t− τk)+

Si(t) = δ̆i,0 + δ̆i,1t+
q̆∑
l=1

ξ̆i,l(t− τ̆l)+

(2)

where x+ = max{x, 0}, and τ = {τ1, ...τq} and τ̆ = {τ̆1, ...τ̆q̆} are sets of
internal knots at the group and subject levels respectively. Model (1) can
now be expressed in matrix form as

Yi = {Xg(i)δg(i) + Tg(i)ξg(i)} + {X̆iδ̆i + T̆iξ̆i} + εi, i = 1, ..., n. (3)

With these components in place, one approach (Coull et al. 2001, Ruppert
et al. 2003, Durban et al. 2005) achieves smoothness and identifiability of
the model by expressing it as a mixed model with the following covariance
structure:

ξg(i) ∼ N (0, σ2
gIq), δ̆i ∼ N (0,Σ), ξ̆i ∼ N (0, σ2

sIq̆), (4)

where σ2
g is the variance parameter driving the smoothness at the group

level, Σ is some 2×2 symmetric, positive definite matrix, σ2
s is the variance

parameter driving the smoothness at the subject level, and Ir is the r × r
identity matrix. We refer to (4) as the standard covariance structure.
Under these assumptions, model (1) can be fitted with the function lme

available in the package nlme in R (R Development Core Team 2010). Panel
(b) in Figure 1 illustrates this model fitted to the Canadian weather data
with q = 39 and q̆ = 19 equi-spaced internal knots at the regional and city
levels respectively. As we can see, the fitted subject means (obtained by
adding the subject effects, Si(t), to their group effect, Sg(i)(t)), capture the
data well; here, and below, Si(ti) represents the element-wise action of Si
on the components of ti with a similar definition for Sg(i)(t). Hence, one
may be tempted to conclude that the fitted group means will also follow
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the data. However, panel (c) of the same figure shows the fitted regional
effects. By giving different values to q̆, we make two observations: (i) the
fitted group effects are sensitive to the knot locations at the subject level,
and (ii) the confidence intervals exhibit an unexpected widening fan effect.
This behaviour of the fitted group effects is balanced by a similar behaviour
of the fitted subject effects in such a way that the fitted subject means are
appropriately recovered as illustrated in panel (b).
This unexpected behaviour occurs as the result of the mis-specification of
the covariance structure (4). There are three major reasons for the choice
of (4): (a) a ridge penalty on a truncated line basis works well when one
deals with smoothing at a single level, (b) its simplicity is attractive and (c),
it appears to offer sufficient flexibility so that proper identification of the
components of the model is possible. However, the covariance structure (4)
does not perform satisfactorily and we are faced with a common challenge
in mixed models, namely the appropriate specification of the covariance
structure of the random effects. In the next section, we use penalization to
provide a solution to this issue.

3 Penalty approach

We consider model (1) with its components given by (2) or, equivalently,
(3). Instead of focusing directly on the covariance structure of the param-
eters, we specify the modelling effects we wish to achieve, and from them
derive an appropriate covariance structure. In terms of modelling effects,
two issues need to be addressed: smoothness and identifiability.

• Smoothness: We control the jumps in the derivative at the knots of
Sg(i) and Si, ie, we impose the constraints ‖ξg(i)‖2 < ρ and ‖ξ̆i‖2 < ρ̆,
for some well chosen constants ρ and ρ̆.

• Identifiability: We shrink the subject effects towards 0, ‖Si(ti)‖2 < δ̆.

Using Lagrange arguments, we find that the penalized residual sum of
squares, PRSS, of (3) under the above three inequality constraints can be
expressed as

PRSS =

n∑
i=1

‖Yi − Sg(i)(ti)− Si(ti)‖2

+ λ

k∑
l=1

‖ξl‖2 +

n∑
i=1

(λ̆‖ξ̆i‖2 + γ̆‖Si(ti)‖2). (5)

Setting ξ = vec(ξ1, . . . , ξk) and b̆ = vec(b̆1, . . . , b̆n) with b̆i = vec(δ̆i, ξ̆i)
reduces (5) to
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PRSS =

n∑
i=1

‖Yi − Sg(i)(ti) − Si(ti)‖2 + λξ′ξ + b̆′P b̆ (6)

where
P = blockdiag(P1, . . . ,Pn) with Pi = λ̆J + γ̆L̆′iL̆i

is the penalty matrix on the subject coefficients; here L̆i = [X̆i : T̆i], and J
represents the identity matrix of appropriate size, but with its two upper
diagonal elements replaced by zeros.

4 Inference and application

It is well known that REML estimates of the variance parameters tend to
behave well. With this motivation, we find after some algebra that expres-
sion (6) corresponds (up to additive and multiplicative constants) to the
log likelihood of (y, b) in the mixed model representation

y|b ∼ N (Xβ +Zb, σ2I), b ∼ N (0,Φ), (7)

where y = vec(Y1, ...,Yn) is the data vector, β = vec(δ1, ..., δk) is the fixed

effect, b = vec(ξ, b̆) is the random effect and Φ = σ2 blockdiag(λ−1Iq,P
−1)

is its covariance matrix. The regression matrix X for the fixed effect is de-
fined as follows: let G1 = stack(Xg(1), . . . ,Xg(r1)) with similar definitions
for G2, . . . ,Gk, then

X = blockdiag(G1, . . . ,Gk); (8)

here, and below, stack(A,B), indicates that the matricesA andB with the
same number of columns are stacked on top of each other. The regression
matrix Z = [Zgp : Zsubj] is partitioned into the regression matrix for the

group “random effects”, Zgp, and the regression matrix for the subject
random effects, Zsubj. We define Zgp and Zsubj as follows: let Z1 =

stack(Tg(1), . . . ,Tg(r1)) with similar definitions for Z2, . . . ,Zk, then

Zgp = blockdiag(Z1, . . . ,Zk); (9)

Zsubj = blockdiag(L̆1, . . . , L̆n). (10)

This mixed model representation allows us to estimate the fixed effect β
and the random effect b by their best linear unbiased estimator/predictor,
with the REML estimates of variance parameters plugged in. Although λ
and λ̆ are treated as variance parameters in the fitting process, they are
purely smoothing parameters, in the sense that they act on the shape of
the corresponding effects only. In contrast, γ̆ is a variance parameter for
the subject effects in the original sense of a mixed model; ie, γ̆ controls the
overall size of the subject effects, in the same way that the departures of
the response data Yi,j from the mean are modulated by σ2.
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We now apply this approach to the Canadian weather data described ear-
lier. The Canadian data are balanced in the sense that observations on
each subject are made on a common time vector; in this case, the above
formulae are considerably simplified. An illustration of the fitted region
effects is shown on panel (d) in Figure 1. Through this example we see the
difference between our penalty approach and the standard approach (4).
Specifically, the penalty approach allows the appropriate identification of
the underlying effects as well as a correction to the confidence intervals.

5 Conclusion

In this paper, we have first illustrated some problems that occur by fit-
ting flexible nested curves with the standard covariance structure. We have
then proposed an alternative approach to deal with this issue, and illus-
trated that it leads to satisfactory results. This new approach is presented
here with truncated polynomials so that we can illustrate the fundamental
problem with the covariance structure (4). However, our approach is easily
adapted to other bases such as B-splines bases. With B-splines, smoothness
is obtained via a roughness penalty, and identifiability is obtained via direct
shrinkage of the B-splines coefficients. More detail and a fuller discussion of
using penalties to define appropriate covariance structures in mixed models
can be found in Djeundje & Currie (2010). There we estimated the smooth-
ing/shrinkage parameters by minimizing the BIC, whereas here we use the
mixed model perspective and optimize the restricted likelihood.
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FIGURE 1. (a): Canadian weather data. (b): fitted cities (dashed) using the
standard approach, together with the observed data (solid). (c): fitted region
effects with 95% CI (dashed) using the standard approach, together with the
observed average (solid). (d): fitted region effect with 95% CI (dashed) using the
penalty approach, together with the observed average (solid).
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1 Introduction

The objective of the highly topical field of systems biology is the reverse
engineering of molecular regulatory networks and signalling pathways from
high-throughput post-genomic data, and a flurry of activities in the statis-
tics and machine learning communities are currently aimed at solving this
problem. A variety of methods from statistics and machine learning have
been applied to this end. See e.g. Grzegorczyk et al. (2008) and Cantone
et al. (2009) for brief reviews. In the present paper, we propose a Bayesian
regression and multiple changepoint model, with Bayesian inference based
on reversible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995).
We participated in a recently held gene regulatory network prediction com-
petition (DREAM 5), which assures that the comparative evaluation with
other methods was done objectively.
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2 Model

Multiple changepoints: Let p be the number of target genes, whose ex-
pression values y = {yi(t)}1≤i≤p,1≤t≤N are measured on N separate chips.
Mi is the set of parents (regulators) associated with target gene i in the
gene regulatory network. We model the differences in the regulatory re-
lationships measured by different chips (assumed to be in some natural
order, e.g. a time series) with a multiple changepoint process. For each
target gene i, an unknown number ki of changepoints define ki + 1 non-
overlapping segments. Segment h ∈ {1, .., ki+1} starts at changepoint ξh−1

i

and stops before ξhi , so that ξi = (ξ0
i , ..., ξ

h−1
i , ξhi , ..., ξ

ki+1
i ) with ξh−1

i < ξhi .
This changepoint process induces a partition of the chip ordering, yhi =

(yi(t))ξh−1i ≤t<ξ
h
i

. The network structure Mi remains the same for each seg-

ment h, but the other parameters of the model can vary.
Regression model: For all genes i, the random variable Yi(t) refers to the
expression of gene i on chip t. Within any segment h, the expression of gene
i at chip t depends on the gene expression values on chip t of a set Ri of
m potential regulator genes (parents), with i /∈ Ri. We define a regression
model by (a) the set of si parents denoted by Mi = {j1, ..., jsi} ⊆ Ri, and
(b) a set of parameters ((ahij)j∈Ri , σ

h
i ); ahij ∈ R, σhi > 0. For all j 6= 0, ahij = 0

if j /∈ Mi. For all genes i, for all chips t in segment h (ξh−1
i ≤ t < ξhi ), the

random variable Yi(t) depends on the m variables {Yj(t)}j∈Ri according to

Yi(t) = ahi0 +
∑

j∈Mi

ahij Yj(t) + εi(t) (1)

where the noise εi(t) is assumed to be Gaussian with mean 0 and variance
(σhi )2, εi(t) ∼ N(0, (σhi )2). We define ahi = (ahij)j∈Ri .
Prior: The ki+1 segments are delimited by ki changepoints, where ki is dis-
tributed a priori as a truncated Poisson random variable with mean λ and
maximum k = N−2: P (ki|λ) ∝ λki

ki!
1l{ki≤k} . Conditional on ki changepoints,

the changepoint positions vector ξi = (ξ0
i , ξ

1
i , ..., ξ

ki+1
i ) takes non-overlapping

integer values, which we take to be uniformly distributed a priori. For all
genes i, the number si of parents for node i follows a truncated Poisson
distribution with mean Λ and maximum s = 5: P (si|Λ) ∝ Λsi

si!
1l{si≤s}. Con-

ditional on si, the prior for the parent setMi is a uniform distribution over
all parent sets with cardinality si: P (Mi ||Mi| = si) = 1/( psi). The overall
prior on the network structures is given by marginalization:

P (Mi|Λ) =
∑s

si=1
P (Mi|si)P (si|Λ) (2)

Conditional on the parent set Mi of size si, we assume for the prior distri-
bution P (ahi |Mi, σ

h
i ) of the si+1 regression coefficients for each segment h

a zero-mean multivariate Gaussian with covariance matrix (σhi )2Σahi
, where

following Andrieu and Doucet (1999) we set Σahi
= δ−2D†

ahi
(y)Dahi

(y), and
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Dahi
(y) is the (ξhi − ξh−1

i ) × (si + 1) matrix whose first column is a vector

of 1 (for the constant in model (1)) and each (j + 1)th column contains
the observed values (yj(t))ξh−1

i −1≤t<ξhi −1
for all regulatory genes j in Mi.

Finally, the conjugate prior for the variance (σhi )2 is the inverse gamma dis-
tribution, P ((σhi )2) = IG(υ0, γ0). Following Lèbre et al. (2010), we set the
hyperparameters for shape, υ0 = 0.5, and scale, γ0 = 0.05, to fixed values
that give a vague distribution. The terms λ and Λ can be interpreted as
the expected number of changepoints and parents, respectively, and δ2 is
the expected signal-to-noise ratio. These hyperparameters are drawn from
vague conjugate hyperpriors, which are in the (inverse) gamma distribution
family: P (Λ) = P (λ) = Ga(0.5, 1) and P (δ2) = IG(2, 0.2).

Posterior: Equation (1) implies that

P (y
h
i |ξ

h−1
i , ξ

h
i ,Mi, a

h
i , σ

h
i ) ∝ exp

− (yhi −Dah
i
(y)ahi )† (yhi −Dah

i
(y)ahi )

2(σhi )2

 (3)

From Bayes theorem, the posterior is given by the following equation:

P (k, ξ,M, a, σ, λ,Λ, δ
2|y) ∝ P (δ

2
)P (λ)P (Λ)

p∏
i=1

P (ki|λ)P (ξi|ki)P (Mi|Λ) (4)

ki∏
h=1

P ([σ
h
i ]

2
)P (a

h
i |Mi, [σ

h
i ]

2
, δ

2
)P (y

h
i |ξ

h−1
i , ξ

h
i ,Mi, a

h
i , [σ

h
i ]

2
)

Inference: An attractive feature of the chosen model is that the marginal-
ization over the parameters a and σ in the posterior distribution of (4)
is analytically tractable: P (k,ξ,M,λ,Λ,δ2|y) =

∫
P (k,ξ,M,a,σ,λ,Λ,δ2|y)dadσ

See Andrieu and Doucet (1999), Lèbre et al. (2010) for details and an ex-
plicit expression. The number of changepoints and their location, k, ξ, the
network structureM and the hyperparameters λ, Λ and δ2 can be sampled
from the posterior P (k, ξ,M, λ,Λ, δ2|y) with RJMCMC. A detailed descrip-
tion can be found in Lèbre et al. (2010). The posterior probabilities of the
gene interactions submitted to DREAM are obtained from the posterior
sample of network structures M by marginalization.

3 Simulations and Results

To assess the performance of the proposed method we participated in a
competition organised by the DREAM (Dialogue for Reverse Engineering
Assessments and Methods) consortium in autumn of 2010. The goal was to
reverse engineer gene regulatory networks from gene expression data sets.
Participants were given four microarray compendia and were challenged to
infer the structure of the underlying transcriptional regulatory networks.
The first compendium was based on an in-silico (i.e. simulated) network,
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FIGURE 1. Areas under the precision recall (left) and ROC (right) curves ob-
tained on an in silico data set by all teams participating in the DREAM 5 com-
petition. The circles indicate the performance of our proposed method.

TABLE 1. This table summarises the information about the DREAM 5 Network
Inference Challenge data sets. For each data set, we show which organism it came
from, how many genes were measured, how many of those genes were identified as
transcription factors (possibly regulatory genes) and how many chips (datapoints)
were included.

Data Set Organism Genes Transcription Factors Chips

1 Synthetic 1643 195 806
2 S. Aureus 2810 99 160
3 E. Coli 4511 334 805
4 S. Cerevisiae 5950 333 536

the other three compendia were obtained from microorganisms. Each com-
pendium consisted of hundreds of microarray experiments, which included
a wide range of genetic, drug, and environmental perturbations. More infor-
mation is available in Table 1 and at http://wiki.c2b2.columbia.edu/

dream/index.php/The_DREAM_Project. Network predictions were evalu-
ated by the organisers on a subset of known interactions for each organism,
or on the known network for the in-silico case (which is more objective).
Our method assumes an ordering of the microarray chips. While this con-
dition is naturally met for time course experiments, it does not hold for
the varying experimental conditions of the DREAM data. We therefore re-
sorted to the heuristic pre-processing step of mapping the high-dimensional
gene expression profiles onto a one-dimensional self-organising map (SOM)
initialized by the first principal component. We applied the software pack-
age som in R with default parameter settings. To reduce the computa-
tional complexity of the RJMCMC simulations we applied a pre-filtering
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step based on TESLA (Ahmed and Xing, 2009), a time-varying network
inference method based on L1-regularised linear regression. For each gene
we identified a set of 20 potential candidate regulators, based on the 20
regression coefficients with the largest modulus.
We assessed the convergence of our simulations with standard diagnostics
based on Gelman-Rubin potential scale reduction factors (PSRF). Owing
to unexpected downtime of the computer cluster we were using, only the
simulations on the first two data sets showed a sufficient degree of conver-
gence (PSRF≤ 1.2); for the latter data sets we submitted the results from
TESLA. The second data set was later removed from the evaluation by the
organisers. Figure 1 shows the results for the in silico data set obtained from
the rankings of interactions submitted by all participating teams, using two
criteria: the area under the precision-recall curve (AUPRC), and the area
under the receiver-operator characteristic (AUROC) curve. As discussed
in Davis and Goadrich (2006), AUPRC gives a more faithful indication
of the network reconstruction accuracy than AUROC, and it is thus seen
that our method clearly lies in the group of the 5 top-ranked models. This
suggests that it compares favourably with the majority of existing schemes
and provides a useful tool for contemporary research in systems biology.
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Abstract: The study presented below aimed to compare survival of colorectal
cancer patients against survival of a sub-population with a secondary disease,
inflammatory bowel disease (IBD).
The data were taken from a observational study, that is there was no explicit
design. The study had many complications, but the most significant aspect was
that the number of controls was much greater than the number of cases of interest.
Some techniques are used to overcome these obstacles, including: matching of the
dataset, to make the controls and cases as similar as possible at time of diagnosis,
effectively retrospectively fitting a design; weighting of the data, using both the
propensity score and the number of similar patients found in matching.

Keywords: Observational Study; Propensity Score; Matching; Kaplan-Meier;
Cox Model.

1 Introduction

The aim of the study was to compare survival of colorectal cancer pa-
tients in the whole population against the survival of patients in a sub-
population who also had inflammatory bowel disease (IBD). All individu-
als who suffered from colorectal cancer were drawn from the entire Irish
population using data from January 1994 to December 2005 provided by
the National Cancer Registry of Ireland (NCRI). The control group con-
tained many more observations (n > 20000) when compared to the IBD
group (n = 170). Given the number of control patients, there was large
diversity in this group. In a conventional designed experiment or trial, pa-
tients entering the trial would be randomised across arms of the study, with
similar numbers in each group. Usually patients would be similar in age,
health, etc. As this was an observational study, there was no design prior
to collecting the data and so no benefit, in terms of bias protection, from
randomization in terms of the balance of the distribution of unobserved
explanatory variables.
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FIGURE 1. Comparison of the four methods used to produced Survival Curves:
(a) The whole data set using the conventional KM estimates; (b) The matched
dataset using conventional KM estimates; (c) The whole dataset using the number
matched as weights; (d) the whole dataset using Adjusted KM estimates.

1.1 Analysis of the full dataset

Initially, the whole data set was analysed. Kaplan-Meier estimates were
examined, as seen in Figure 1(a). A Cox proportional hazards model was
fitted and all factors except for IBD were found to be significant (p =
0.4121). These factors included age, gender and various descriptors of the
disease, including tumour type, location and stage of illness, i.e., the effect
of IBD as seen in Figure 1(a), was eliminated by covariate adjustment.
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2 Matching

One approach to implement a design in a observational study is to use
matching. In this example, we match the IBD patients to the nearest
control by minimizing the Mahalanobis distance between them using the
optmatch package in R. The Mahalanobis distance has an added calliper
(or penalty) calculated using propensity scores, as suggested by Rosenbaum
(2010). Following the matching, Kaplan-Meier estimates were again calcu-
lated, as shown in Figure 1(b). As there may still be heterogeneity between
the members of a pair that is unexplained by the matching variables, a Cox
proportional hazards model with a frailty term was also fitted to compare
the risk of death for IBD and non-IBD patients while adjusting for the
matching variables. Again, IBD was found to be non-significant (p = 0.29),
the frailty term was also non-significant (p = 0.92), the two variables de-
scribing the severity of the illness were still found be significant, all other
terms were non-significant.

2.1 Propensity Score

The conditional probability of being in the treated group (Z = 1) given
the observed covariates x, is called the propensity score,

e(X) = P (Z = 1|x)

The propensity score e(x) balances on observed bias, but not on the un-
observed bias. In practice the estimated propensity score ê(x) is used. To
obtain the estimated propensity score, we fit a logistic regression model and
use the estimated fit as the estimated propensity score, ê(x), however other
models may be used. The model can be over-fitted, including all variables
available at time of diagnosis. The estimated propensity score, ê(x) will
not only balance on observed bias, but also on some of the unobserved bias
(Rosenbaum and Rubin, 1983).

3 Analysis

While matching is a useful technique, in a simple 1:1 match much of the
data remains unused. Some alternatives which are useful in this situation
include the Weighted Kaplan-Meier (Winnett and Sasieni, 2002), the Ad-
justed Kaplan-Meier (Xie and Liu, 2005) and the adjusted Cox proportional
hazard model (Sugihara, 2010).

3.1 Weighted Kaplan-Meier

Winnett and Sasieni (2002) suggest full matching, that is matching all
available controls to cases and then weighting the Kaplan-Meier estimates
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by the number of controls matched to each case.

Ŝw(t) =
∏
u:u≤t

[
1−

∑k
j=1 wjdj(u)∑k
j=1 wjrj(u)

]

where, dj(u) = number of events at time u in stratum j, rj(u)= number at
risk at u in stratum j and wj = 1/mj is the reciprocal of the stratum size.
When the same number of controls are matched to each case this reduces
to the usual KM estimates. The results of this can be seen in Figure 1(c).

3.2 Adjusted Kaplan-Meier Estimator - AKME

Xie and Liu (2005) suggest using the inverse of the propensity score to
weight the Kaplan-Meier, assigning a weight wik = 1/pik to each individual,
where pik is the propensity score for individual i in group k.
So the AKME for the kth group is

Ŝk(t) = 1 if t < ti

or

Ŝk(t) =
∏
tj≤t

[
1−

dwjk
Y wjk

]
if ti ≤ t

where, dwjk is the weighted number of events and Y wjk is the weighted number
at risk.
The results of this are shown in Figure 1(d).

3.3 Adjusted Cox Proportional Hazards Model

In the same way that Kaplan-Meier estimates were adjusted using the
inverse propensity score as weights, the Cox proportional hazards model
may be modified as proposed by Sugihara (2010). After fitting the adjusted
Cox proportional hazards model, except for gender, all factors, including
IBD, were significant (p < 0.0001).

4 Results

As mentioned, matching is a useful technique, however, when using 1 : 1
matching, much of the data remains unused. The three methods mentioned
is Section 3, all use the whole dataset adjusting for the disparity in numbers
between the two groups. The adjusted Cox proportional hazards model is
the only model which finds a significant difference between the IBD group
and the control. Further work is required to see if this an artifact of the
weighting or a true difference.
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The propensity score is known to be unstable when the data set is large
or contains a great disparity between the number of cases and controls.
There are stabilization techniques in the literature that attempt to address
this issue, however one such method was applied to this data which showed
little effect.
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1 Introduction

One of the potential effects of global warming is a rise in sea levels. Sea
water expands if its temperature rises, and the melting of gletschers and
the ice caps at the poles adds more volume. Some predictions amount to a
rise of one meter or more in the next century. Over 50 per cent of the area of
the Netherlands lies below the present average sea level, protected by dunes
and dikes. It is clear that global warming can have serious consequences
for our safety and economy.
The Dutch government operates a network of monitoring stations along
the coast. Some of the stations are already in operation for almost 200
years. Data are collected continuously, and summarized to different levels
of detail. Here we will be concerned with yearly averages.
From a series of yearly levels one can compute trends, using statistical
models, and use these to forecast future levels. This is being done on a
regular basis. From the data of each station a separate trend is computed,
assuming independent errors around the trend. When looking at each sta-
tion in isolation, this looks like a reasonable choice. However, when plotting
the residuals of the individual stations, a striking similarity is seen. Appar-
ently large-scale processes in the weather, or in the North Sea as a whole,
strongly influence the yearly levels at all stations in the same way.
We can exploit the similarity by adapting the model known as Seemingly
Unrelated Regressions (SUR), familiar to econometricians (Mittelhammer
et al., 2000). We combine it here with trend estimation by penalized re-
gression and use a simplified correlation structure. We propose to call it
Seemingly Unrelated Penalized Regressions (SUPR).
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FIGURE 1. Data for three sea level monitoring stations, with individually esti-
mated trends (full line) plus and minus point-wise standard errors (broken lines).

2 The model

We have data from n stations for m years, in a data matrix Y . To simplify
the presentation, we assume that Y is complete. This is not the case in prac-
tice, because not all stations have been operating during all m years. But
this introduces no problems if 0/1 weights are used in the implementation
of the calculations.
The model is

yij = µij + eij = fij + ui + eij , (1)

where fij gives the smooth trend for station j in year i, ui is a common dis-
turbance and eij a random error, assumed to be independent. The smooth
trend is modeled by P-splines, a combination of a B-spline basis B = [bik]
and a difference penalty on the B-spline coefficients α (Eilers and Marx,
1996). For just one time series, the P-spline objective function to be mini-
mized is

S = ||y −Bα||2 + λ||Dα||2, (2)

where D is a matrix that forms second order differences. The number of B-
splines in the basis is chosen large enough, so that the potential flexibility
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FIGURE 2. Differences between the data and the estimated trends, that are
shown in Figure 1.

of the fit is larger than needed. The parameter λ is used to tune smoothness
to the desired level.
In the case of n time series we have n vectors of coefficients αkj , forming
the columns of a matrix A, and fij =

∑
k bikαkj . The objective function is

S =
∑
i

∑
j

(yij −
∑
k

bkjαkj − ui)2 + λ
∑
j

∑
k

(∆2αkj)
2, (3)

where ∆2 is the operator for second order differences. Using Kronecker
products, this can be written as a large penalized regression problem. The
system contains mainly zeros and can be solved quickly with sparse matrix
functions (we use Matlab).
In principle the parameter λ can be optimized using cross-validation or
AIC. But this only works if the errors are really independent. Although
this assumption was made when introducing the model, it turns out not to
be true in practice: there is serial correlation, indicating light smoothing
for optimal prediction. But we are interested in long-term trends, hence we
have used our carpenter’s eye to set λ.
The serial correlation of the errors also has consequences for standard error
estimates, because effective degrees of freedom are smaller. Presently our
model does not yet account for this.
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FIGURE 3. Data for three sea level monitoring stations, after subtraction of the
shared disturbances, with individually estimated trends (full line) plus and minus
point-wise standard errors (broken lines).

The model as described gives a good fit to data from monitoring stations
along the Dutch coast. A careful study of the residuals showed that it
can be improved. The shared disturbances have similar shapes, but they
gradually decrease in strength, going form North to South. To account for
this, the model is modified as follows:

yij = µij + eij = fij + cjvi + eij , (4)

where vi represents the common pattern in year i and cj the local strength.
For identifiability, the condition

∑
j c

2
j = n is imposed. We now have a

bilinear structure for the shared disturbances, and estimation becomes a
bit more complex. We iterate between smoothing of each individual series
yij − c̃j ṽij and the singular value decomposition of yij − f̃ij (where a tilde
indicates the current approximation).
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FIGURE 4. Left panel: the strength parameter (c) for the shared disturbances in
the extended model, for each monitoring stations. Right panel: standard devia-
tions of residuals.

3 Application to North Sea levels

Figure 1 shows time series for three monitoring stations along the North
Sea coast, one in the North (Delfzijl), one in the South (Vlissingen), and
one approximately half-way in between (IJmuiden). The trends have been
computed with simple smoothing. The differences between data and trends
are shown in Figure 2; their similarity is quite clear. A simple way to
show the effectiveness of the model in (1) is to present yij − ûi, as is done
in Figure 3. The error bands around the trends are much smaller there.
Note that the shared disturbances have been estimated from a set of eight
stations, not only from the three stations shown here.
Figure 4 summarizes results form the extended model in (4). It shows how
c decreases from North (Delfzijl) to South (Vlissingen).
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4 Discussion

We have presented a modification of the SUR model and applied it to the
simultaneous estimation of sea level trends at multiple monitoring stations,
dramatically improving precision. Compared to usual SUR, the regressions
are more complicated, due to the penalties. The error structure is simplified
however. In SUR a general covariance matrix between the equations is used,
and has to be estimated and inverted. In our model all equations share the
same fluctuations, and in addition there is noise, assumed to be independent
(but it does not seem to hard to introduce an AR process).
We certainly are not the first to combine SUR ideas with smoothing.
Lang et al (2003) introduced a model for additive spatial modelling us-
ing Bayesian P-splines.
AS far as we know, the bilinear error structure in (4) has not been proposed
before.
There is no room for describing the details of a useful structural extension
that has been studied, individual step functions per station, to model the
effects of sudden changes of levels, caused by large artificial waterworks.
An example is the Afsluitdijk, a dike that closed off the Zuiderzee in 1937.
For the size of each step a parameter is added to the model.
It was found that on a monthly scale the model gives an even better fit.
Strong seasonal patterns were found in the shared disturbances.
The data were obtained form the public database PSMSL (Permanent Ser-
vice for Mean Sea Level at www.psmsl.org). It contains sea level records of
over one thousand monitoring stations worldwide. Such a rich collection of
data offers many opportunities for additional research.
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1 Introduction

The generalized linear mixed model (GLMM) class (Breslow and Clayton,
1993; MucCulloch and Searle, 2001) is a extension of the random effect
model proposed by Laird and Ware (1992) to model correlated data struc-
tures and accommodate the overdispersion often observed in counting data.
Lee and Nelder (1996) have investigated the flexibilization of the random
effect distribution in this model class under a hierarchical framework. Re-
cently, Molenberghs et al. (2007) have suggested a combination between
gamma and normal random effects in Poisson mixed models deriving the
marginal distribution of the response variable.
The aim of this paper is to present an alternative distribution for the ran-
dom effect in random intercept exponential family (EF) models, that is
characterized by assuming a generalized log-gamma (GLG) distribution
for the random effect component. This distribution introduced by Prentice
(1974) has as particular cases the normal and extreme value distributions
and it assumes skew forms to right and left. The generalized log-gamma
distribution has been widely applied by Lawless, 2002 and Ortega et al.,
2009). In general, numerical integration methods are required to a previ-
ously analyzed data set (Hadgu and Koch, 1999) is presented.
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2 Generalized random intercept log-gamma EF
models

Let yij denote the jth outcome measured for the ith cluster (subject),
i = 1, . . . , n and j = 1, . . . ,mi. We will assume the following random
intercept Poisson model:

(i) yij |bi ind.∼ P(uij),

(ii) uij = exp(xijβ + bi) and

(iii) bi
i.i.d∼ GLG(0, σ, λ),

where xij = (xij1, . . . , xijp)
> contains values of explanatory variables and

β = (β1, . . . , βp)
>. When λ = 0, model (i)-(iii) reduces the generalized

mixed model proposed by Breslow and Clayton (1993). Let fY |b(yij |bi,β)
and fb(bi;σ, λ) be the pdf of yij |bi and the pdf of ui, respectively. Then, the
marginal pdf of y = (yT1 , . . . ,y

T
n )>, where yi = (yi1, . . . , yimi)

>, is given
by

fY (yi;β, σ, λ) =

n∏
i=1

∫ ∞
−∞


mi∏
j=1

fY |b(yij |bi,β)

 fb(bi;σ, λ)dbi, (1)

which in general does not have random closed-form. The marginal likeli-
hood function presented in (1) from the intercept GLG-EF model is given
by

L(θ) = log

∫ ∞
−∞


mi∏
j=1

fY |b(yij |bi,β)

 fb(bi;σ, λ)dbi. (2)

We use the NLMIXED procedure in SAS to maximize (2) returning the pa-
rameter estimates. Considering the Poisson distribution in (i), in the pro-
posal model, we have shown for some particular parameter setting that the
marginal distribution assumes a closed-form expression, such as, the mul-
tivariate negative binomial (MNB) distribution (see, for instance, Johnson
et al. 1997). Person analysis for the model proposed and local influence for
the MNB model have been made.

3 Application

We present an example with dental plaque data set described by Hadgu
and Koch (1999) who discussed the results of a clinical trial with 109 adult
volunteers with pre-existing dental plaque. In the study, subjects were ran-
domly distributed to receive a liquid type A (34 subjects), a liquid type B
(36 subjects) e um liquid control (39 subjects). The dental plaque score of
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each individual was assessed and classified in the early of treatment, after
3 moths and 6 months. The aim of the study was to verify if at least one
of the new liquids reduce the average score of dental plaque. The score
measures the influence of the liquids on the dental plaque and lower is the
score, greater is the effect of liquids in reducing dental plaque. Let yijk
denote the score of the kth subject in the ith group and jth period for
i, j = 1, 2, 3 and k = 1, . . . , nij , with n1j = 39, n2j = 34 and n3j = 36.
We assume the model given by (i)-(iii), in that yijk|bk ∼Gamma(uijk, φ)
and ηijk = log(uijk) = α + βi + γj + δij + bk, in which βi and γj are the
main effects and δij are the interactions between treatment and period.
The restriction β1 = 0, γ1 = 0, δ1j = 0 and δi1 = 0 were considered, for
i = 1, 2, 3 and j = 1, 2, 3.

TABLE 1. Parameters estimates with the respective approximate standard errors
for the random intercept Gamma-Normal and Gamma-GLG models

Effect Estimate Std. error Estimate Std. error

α 2.3035 0.0906 1.1111 0.1017
β2 0.0021 0.0722 0.0828 0.1192
β3 -0.0297 0.0717 -0.0380 0.1164
γ2 -0.4135 0.0776 -0.3966 0.0944
γ3 -0.4299 0.0799 -0.4183 0.0940
δ22 -0.4984 0.1235 -0.3852 0.1368
δ23 -0.4164 0.1243 -0.4027 0.1377
δ33 -0.3182 0.1186 -0.3201 0.1339
φ 0.2671 0.0213 6.1849 0.5540
σ 1E-8 - 0.0813 0.0172
λ 2.7687 0.7147
AIC 638.36 634

The parameter estimates presented in the Table 1 show that the liquids A e
B decrease in average the amount of dental plaque and a marked reduction
of the liquid B from 3 to 6 months of brushing in both models. However,
the AIC criterion suggests evidence that the GLG-Gamma model yields the
better fit. We must also observe that the zero value does not belong to the
95% confidence interval of the λ parameter given by [1.368, 4.17]. Moreover,

the estimate λ̂ = 2.7687 indicates that the random effect is skewed to the
left.
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Abstract: Poisson mixture regression models are commonly used in financial
applications to analyze heterogeneous count data. In these models, the observed
counts are assumed to come from two or more subpopulations and parameter
estimation is typically performed by means of maximum likelihood via the EM
algorithm. In this study, we discuss briefly the fitting of Poisson mixture regres-
sion models using maximum likelihood methods. These models’ methodology is
applied to a real data set for credit-scoring purposes. We model the number of
defaulted payments of clients for a bank, who had obtained loans for consump-
tion.
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1 Introduction

Finite mixture models are a well-known method for modelling unobserved
heterogeneity (see e.g. McLachlan and Peel (2000) and Frühwirth-Schnatter
(2006) for a review). In particular, Poisson mixture regression models (PMR)
are commonly used to analyze heterogeneous count data.
Let the random variable Yi denote the ith response variable, and let (xi, yi), i =
1, . . . , n denote observations where yi is the observed value of Yi and xi a
(p + 1)-dimensional covariate vector. It is assumed that the marginal dis-
tribution of Yi follows a mixture of Poisson distributions,

Yi ∼
K∑
k=1

πkfk(yi|xi, λi|k) (1)

where

fk(yi|λi|k) =
exp(−λi|k)(λi|k)yi

yi!
, i = 1, . . . , n, k = 1, . . . ,K (2)

and λi|k = exp(βTk xi), with βk = (βk0, βk1, . . . , βkp)
T denoting the (p+ 1)-

dimensional vector of regression coefficients for kth component. The pro-
portions πk are the mixing probabilities (0 < πk < 1, for all k = 1, . . . ,K
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and
∑
k πk = 1) and can be interpreted as the unconditional probability

that an observation arises from component k of the mixture.
In this work, the methodology of Poisson mixture regression models is ap-
plied to a real data set to predict a client’s number of defaulted payments.
Using covariates in all components we aim to reveal the impact of demo-
graphic and financial variables in creating different groups of clients and
to predict the group to which each client belongs, as well as, his expected
number of defaulted payments.

2 Data

The data consist of a random sample clients who had been granted credits
for consumption from a Portuguese bank.
The credits focused in these data are credits taken on by individual con-
sumers for personal, family or household purposes.
A description of the data is presented in Table 1. The sample was taken on
31st December, 2008. All records correspond to clients who were granted
credit and whose contract is not completed yet. For each client, there is
available information on his characteristics at the beginning of the contract
and there is also recorded the total number of defaulted payments, i.e. the
number of consecutive monthly payments that were not paid and should
have been paid, by the sampling date (variable Nnonpay). This variable
is taken as the dependent variable. The sample mean and variance of the
number of defaulted payments are 0.524 and 1.320, respectively, suggesting
the data are overdispersed and indicating the inadequacy of the standard
Poisson regression model.

3 Model

To estimate the model we used the methods available in the R package
flexmix (see Leisch (2004) and Grün and Leisch (2008)).
The number of components of Poisson regression models to be fitted was
unknown needing, therefore, to be estimated from the data. To determine it
we employed information criteria: the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC). It was interesting to no-
tice the two criteria resulted in different number of components with BIC
selecting a model with fewer parameters. Following Wang et al. (1996) rec-
ommendation, we relied on the BIC criterion selecting 3 components.
Attempting to avoid convergence to a local maximum, the EM algorithm
was run 15 times, using different starting values and the model with maxi-
mum likelihood was chosen. For each trial the algorithm was stopped when
the relative change in the log likelihood between two successive iterations
was smaller than 10−12.
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TABLE 1. Description of the variables used in the study

Variable Description

NMDec08.c1 1 if the age of the contract at the sampling date
is less than 7.5 months, 0 otherwise.

NMDec08.c2 1 if the age of the contract at the sampling date
is between 7.5 and 11.5 months, 0 otherwise.

NMDec08.c3 1 if the age of the contract at the sampling date
is more than 11.5 months, 0 otherwise.

Install.c1 1 if the monthly installment is less than 140.7 euros, 0 otherwise.
Install.c2 1 if the monthly installment is between 140.7 and 506.7 euros, 0 otherwise.
Install.c3 1 if the monthly installment is more than 506.7 euros, 0 otherwise.
Age.c1 1 if the age group is 18− 42 years, 0 otherwise.
Age.c2 1 if the age group is 42 years or more, 0 otherwise.
AvgSBl.c1 1 if the semesterly average account balance of the client

is less than 11.5 euros, 0 otherwise.
AvgSBl.c2 1 if the semesterly average account balance of the client

is between 11.5 and 136.5 euros, 0 otherwise.
AvgSBl.c3 1 if the semesterly average account balance of the client

is between 136.5 and 325 euros, 0 otherwise.
AvgSBl.c4 1 if the semesterly average account balance of the client

is more than 325 euros, 0 otherwise.
Gender Gender of the client.
NYClient.c1 1 if the number of years as client of the bank is less than 14.5, 0 otherwise.
NYClient.c2 1 if the number of years as client of the bank is more than 14.5, 0 otherwise.
Education Level of Education: 0− Unknown, 1− Primary Education,

2− High School, 3− Professional education, 4− University Degree.
Occupation Professional occupation: 0− Unknown, 1− Student or housewife

2− Sales, Service or Technical, 3− Small or medium enterprises,
4− Professional, 5− Other.

RecSalary Indicator of wether the client receives the salary through the bank.
Region Region of residence in Portugal: 1− North, 2− Center,

3− Lisbon, 4− Alentejo/Algarve, 5− Madeira and 6− Azores.
Nnonpay Number of consecutive monthly defaulted payments.

Table 2 reports the estimated coefficients for the Poisson regression model
with 3 components. We can see how the effect of covariates differs between
components. There are variables with large coefficients (in absolute value)
for some components and small for others. There are also variables with a
different sign between the components. This shows the regression part of
the model captures the characteristics of each group which differ from one
another.

4 Discussion

This study shows the application of poisson mixture regression modelling
financial data. The results are very interesting, revealing that the popula-
tion consists of three groups, contrasting with the typical good versus bad
categorization approach of the credit-scoring systems.

Acknowledgments: S. Faria wants to acknowledge the financial support
provided by the Research Centre of Mathematics of the University of Minho
through the FCT Pluriannual Funding Program.
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TABLE 2. Estimated coefficients for the Poisson regression model with 3 com-
ponents.

Variable Component
1 2 3

Coefficient Std Error Coefficient Std Error Coefficient Std Error

Intercept -0.1979 0.2662 -0.4785 0.1899 -0.4472 0.6146
Gender1 0.3138 0.1346 0.1532 0.1113 -0.0609 0.0929
RecSalary1 -0.8315 0.1506 -0.3645 0.1318 -3.5877 0.4959
Education1 -0.0820 0.1693 -0.0968 0.1351 0.1520 0.1363
Education2 -0.0869 0.1672 -0.0635 0.1241 0.2345 0.1360
Education3 -0.0745 0.3259 -0.1798 0.2668 -0.8166 0.3491
Education4 -0.5107 0.4295 -0.1900 0.3025 0.4302 0.2970
Occupation1 -0.1268 0.3318 -0.1448 0.2979 -0.1411 0.1788
Occupation2 0.0502 0.2042 0.2633 0.1372 -0.2179 0.1187
Occupation3 1.5712 0.1746 0.9342 0.1463 -1.4841 0.2946
Occupation4 -15.0525 0.6430 0.9554 0.4470 0.0258 0.3655
Occupation5 1.6131 0.1868 1.5122 0.1404 -0.9756 0.2139
Region2 -0.0776 0.1763 0.0392 0.1273 0.0330 0.1572
Region3 -0.3032 0.2401 -0.0480 0.1754 0.3128 0.1809
Region4 -0.0554 0.2028 -0.0879 0.1523 0.5573 0.1832
Region5 -0.0570 0.2355 0.1641 0.1496 0.4021 0.1557
Region6 0.2650 0.1694 -19.1952 1.9270 0.5703 0.1466
NYClient.c2 -0.2600 0.1688 -0.3485 0.2024 -0.0890 0.1962
Age.c2 -0.1749 0.1090 0.1715 0.0961 -0.2823 0.1024
Install.c2 -0.1352 0.0958 -0.0268 0.0974 -0.1477 0.0915
Install.c3 0.3177 0.1696 -0.1456 0.2495 0.5311 0.3442
AvgSBl.c2 -0.6440 0.1527 -0.1308 0.1099 -1.8328 0.1717
AvgSBl.c3 -0.9562 0.2673 -0.2491 0.1456 -3.7184 0.6384
AvgSBl.c4 -0.7719 0.1472 -18.4007 1.3086 -3.5018 0.3424
NMDec08.c2 -0.0441 0.2274 -0.0638 0.2121 1.7627 0.6360
NMDec08.c3 0.3235 0.1568 0.0931 0.1444 2.1559 0.6221
proportions 0.210 0.499 0.291
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Abstract: Multivariate space-time models are useful tools for mapping pollu-
tant concentrations over a region of interest. The mapped concentrations are
then used to evaluate both aggregate statistics and air quality indicators. In this
study, the spatio-temporal cross-correlation between pollutants is exploited in
order to obtain more accurate concentration estimates even for those pollutants
which are observed at a limited number of sites. The advantage of considering
a multivariate model is verified by means of the leave-one-out cross-validation
technique. Scottish air quality data for the year 2009 are considered.
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1 Introduction

Aggregate statistics produced as output from space-time air quality models,
including air quality indicators, are useful measures summarizing the con-
centration of airborne pollutants over a region. The role of these statistics
is twofold: to provide an air quality measure that can be easily understood
by the public and to verify if the air quality targets imposed by both the
local and the European legislation are met.
Although aggregate statistics and air quality indicators are used by the
environmental agencies of many countries, a common and shared method-
ology for their definition is far from being developed. See, for example,
Bodnar et al. (2008) on the comparison of air quality across states and Lee
et al. (2011) for a Bayesian approach applied to a UK case.
An issue related with the definition and the estimation of the aggregate
statistics is the fact that not every pollutant is measured at all the mon-
itoring stations. In many cases, either the number of stations measuring
a particular pollutant is too small or the stations do not cover the region
properly; this results in poor pollutant concentration estimates (see Bodnar
et al, 2008).
The aim of this study is to exploit the spatio-temporal correlation and cross-
correlation between pollutants in order to provide, for each pollutant, daily
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high resolution concentration maps characterized by lower uncertainty and
to gain a better insight into the dynamics and the interactions between pol-
lutants. This is done by considering a multivariate spatio-temporal model
able to deal with heterogeneous monitoring networks (with respect to the
number of pollutants measured at each station) and missing data. The
concentration maps are eventually used to evaluate, for each pollutant, a
simple aggregate statistic defined as the daily map average concentration.
The aggregate statistic derived from the multivariate model is compared
with the same statistic obtained as output of a univariate model concern-
ing the single pollutant. The model is applied to Scottish air quality data
for the year 2009 comprising 6 different pollutants, namely Ozone (O3),
Carbon monoxide (CO), Sulphur dioxide (SO2), Nitrogen dioxide (NO2)
and Particulate Matter (PM10 and PM2.5).

2 Data description

2.1 Ground level data

The ground level air quality monitoring network of Scotland composes 81
stations each providing hourly data on the concentration of the above
mentioned pollutants. The network is heterogeneous in the sense that each
station measures only a subset of the pollutants, from a minimum of 6 to
a maximum of 67 stations measuring the same pollutant. Missing data are
also common but, for the time period considered, they do not exceed 21%
with respect to each pollutant. As far as the geographical location of the
stations is concered, these are unevenly distributed over Scotland, with a
higher concentration of monitoring stations within the Grampian, Tayside,
Lothian, and Greater Glasgow regions.

2.2 Covariates

In order to better understand the spatio-temporal dynamics of each pol-
lutant and to improve mapping capability, a set of 7 meteorological and
morphological covariates is considered. The two morphological covariates
are time-invariant and are the land elevation (ele) and the percentage of
urban area (urb). The meteorological covariates considered come from the
NASA MERRA database and are sea level pressure (slp), wind speed at
2 meter (ws2), temperature at 2 meter (t2), specific humidity at 2 meter
(sh2) and the planetary boundary layer height (blh).

3 The multivariate model

Air pollutants are characterized by both temporal and spatial dynamics.
Moreover, different pollutants may exhibit cross-correlation in space and
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FIGURE 1. EM estimation results. (a) β coefficients; (b) coregionalization matrix
V ; (c) autoregressive transition matrix G; (d) error variance matrix Ση .

time in a non-trivial way. For these reasons, the multivariate dynamic core-
gionalization model introduced by Fassò and Finazzi (2011) is considered
here, which is suitable for dealing with latent temporal and spatial variables
in the presence of missing data.
Let Y (s, t) = (Y1(s, t), ..., Yi(s, t), ..., Yq(s, t)) be a q−dimensional vector of
pollutant concentrations at time t = 1, ..., T and site s ∈ D ⊂ <2, with i
running through the set of pollutants {O3, CO, SO2 ,NO2, PM10, PM2.5},
the model equation is given by

Y (s, t) = X(s, t)β +KZ(t) +W (s, t) + ε(s, t)

where X(s, t) is the covariate matrix for time t and site s, Z(t) is the
p−dimensional latent temporal variable at time t, W (s, t) is the q−dimen-
sional latent spatial variable and ε(s, t) is the measurement error, which
is white noise in space and time with q × q variance covariance matrix
Σε. The latent temporal variable Z(t) is characterized by the Markovian
dynamic Z(t) = GZ(t − 1) + η(t), with η(t) ∼ Np(0,Ση). In the sim-
plest case, either p = 1 or p = q, namely all pollutants share the same
temporal dynamic or each pollutant has its own. The loading matrix K
is a q × p matrix of known coefficients and is fixed in space and time.
Finally, W (s, t) is modelled as a q−dimensional linear coregionalization
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FIGURE 2. 1 km resolution kriging results (µg/m3). (a) yearly average PM2.5

concentration for model M1; (b) yearly average PM2.5 concentration for model
M2; (c) estimation variance for model M1; (d) estimation variance for model M2.

model, namely W (s, t) = (W1(s, t), ...,Wq(s, t)) is white noise in time but
correlated over space with a q × q covariance and cross-covariance ma-
trix function given by Γ(h, θ) = (cov(Wi(s),Wj(s

′)))i,j=1,...,q = V · ρ(h, θ)

where h = ‖s− s′‖ is the Euclidean distance between two sites s, s′ ∈ D,
V is a positive semi-definite q × q matrix and ρ(h, θ) = exp (−h/θ) is the
exponential correlation function of parameter θ.
The set of model parameters is Ψ = {β,Σε, G,Ση, V, θ}. The estimation
of Ψ and the evaluation of confidence intervals for every parameters are
carried out using the EM algorithm. Following a plug-in approach, the
daily concentration of each pollutant is kriged over the area of interest as
detailed in Fassò et al. (2009).

4 Model estimation and mapping

Considering the data set discussed in Section 2, two models are estimated.
The first model, M1, is a univariate model for the PM2.5 pollutant con-
centration only, which is measured at 6 monitoring stations mainly located
in the Lothian and Greater Glasgow regions. The second model, M2, is a
multivariate model which considers the data for all pollutants at all the
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FIGURE 3. Model output comparison (a) Difference in the yearly average PM2.5

concentration between model M1 and M2; (b) Difference in the estimation vari-
ance between model M1 and M2.

81 monitoring stations. Moreover, M2 is characterized by p = q, namely
each pollutant has its own temporal dynamic. The models are compared by
applying the leave-one-out cross-validation technique. The daily concentra-
tion maps are used to evaluate the daily map average aggregate statistic.

5 Result analysis and conclusion

The EM estimation results are partially reported in Figure 1 only for the
more interesting model M2. The images in the figure graphically represent
the estimated β coefficients, the coregionalization matrix V , the autoregres-
sive transition matrix G and the autoregressive error variance-covariance
matrix Ση.
Each variable and each covariate being standardized, the beta coefficients
can be directly compared within and across variables. By analyzing the
image (a) of Figure 1, it can be noted that the most significant covariates
are the temperature for NO2, the planetary boundary layer height for O3,
the land elevation for PM10 and PM2.5 and the sea level pressure for SO2.
The estimated matrix V clearly shows the negative correlation between O3

and all the other pollutants and the strong positive correlation between
PM10 and PM2.5. The matrix G is a stable transition matrix and the pos-
itive value of its diagonal elements reflects the temporal persistence of the
pollutants, which is stronger for O3 and NO2. The cross-validation RMSE
based on the standardized data goes from 0.4995 for model M1 to 0.3746
for model M2, which corresponds to a 25% reduction. This clearly demon-
strates the advantage of considering the multivariate model. The images of
Figure 2 show the yearly average PM2.5 concentration and its estimation
variance for both the model M1 and M2. If M2 is considered as the best
model (due to its lower cross-validation RMSE), then it can be said that



Finazzi et al. 219

FIGURE 4. Daily map average aggregate statistics derived from model M1 (solid
line) and model M2 (dashed line).

model M1 underestimates the PM2.5 concentration over the highly popu-
lated central-east part of Scotland while it overestimates the concentration
over the remaining part of Scotland. The output difference is displayed in
Figure 3. The daily map average aggregate statistics derived from the out-
put of model M1 and M2 are depicted in Figure 4. The statistic related with
M1 reflects the fact that model M1 overestimates the PM2.5 concentration.
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1 University of Udine, Department of Economics and Statistics, via Treppo 18, I-
33100 Udine, ITALY. e-mail: giovanni.fonseca@uniud.it, paolo.vidoni@uniud.it

2 Ca’ Foscari University - Venice, Department of Environmental Sciences, Infor-
matics and Statistics, San Giobbe, Cannaregio 783, I-30121 Venice, ITALY.
e-mail: giummole@unive.it

Abstract: Improved prediction distributions based on asymptotic methods are
a well known tool for prediction in the context of regular parametric models. On
the contrary, for non-regular cases, prediction is mainly based on the estimative
or plug-in distribution. The aim of this work is to define calibrated predictive dis-
tributions which quantiles have coverage probability equal or close to the target
nominal value. Whenever the computation is not feasible, a suitable bootstrap
procedure easily provides a good estimate for the proposed distribution. A sim-
ulation example is provided for a particular non regular model, the generalized
extreme value distribution, which support depends on unknown parameters.
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1 Introduction

In this work, we consider the problem of prediction of a future, or un-
observable, unidimensional absolutely continuous random variable Z, on
the basis of an observed sample y = (y1, . . . , yn) from a random vector
Y = (Y1, . . . , Yn). We assume that the joint distribution of (Y,Z) is known,
up to a k-dimensional parameter θ ∈ Θ ⊂ IRk. In this case, a possible
solution can be given in terms of prediction limits, i.e. functions z̃α(θ̂) such
that, for all α ∈ (0, 1), the coverage probability

PY,Z

[
Z ≤ z̃α(θ̂(Y ))

]
= α, (1)

at least to a high order of approximation. Here θ̂ = θ̂(Y ) is an asymptot-
ically efficient estimator for θ, usually the maximum likelihood estimator.
When exact results are not available, an easy solution is given by con-
sidering the estimative prediction limits, obtained by substituting the un-
known parameter θ by θ̂ in the α-quantiles of the conditional distribution
of Z given Y = y. Unfortunately the associated coverage error has order
O(n−1), which is often considerable. Improved prediction limits with cov-
erage error of order o(n−1) have been proposed by Barndorff-Nielsen and
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Cox(1996) and Vidoni (1998), as modifications of the estimative prediction
limits. Their results rely on asymptotic expansions and only hold under
regularity assumptions on the model. Calibrated prediction limits can be
obtained by means of a bootstrap based procedure, as proposed by Hall
et al. (1999). Though very interesting, this approach provides solutions for
specific fixed values of the target coverage α.
In this work, following Fonseca et al. (2010), we define a predictive distribu-
tion which α-quantiles provide exact prediction limits for every α ∈ (0, 1).
When this predictive distribution is not explicitly available, it can be ap-
proximated using a suitable bootstrap technique. The coverage error asso-
ciated to the resulting approximated quantiles is of order o(n−1), improving
on the estimative solution. The proposed method for prediction is general,
easy to compute and does not require regularity assumptions on the under-
lying model. Thus, it also applies to non-regular cases when the support of
the model depends on an unknown parameter. This extension is very use-
ful, for instance, in the applications to survival analysis and in the studies
of extreme events.

2 Calibrated predictive distributions

Let us assume, for simplicity, that Y1, . . . , Yn, Z are independent contin-
uous random variables with the same distribution. Denote by G(z; θ) the
distribution function of Z.
Consider the estimative prediction limit zα(θ̂) = G−1(α; θ̂), where G−1(·; θ̂)
is the inverse of function G(·; θ̂). The associated coverage probability is

PY,Z{Z ≤ zα(θ̂); θ} = EY [G{zα(θ̂); θ}; θ] = C(α, θ).

Function C(α, θ) depends on the true parameter value θ and on the nominal
coverage probability α. However, its explicit expression is rarely available.
It is well known that it does not match the target value α, although asymp-
totically C(α, θ) = α+O(n−1), as n→ +∞.
As suggested by Fonseca et al. (2010), a predictive distribution function

can be defined by substituting α with G(z; θ̂) in C(α, θ):

Gc(z; θ̂, θ) = C{G(z; θ̂), θ}. (2)

Gc(·; θ̂, θ) is a proper predictive distribution function in regular parametric

models. When the support of Z depends on θ,Gc(z; θ̂, θ) may not satisfy one
or both the limit conditions as z →∞. Nevertheless, it can still be fruitfully
employed for obtaining good prediction limits, far from the boundary of the
support of Z.
The predictive distribution (2) gives, as quantiles, prediction limits zcα(θ̂, θ)
which coverage probability equals the target nominal value α, for all α ∈
(0, 1).
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Though interesting from a theoretical perspective, the calibrated predictive
distribution Gc(z; θ̂, θ) is in fact inapplicable since it usually depends on
the unknown parameter θ. A useful surrogate is the corresponding plug-in
estimator

Ĝc(z; θ̂) = Gc(z; θ̂, θ̂) = C{G(z; θ̂), θ̂}.
The associated α-prediction limit is defined as ẑcα(θ̂) = zcα(θ̂, θ̂) = zα̂c(θ̂),

with α̂c = C−1(α, θ̂), and it satisfies (1) to a closer approximation than

the estimative prediction limit zα(θ̂), that is with an error term of order
o(n−1).
A closed form expression for the coverage probability C(α, θ) is rarely avail-

able so that even the predictive distribution function Ĝc(z; θ̂) is not very
useful in practice. Anyway, there is a suitable parametric bootstrap estima-
tor for Gc(z; θ̂, θ), to be considered when C(α, θ) is not available. Let y∗(j),
j = 1, . . . , B, be parametric bootstrap samples generated from the estima-
tive distribution of the data and let θ̂∗(j), j = 1, . . . , B, be the correspond-

ing maximum likelihood estimates. Since C(α, θ) = EY [G{zα(θ̂); θ}; θ], we
define the bootstrap-calibrated predictive distribution as

Gbc(z; θ̂) =
1

B

B∑
j=1

G{zα(θ̂∗j ); θ̂}|α=G(z;θ̂). (3)

The corresponding α-quantile defines, for each α ∈ (0, 1), a prediction
limit having coverage probability equal to the target α, with an error term
which depends on the efficiency of the bootstrap simulation procedure. It
is important noticing that the computation of (3) does not require any
assumption on the regularity of the parametric models involved, as long as
the bootstrap applies.

3 Generalized extreme value distribution

Let Y1, . . . , Yn be independent random variables with common generalized
extreme value distribution, that is

G(y;µ, σ, ξ) = exp

{
−
(

1 + ξ
y − µ
σ

)−1/ξ
}
,

where 1 + ξ(y − µ)/σ > 0 and θ = (µ, σ, ξ) is an unknown parameter with
σ > 0 a scale parameter, µ ∈ IR a location parameter and ξ ∈ IR a shape
parameter. The generalized extreme value distribution includes the Frechet,
the Gumbel and the Weibull distributions as particular cases and is usually
used for the study of extreme events, such as extreme flood of a river or
maximum sea level. In this context it can be useful to consider the problem
of prediction of a future value Z = Yn+1, independent of Y1, . . . , Yn and
with the same distribution.
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TABLE 1. Generalized extreme value distribution. Coverage probabilities for es-
timative and bootstrap calibrated prediction limits of level α=0.9, 0.95, 0.99.

α n Estimative Bootstrap

0.9 10 0.880 0.899
20 0.893 0.905

0.95 10 0.933 0.954
20 0.942 0.951

0.99 10 0.976 0.987
20 0.982 0.986

In this case, an explicit expression for the coverage probability C(α, µ, σ, ξ),
associated to the estimative α-prediction limit, is not available. As ex-
plained in Section 2, we can estimate (2) using the bootstrap estimator (3)
and calculate calibrated prediction limits as quantiles of this approximated
predictive distribution.
Table 1 shows the results of a simulation study for comparing the per-
formance of estimative (Estimative) and bootstrap calibrated (Bootstrap)
prediction limits, with respect to the corresponding coverage probabilities.
Estimation is based on 5,000 Monte Carlo replications. Bootstrap proce-
dure is based on 1,000 bootstrap samples. Estimated standard errors are
always smaller than 0.005. Different values of the target level, α=0.9, 0.95,
0.99, and of the sample size, n = 10, 20, are considered. The parameters
of the generalized extreme value model are fixed to µ = 5, σ = 2 and
ξ = 0.4. It can be seen that the bootstrap solution remarkably improves on
the estimative one.
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Abstract: Elicitation of objective priors that are suitable for model selection
is a rather difficult problem and not yet entirely understood. In the variable
selection scenario, many priors have been proposed. Most of them follow the
guidelines given in Jeffreys-Zellner-Siow, namely 1) orthogonalize common and
non-common parameters 2) give the common parameters a common prior, taken
to be the usual improper estimation prior and 3) give a flat-tailed prior to the
model specific parameters. This extended practice, although intuitively sound,
seems to be basically ad-hoc: no formal arguments are usually given. In this
talk, we propose a general class of priors , generalizing several earlier proposals,
and show that 1) use of the right Haar prior for the common parameters is the
right prior for this problem; no orthogonalization is needed, and justification is
in terms of invariance, 2) flat-tailed distributions generalizing priors proposed
previously for minimax and robust Bayes estimations are very well suited for this
problem, resulting in consistent and information consistent Bayes factors, and
3) the recommended prior exhibits a novel form of predictive matching, which
we believe is the appropriate one when selecting models of differing dimensions.
Finally, it even produces close-form Bayes factors.

Keywords: Variable Selection; Objective Bayes; Bayes Factors.

1 The problem

Many of today’s scientific problems require identifying which variables from
an entertained set are involved in a specific phenomenon. For instance,
many public health studies require the identification of the causes of a
certain disease.
This problem is referred to as variable selection and can be seen as a partic-
ular case of model selection. In this specific model selection problem each
model contains a certain subset of the entertained covariates. This means
a total of 2p possible models for a problem with p potential covariates. The
variable selection problem is difficult to address both from a theoretical
and from a computational point of view.
In particular, in this work the problem of variable selection is addressed
in the framework of linear regression, but it also appears in many other
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scenarios such as generalized linear models and non-parametric function
estimation.
Our preferred Bayesian way for solving model selection, and, in particular
variable selection, is to base the choice on the posterior probabilities of the
competing models. These posterior probabilities can be expressed in terms
of the prior probabilities of the models and the 2p Bayes factors.
For the assignment of prior probabilities over the model space we entertain
and compare some approaches, and state our preferred choice. However,
this is not the main topic of this work.
Posterior probabilities require the computation of 2p Bayes factors in favor
of each model Mi and against a base model Md for i = 0, . . . 2p − 1. Our
choice for Md is the simplest model explaining the data, which as usual we
denote M0; M0 is nested in every model Mi. The computation of those 2p

Bayes factors require the elicitation of priors for the corresponding param-
eters under each model. Subjective elicitation of priors assessed by experts
knowledge in this scenario is practically impossible due to the very large
number of models, and model-specific parameters. The idea is hence, to
adopt an objective point of view (see Berger, 2006, and references therein)
but the objective elicitation of priors in model selection has to be done care-
fully due to the high sensitivity of Bayes factors to the choice of objective
priors. In fact, the usual non-informative (usually improper) priors, which
work well in estimation problems do not always produce sensible results
in model selection (see Berger and Pericchi, 2001, and references therein)
often resulting in indeterminate Bayes factors.
The large number of models also posses a computational challenge since
the numerical computation of the 2p Bayes factors is required. When p is so
large that the models space can not even be enumerated (for all practical
purposes), many authors (see, for example, George and McCulloch, 1993;
Carlin and Chib, 1995; Berger and Molina, 2005, and references therein)
propose methods for searching over the model space trying to find mod-
els with high posterior probabilities. But usually Bayes factors are hard to
compute, so that even this solution can be computationally very demand-
ing. This difficulty can be largely alleviated if simple expressions for Bayes
factors are available.

2 Our Solution

The aim of this work is to propose a novel, suitable and rigorously justi-
fied prior distribution for the variable selection problem. In particular, we
look for a prior distribution which achieves many desirable properties and
provides simple expressions for the Bayes factors.
We follow the Conventional approach of Jeffreys (1961), who outlined a
number of desiderata for a good objective prior distribution to have in the
variable selection problem.
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Following Jeffrey’s Conventional scheme, the prior distribution under each
model Mi is assessed in two steps. The first one consists in assigning a
proper prior distribution for those parameters in Mi that are not in M0

conditionally on those parameters in both models (in particular, as M0

is nested in Mi this means conditionally on the parameters in M0). The
second step consists in assigning a non-informative prior for the parameters
in M0.
For assessing the conditional prior in the first step we found some inter-
esting ideas in the work of Strawderman (1971) and Berger (1976, 1980,
1985). Their work, originally developed in a context of robust and minimax
normal mean estimation, is extended and adapted here to solve the variable
selection problem.
For the prior distribution of the parameters in M0 (occurring in all models)
we consider a prior which makes the problem invariant. In this case, it
happens to coincide with the reference prior or independent Jeffreys’ prior
which is the usual choice in the literature. Hence, the usual choice gets fully
justified.
The result is a joint prior distribution in the parametric space which, follow-
ing Berger (1985) we call Conventional Robust prior. This prior distribution
is defined up to some parameters that can be tuned to achieve a number
properties. Our specific proposal for these parameters is based in certain
optimality properties of the resulting procedure.
The theoretical highlights of this distribution for variable selection are

• The choice of the prior is justified from a theoretical point of view.
Jeffreys (1961)’s Conventional approach scheme for the elicitation of
prior distributions was based on the orthogonal parameterization of
the model. Our choice is instead completely justified by a sensible
choice of the scale matrix and the use of invariance ideas in Berger
et al. (1998). This fully theoretical justification makes the orthogonal
parameterization no longer required.

• It produces well defined Bayes factors with good consistency proper-
ties from many points of view. The resulting Bayes factors are well
defined in the sense that they are not indeterminate as is usually the
case when using objective (improper) priors. This indeterminacy is
avoided here through invariance arguments. On the other hand, the
consistency properties of the resulting Bayes factor, closely related to
the shape of the prior’s tails, makes this choice a suitable prior for
variable selection.

• It agrees with the predictive matching idea. In particular, our prior
distribution accords with our preferred and weaker interpretation of
predictive matching for this problem. Specifically, we require that,
if the information in the sample is barely enough for estimating the
specific parameters of any model entertaining k extra covariates (i.e.
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n = k0 + k), then this information should not be enough to discrimi-
nate among those models.

In addition, our approach produces simple, tractable, closed-form expres-
sions for Bayes factors considerably simplifying computation.

Acknowledgments: This research has been partially suported by the
Ministerio de Ciéncia e Innovación grant MTM2010-19528.
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Abstract: Climate change impacts are expected to vary spatially and to produce
changes in precipitation patterns that control river flows, the extremes of which
are critical for flood risk estimation. A multivariate conditional model, as pro-
posed by Keef et al.(2009), is applied here to a set of Scottish rivers to estimate
the spatial dependence in extreme river flows. The results reveal relationships be-
tween extreme flows that agree with what would be expected based on catchment
properties and will potentially prove useful for planning purposes.
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1 Introduction

Understanding temporal patterns in river flows and their relationship to
flooding is critical to flood planning and risk management. Delivering effec-
tive and efficient flood risk management in future requires new approaches:
in Scotland, the Flood Risk Management Act (2009) was passed with the
aim of introducing “a more sustainable and modern approach to flood risk
management” [Scottish Government (2010)]. To do so, new and improved
estimates of flood risk which take into account the impact of climate change
and possible spatial heterogeneity are needed. Much flood-risk management
is based on the concept of a return period for an event of given magnitude
and, despite ongoing debate about the utility of the return period approach
[White (2001),Young and Davies (1989)], considerable effort continues to be
made to refine predictions of the 1 in 100 year event. The weather systems
that generate extreme flood events operate at regional scales, however, ex-
treme events require combinations of conditions that are rarely coincident
between catchments. Thus, while a period of wet weather may generate
high flows simultaneously in all rivers in a region the particular conditions
required to produce an extreme event may only be found in a small sub-
set of these rivers. Isolating the factors that produce extreme conditions is
difficult, as catchment-scale meteorology and hydrology are controlled by
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many parameters all of which are spatially and temporally variable. Pooling
data from several catchments is an efficient way of optimising prediction
of extremes. Here we use a conditional probability approach to investigate
spatial interdependence in extreme flows.

1.1 Data

Daily river flow data from 3 rivers across Scotland over a period of 20
years (1985-2005) were selected based on data quality and spatial location
(Figure 1). Data were provided by the National River Flow Archive(NRFA)
and the Scottish Environment Protection Agency (SEPA).

FIGURE 1. Rivers location
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2 Methods

Following Keef et al.(2009), two conditional measures of spatial flood risk,
firstly the probability (PC(p)) that a set of rivers Y = (Y1, ..., Yd) within
a region C of interest flood at time t (or any lag of t), given that another
river X has already flooded, and secondly the expected number of rivers
(N(p)) that will flood on average within that region (given that X has
flooded) were estimated. These estimates are calculated based on the con-
ditional distribution of Y |X = x (for large x), which can be modeled using
a semi-parametric approach [Heffernan and Tawn (2004)]. Assuming the
random variables (Y1, . . . , Yd, X) marginally follow a standard Gumbel dis-
tribution, there exist normalizing functions a(x), b(x) such that ∀ fixed z,
limx→∞[Y ≤ a(x)+b(x)z|X = x] = G(z), for x > uX (uX being a suitable
high threshold). Note that this is a POT approach, as only values over the
chosen threshold are used to fit the model. a(x), b(x) are estimated para-
metrically and take the form a(x) = αx and b(x) = xβ , where 0 ≤ α ≤ 1,
−∞ < β < 1. a(x) describes the overall strength of the dependence struc-
ture, while b(x) relates to the variability (Keef et al. (2009)). The limiting
distribution G(z) is estimated non-parametrically using kernel smoothing.
Once the model is fitted, pseudo-samples can be generated in order to es-
timate functionals of the joint tails of (Y,X). Confidence intervals can be
calculated using block bootstrapping methods.

3 Results

To illustrate how the method works, results (based on mean daily flow)
for 3 Scottish rivers are presented here, the River Tweed, for which data
on two different gauging stations are available (Tweed09(4390km2)* and
Tweed03(694km2)), the River Nith(799km2) and the River Bervie(123km2).
A unique threshold uX corresponding to p=0.9 (where 1-p is the proba-
bility of the flow exceeding the chosen threshold) is used to condition on
the four records. Before fitting the model, data were transformed to follow
a standard Gumbel distribution. The estimated parameters â and b̂ are
presented on Table 1. The results point towards relationships that agree
with what would be expected; the two stations on the Tweed are expected
to be similar as both have large catchment areas and are influenced by
the same weather patterns, and they are closely related (Table 1) with the
influence of each station on the other being of similar order. The River
Bervie drains a small catchment in a different hydrological region from the
other rivers, and so is influenced by localized weather events that are often
not experienced at the other sites. The influence of the Rivers Tweed and
Nith on the River Bervie appears to be stronger than that in the opposite
direction, which seems reasonable given that the River Bervie has a very
small catchment. The dependence between the Rivers Nith and Tweed is
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stronger for station03, which is geographically closer to the former than
station09.*(catchment area)

TABLE 1. Parameter estimates â(x) and b̂(x) of the dependence model

Conditioning on Tweed09 Tweed03 Nith Bervie

Tweed09 â=0.749 â=0.094 â=0.229

b̂=0.677 b̂=0.679 b̂=0.340

Tweed03 â=0.646 â=0.513 â=0.098

b̂=0.763 b̂=0.676 b̂=0.350
Nith â=0.152 â=0.455 â=0.164

b̂=0.544 b̂=0.684 b̂=0.189

Bervie â=0.000 â=0.074 â=0.051

b̂=0.422 b̂=0.211 b̂=0.202

Estimates of Pc(p) for the rivers (b)Tweed(station03), (c)Nith, (d)Bervie
and (e)N(p) conditioning on the River Tweed (station 09) are shown in
Figure 2, along with 95%confidence intervals. The conditional probability
of each river flooding decreases as the event in Tweed09 (conditioning river)
becomes more and more extreme (ie, as p→1), and is higher for stations
that are close by. Flood risk estimates tend to be expressed in terms of
return periods rather than probabilities. Figure 3 shows the expected num-
ber of rivers in the set that would flood for events with different return
period occurring in the conditioning river. For example, if an event with
associated return period T=0.5years happens in the river Tweed(station09)
(conditioning river), we would expect, on average, one river out of the three
considered here to have an event of (at least) similar magnitude.

4 Summary and Future Work

A conditional multivariate model to estimate flood risk was fitted to a set
of Scottish rivers. So far, the results reveal relationships between extreme
flows that agree with what would be expected given the spatial location of
the rivers. The analysis is currently being extended to a further 30 rivers
and will potentially prove useful for planning purposes. In addition to the
two measures of spatial risk estimated here, the joint conditional distribu-
tion can be used to investigate the dependence structure in the upper tail
of the distribution and estimate quantities such as (conditional) return lev-
els. Alternative methods of spatial analysis, in particular, spatially varying
coefficients models, will be explored next.
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FIGURE 2. Model based estimates of the conditional probability of flooding for
the rivers (a)Tweed, (b)Nith and (c)Bervie, and (d)expected number of sites to
flood in the region.
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FIGURE 3. Expected number of sites (N(p)) that will flood given a T-year event
in the river Tweed(station03).
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Abstract: We consider outliers and intervention effects in INGARCH-models for
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1 Introduction

Time series of counts are observed e.g. in epidemiology, where we mea-
sure the number of new infections within a certain time period. Ferland et
al. (2006) propose integer-valued GARCH (INGARCH) models for such
data, which have been studied by Fokianos et al. (2009) later on. An
INGARCH(1, 1) process (Yt : t ≥ 1) is defined through the relationships

Yt|Ft−1 ∼ Poisson(λt),

λt = β0 + β1Yt−1 + α1λt−1, (1)

for t ≥ 1. The dynamics of the process is modeled via the conditional
mean λt = E(Yt|Ft−1) of Yt, where Ft stands for the σ–field generated by
{Y0, . . . , Yt, λ0} representing the whole information up to time t, β1 ≥ 0 and
α1 ≥ 0 are regression parameters and β0 > 0 is an intercept. A stationary
process fulfilling model (1) with marginal mean λ = β0/(1−α1−β1) exists
if α1+β1 < 1. Model (1) closely resembles the popular GARCH(1, 1)-model
since the mean of the Poisson distribution equals its variance.
An interesting question is whether a certain model fits some given data
well, or whether special effects need to be included to achieve a good model
fit. Such a need indicates the existence of particular events or model de-
ficiencies. Fokianos and Fried (2010) model different types of outliers and
interventions in INGARCH-processes and propose an iterative procedure
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for the detection of such effects. All outliers considered in their work cause
a spill-over effect and influence the future of the process via its dynamic.
We extend this approach by including additive outliers affecting single ob-
servations. Such outliers are particularly harmful for classical maximum
likelihood estimators. We construct robust M-estimators for this reason.

2 Outliers and interventions in INGARCH-models

Fokianos and Fried (2010) introduce intervention effects into INGARCH-
models assuming that instead of the ”clean” INGARCH process (Yt : t ≥ 1)
we observe a contaminated process (Zt : t ≥ 1), which includes the effect
of an intervention at time τ ,

Zt|FZt−1 ∼ Poisson(µt),

µt = β0 + β1Zt−1 + α1µt−1 + νδt−τI(t ≥ τ), (2)

for t ≥ 1, where FZt is the σ–field generated by {Z0, . . . , Zt, µ0}, ν is the size
of the intervention effect, I(t ≥ τ) is the indicator function for t ≥ τ , and
δ ∈ [0, 1] regulates whether the effect is concentrated on the observation at
time τ (δ = 0), is spread out over all observations from time τ on (δ = 1),
or it is something in between (δ ∈ (0, 1)).
Conditional maximum likelihood (CML) estimation can be applied for joint
estimation of the model parameters β0, β1, α1 and ν, if the type and the
time τ of the intervention effect is assumed to be known. Score tests allow
simultaneous testing for all types and times of outliers, fitting the model
only once under the common null hypothesis H0 of observing a clean IN-
GARCH series without interventions. The score test statistic for a given
type and time of intervention is asymptotically χ2

1-distributed under H0

with one degree of freedom.
In practice we often do not know neither the type nor the time of an outlier.
Maximizing the score test statistics for the same type of intervention over all
time points is intuitive, but bears the problem that the resulting maximum
score test statistics have different asymptotic distributions for the different
types of interventions and are not comparable. Accordingly, we propose a
parametric bootstrap procedure: the model is fitted under H0 and a large
number b, say b = 200, of bootstrap replicate time series is generated from
the fitted model. The maximum score test statistics are calculated for all
types of outliers and each of the b+ 1 time series. If an INGARCH model
fits the real data well, we expect the maximum score test statistics for these
data to be comparable to those for the bootstrap replicates and calculate
an approximate p-value for each type of intervention as the fraction of time
series for which the corresponding maximum score test statistic is at least
as large as for the real data. If different types of interventions with different
values of δ are significant, preference should be given to level shifts, since
these are rarely detected in the absence of shifts.
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For dealing with data scenarios with several intervention effects, Fokianos
and Fried (2010) design a stepwise outlier detection and elimination pro-
cedure. They make use of an equivalent formulation of model (2), namely

Zt = Yt + Ct

Ct|FCt−1 ∼ Poisson(κt) (3)

κt = β0 + β1Ct−1 + α1κt−1 + νδt−τI(t ≥ τ)

for t ≥ 1, where (Yt : t ≥ 1) follows the INGARCH(1,1) model (1), (Ct :
t ≥ 1) is an additive contamination and FCt = {C0, . . . , Ct, κ0}. Predicting
Ct by its conditional expectation given FZt , with the estimated parameters
plugged in, and subtracting this prediction from Zt allows us to clean the
observed time series from a detected intervention. Then we can continue
testing for further interventions. Applications to real and simulated data
indicate the reliability of the resulting stepwise procedure.
A drawback of the above approach is that only interventions which influence
the future of the process via its dynamics are considered. Another type of
outliers are additive outliers (AOs), representing e.g. simple measurement
errors. AOs can be modeled by modifying (3) as follows:

Zt = Yt + I(t = τ)Ct

Ct ∼ Poisson(ν), (4)

for t ≥ 1, with C1, . . . , Cn being independent identically distributed and
Ct being independent of Ft−1. Extension of model (4) for inclusion of more
than one AO is straightforward. Joint estimation of model parameters and
outlier effects by maximum likelihood methods is difficult since Zτ+1 needs
to be conditioned on the unobserved Yτ instead of Zτ , when constructing
the likelihood. Therefore we propose M-estimators for robust estimation of
the model parameters in the presence of AOs in the next section.

3 M-estimation in the INARCH model

Assume y1, . . . , yn is an observed time series of counts and we want to
fit an INARCH(1) model to these data, applying model (1) with α1 = 0.
Application of conditional likelihood, conditioning on the first observation,
gives the following set of estimation equations:

n∑
t=2

(
yt − λt√

λt

)
1√
λt

(
1

yt−1

)
= 0 . (5)

Downweighting the influence of unusual observations in these equations
leads to a straightforward robustification of the conditional likelihood esti-
mators. For this, we truncate observations with large standardized residuals
(yt − λt)/

√
λt using Huber’s or Tukey’s ψ function ψH and ψT ,

ψH(x) = xI(|x| < k) + ksign(x)I(|x| ≥ k),
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ψT (x) = x[1− (x/k)2]2I(|x| ≤ k),

where k is a tuning constant regulating the robustness and the efficiency
of the estimator. In ordinary location estimation, this constant is usually
chosen in the range between 1 and 2 for the Huber and in the range between
3 and 5 for the Tukey function, see e.g. Maronna, Martin and Yohai (2006,
p. 27 and p. 30). The Huber function ψH is monotone and usually leads
to unique solutions, which can be obtained by straightforward iterations.
As opposed to this, the Tukey function ψT is redescending to zero and can
suppress the influence of very large outliers completely. A drawback is the
possible existence of multiple roots, so that good initial values are needed
for the iterations to get to the right solution.
Regressors yt−1 which are outlying w.r.t. the marginal distribution should
also be downweighted. This leads us to the following set of generalized
M-estimation equations

n∑
t=2

ψ

(
yt − λt√

λt

)
1√
λt

(
1

σψ
(
yt−1−λ

σ

)
+ λ

)
− (n− 1)

(
a0

a1

)
=

(
0
0

)
,

(6)
where σ2 = λ/(1− β2

1) is the marginal variance of the process. Recall that
λ = E(Yt). The term (a0, a1)′ is an asymptotic bias correction such that
the expectation of the left hand side equals (0, 0)′. It can be approximated
by simulation.
Since the autocorrelation function ρ of an INARCH(1)-model resembles
that of an autoregressive model of first order, ρ(h) = βh1 for all h =
0, 1, 2, . . ., we can use the median of all data points as a robust estimator
of λ in combination with any robust autocorrelation estimate for initializa-
tion of β1 = ρ(1) in the iterative calculations. We apply the highly robust
estimate of Ma and Genton (2000) in the following for this,

ρ̂(1) =
Q2
n−1(y2 + y1, . . . , yn + yn−1)−Q2

n−1(y2 − y1, . . . , yn − yn−1)

Q2
n−1(y2 + y1, . . . , yn + yn−1) +Q2

n−1(y2 − y1, . . . , yn − yn−1)
,

using Rousseeuw and Croux’ (1993) Qn for estimation of the unknown vari-
ances V ar(Yt + Yt−1) and V ar(Yt − Yt−1) because of its high robustness
and considerable efficiency. The Qn scale estimator of a sample x1, . . . , xm
roughly corresponds to the 25% percentile of the sample of pairwise differ-
ences and is defined by

Qm(x1, . . . , xm) = cm{|xi − xj | : 1 ≤ i < j ≤ m}(l), l =

(bm/2c+ 1

2

)
.

cm is a finite sample correction factor to achieve unbiasedness at a sample
of size m. It can be omitted in our context since it cancels out.
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FIGURE 1. Simulated relative efficiencies of the Tukey M estimator with different
tuning constants k relative to the CML estimator (top) and empirical biases
(bottom) for β0 (left) and β1 (right) as a function of the true β1, n = 200.

4 Simulations

We perform some simulation experiments to compare the performance
of the CML and the generalized M-estimator in finite samples from an
INARCH(1) model. We concentrate on the Tukey M-estimator because of
its ability to reject observations which strongly deviate from the model for
the bulk of the data.
First we consider situations with clean data, generating 500 time series of
length n = 200 from each of different INARCH(1) models with fixed β0 = 1
and β1 varying in {0, 0.1, . . . , 0.9}. Figure 1 illustrates the resulting finite-
sample biases and relative efficiencies of the generalized M-estimator with
different values of the tuning constant k ∈ {5, 7, 10} relative to the CML
estimator as a function of β1. All estimators show a similar bias behavior,
and the performance of the Tukey M estimator approaches that of the
conditional ML estimator as k increases. Choosing k ≥ 7 leads to relative
efficiencies of 90% or larger for all parameter combinations considered here.
Figure 2 depicts the bias caused by an AO of increasing size ν at time
τ = 50 in a time series of length n = 200, generated from model (4) with
β0 = 1 and β1 = 0.4. 200 data sets have been simulated for each value of ν.
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FIGURE 2. Simulated bias of the conditional ML estimator and of the Tukey M
estimator with different tuning constants k for β0 (left) and β1 (right) in case of
an additive outlier of increasing size.

While the CML estimator overestimates β0 and underestimates β1 because
of an AO, the M estimator is little affected, even for a large tuning constant
k = 10. The MSE is dominated by the bias and not shown here.
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Abstract: A bivariate cumulative probit model with linear effects and penalized
splines is proposed to reconstruct stimulus properties from spike trains of retinal
ganglion cells. The use of the ordinal regression model aims at evaluating the
suitability of this model for the analysis of neural data, in particular with re-
spect to gaining insights about which spike train features encode which stimulus
properties (light intensity and velocity of a moving dot pattern).

Keywords: Ordinal Regression; MCMC; Penalized Splines; Stimulus Recon-
struction; Spike Train

1 Introduction:

The surroundings of an organism can be described in terms of multidi-
mensional stimuli accessible to the organism’s sensory organs. Information
about these stimuli is transfered to the central neural system via electrical
impulses of nerve cells or neurons. The shape and especially the size of these
impulses called action potentials or spikes are independent of the strength
of the stimulus that evoked the potential. Hence, information about the
environment must be transmitted by using temporal sequences of spikes,
so called spike trains. Exploring the neural code includes especially find-
ing out which features of a spike train (e.g. the number of evoked spikes,
the relative timing of the first spike etc) encode which stimulus properties
(Rieke et al (1999), see also Figure 1).

A common approach to gain insights about the encoding strategies is to re-
construct the stimulus properties from the observed neuronal responses in
an experiment. Using statistical classification methods, the recorded spike
trains are assigned to stimulus property classes according to their features.
This idea yields a measure for the relative importance of certain spike train
features by comparing the predictive performance. Most of the common
methods for this classification task yield good classification results but do
not take into account the possible ordinal structure of the properties even
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though in fact most stimuli can be ordered considering for example prop-
erties like light intensity or velocity of visual objects. Even more important
is the problem that most methods are not easily to a stimulus of more than
one dimension whereas e.g. each visual object can be described by different
properties like its colour, light intensity, velocity and so on.

FIGURE 1. Spike train - each line represents the occurrence of an action potential

In order to fill this gap, we examine the suitability of a cumulative probit
regression model for stimulus reconstruction. Based on the work of McCul-
lagh in 1980 the idea is to introduce a latent variable in order to relate the
problem to a linear regression approach (McCullagh (1980)). A multivari-
ate extension of this model was presented in 1995 by Kim (1995) for the
analysis of ophthalmological data where the response variable - in this case
severity of diabetic retinopathy for both eyes - is bivariate due to paired
organs. Similar studies followed (Zayeri et al (2006)) but to our knowledge
no research has been made concerning the applicability of the ordinal re-
gression model to neurobiological questions where correlation between both
univariate responses is not as obvious as in measurements at paired organs.
Whereas in these articles only linear effects were investigated, we also ex-
tended the approach for non-linear effects by modeling the latent variable
with penalized splines.

2 Bivariate Cumulative Probit Model

Analogue to the univariate model, the idea of the bivariate cumulative
probit model is to relate both components of the ordinal response variable
Y = (Ya, Yb) ∈ {1, . . . ,K} × {1, . . . , L} to latent variables Za, Zb that can
not be observed directly. Those real-valued variables span the whole R2

and are cut off by −∞ = γa0 < γa1 . . . < γaK−1 < γaK = ∞ and −∞ =

γb0 < γb1 . . . < γbL−1 < γbL = ∞ respectively, such that one gets for the i-th
observation Yi = (k, l) iff γk−1 < Za,i ≤ γk and γl−1 < Zb,i ≤ γl. The
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difference of the bivariate model to two univariate ones originates in the
definition of the residuals of the regression

Za,i = ηa,i + εa,i Zb,i = ηb,i + εb,i,

where εa,1, . . . , εa,n (as well as εb,1, . . . , εb,n) are assumed to be independent,
but for each observation i there exists a constant correlation Cor(εa,i, εb,i) =
ρ. The predictor ηa,i can either be linearly defined as ηa,i = x′a,iβa or include
non-linear effects for the explanatory variable xa,m in terms of penalized
spline functions. In this case

ηa,i = . . .+

M+d∑
j=1

Bj(xa,m,i)αa,j + . . .

with xa,m,i denoting the realization of the m-th explanatory variable for
the i-th observation and Bj(xi) the j-th basis function of the B-Spline basis
of degree d for M knots. The penalization term can either be included into
the least squares criterion or one equivalently assumes the following normal
prior distribution of α:

p(α) ∝ exp (−λα′Kα) .

with a penalty matrix K.
Bayes-optimal parameters can be obtained numerically using a Gibbs-
sampler of the full conditionals (Albert and Chib (1993)). Combination
of linear effects and penalized splines into one model is possible as well,
resulting in slightly different full conditionals for the individual regression
parameters and the spline weights.

3 Stimulus Reconstruction

After building up the model and deriving the full conditionals, an exami-
nation of the suitability of the cumulative probit model for the analysis of
neural data was performed. The question which spike train features encode
which stimulus properties was considered in the light of the visual system.
In the corresponding experiment, an extracted carp retina was stimulated
with a moving dot pattern of different light intensity and velocity. Patterns
of three velocities with movement to the right and four different light in-
tensities were presented, but we considered only the intensity changes from
the lowest to the remaining three for the classification task since former
studies have detected a stronger response to changes than to constant in-
tensities. Each stimulus combination has been applied 128 times resulting
in 1152 trials in total. Spike trains were recorded from 114 ganglion cells.

We examined the predictive performance of the model first using features
of a spike train recorded from a single cell and second combining several
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cells to construct further possible explanatory variables. For the analysis
based on single cells, we chose one neuron manually that showed clear re-
sponses to velocity as well as intensity changes, with increasing firing rate
for larger realisations of both stimulus variables. Besides the number of
evoked spikes we used the latency of the first spike, the length of the first
interspike interval and a binary variable concerning the state of activity (at
least one spike or none) for the analysis. Additionally to the linear model
containing all four variables we built up models with P-splines for the most
promising covariates spike count and first spike latency.
Making up a population of the total 114 neurons, we considered the num-
ber of active cells, the total spike count as well as the number of spikes
observed for each single cell as potential explanatory variables.

For univariate response variables, fixing either the light intensity or the
velocity, the latency as well as the spike count yielded good classification
results. Consistent with former studies, classification with latency was su-
perior for intensity reconstruction whereas the total number of spikes was
superior for reconstruction of velocity. In this application, a linear model
was not sufficient to cover the effect of first spike latency such that the use
of penalized splines was preferred. For bivariate classification, linear mod-
els of at least two covariates outperformed one-covariate-models. Here, the
best results were obtained using the total number of spikes of each neuron,
resulting in a model with 114 explanatory variables. In general, the classi-
fication rates assigning the spike trains with the cumulative probit model
were comparable to those obtained with other methods, especially when
P-splines accounted for non-linear effects of certain variables.
sectionSection 3.1
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Abstract: Many medical and biological problems require the analysis of large
sequences of microscope images. These images capture phenomena of interest and
it is essential to characterize their spatial and temporal properties. The purpose of
this paper is to show the application of the Non-Homogeneous Temporal boolean
model, and of a statistical methodology to estimate these parameters of interest
in image sequences obtained in the observation of endocytosis. Endocytosis is a
process by which cells traffic molecules from the extracellular space into different
intracellular compartments.
In this paper, we introduce the concept of Non-Homogeneous Temporal Boolean
Model; a hypothesis testing procedure to check the spatial homogeneity assump-
tion; and a reformulation of the existing methodology to work with underlying
non-homogeneous point processes. Finally we apply it, to three sequences of en-
docytic images.

Keywords: Temporal Boolean model, Endocytosis, Spatial non-homogeneity,
parameter estimation.

1 Introduction

Endocytosis is a cellular process whereby some materials (e.g. nutrients)
are drawn into the cell by means of invagination of the plasma membrane.
This process happens in discrete events and it is required for a vast number
of vital functions for the well-being of a cell.
A microscopical technique called Total Internal Reflection Fluorescence
Microscopy (TIRFM), allows real-time imaging for endocytosis with a high
degree of accuracy. Using TIRFM, the assembly of fluorescently labelled
clathrin where endocytosis is taking place, results in the appearance of a
diffraction-limited spot. The areas of fluorescence generated by different
endocytic spots overlap and form random clumps which have different size,
shape and duration. The time which elapses between the appearance and
the disappearance of a fluorescent clathrin spot is defined as the duration,
or lifetime, of a discrete endocytic event.
The spatial and temporal distribution of these clumps is influenced by
many biological factors and there is no precise biological knowledge about



Gallego et al. 245

their spatial distribution in the plasma membrane. In fact, this is one of the
unsolved questions in the biological understanding of the endocytic process.
Therefore, to characterize endocytic events it is crucial to estimate the mean
number of endocytic events per unit area and per unit time at different
spatial sites and their lifetime. Due to endocytic spots overlapping and
clump formation, it is not possible to carry out these tasks in a trivial way.
In [3] and [1], Sebastián et al. used the homogeneous temporal Boolean
model (HTBM) to estimate these parameters of interest.
The novelties introduced by our work are: the relaxation of the spatial
homogeneity hypothesis by introducing the concept of Non-Homogeneous
Temporal Boolean Model (NHTBM); the introduction of a hypothesis test-
ing procedure to check the non-homogeneity hypothesis; and a generaliza-
tion of the methodology to estimate the new parameters of interest. We
apply it to analyze the behavior of the clathrin-dependent endocytic ma-
chinery. The use of a model that is more closely adjusted to the physiological
characteristics of the real problem leads to more accurate estimators, and
it solves one of the open biological questions regarding which parts of the
membrane present a greater accumulation of events.

2 Models and methods

2.1 Non-homogeneous temporal Boolean model

Let Ψ = {(xi, ti)}i≥1 be a Poisson point process in R2 × R+, homo-
geneous in time but non-homogeneous in space, with intensity function
Λ(x), x ∈ R2. Let {Ai}i≥1 be a sequence of independent and identically
distributed random compact sets in R2, and let {di}i≥1 be a sequence
of independent and identically distributed (as D) positive random vari-
ables and that Eν3(A0 × [0, D]

⊕
Ǩ) < +∞ for any compact subset K

of R3. Then, the non-homogeneous temporal Boolean model is defined as:
Φ =

⋃
i≥1(Ai + xi)× [ti, ti + di], where E denotes the expectation; for any

sets A and B in R3 ν3(A) denotes the volume of A, and A
⊕
B denotes

their Minkowsky addition.
In the applications, we will work with binary images sequences that will be
considered as samples of a spatiotemporal infinite process, as the defined
below. The spatiotemporal sampling window will be denoted by W × [0, T ]
and the sampling times will be denoted by s1 < s2 < · · · < sm, with
0 ≤ s1; sm ≤ T . Then, the observed data set will be: {Φsi}i=1,··· ,m with
Φsi = Φ

⋂
(W × {si}) ∀i = 1, · · · ,m.

2.2 Parameter estimation

Two different approaches are found in [1] and [3] to manage parameter
estimation in a HTBM, but only one of them can be generalized to the non-
homogeneous case. This approach uses several cross-section aggregations,
Φ̃si =

⋃i+k
j=i Φsj , i = 1, · · · ,m− k , to analyze the increase in intensity.
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In these sequences, the grains size will keep its original distribution, al-
though the spatial intensity for the germs process will be higher. This rise
in intensity will only depend on the number of frames aggregated and their
time lags. Each Φ̃si is a realization of a spatial non-homogeneous Boolean
model. Algorithms to estimate the intensity function, λs(k, δ, x), are scarce
in the non-homogeneous literature. We will use the proposed by Molchanov
and Chiu [2] , that will be repeated for different values of k and δ.
Once λs(k, δ, x) has been estimated we follow the ideas (and notation)
stated in [3], getting an estimate of the intensity function Λ(x): Λ̂(x) =

α̂′(0, x); an estimation of the probability density of D for each site, f̂D(δ) =
− 1

Λ̂(x)
α̂′′(δ, x) (we will use their mean as the final estimate of the probability

density function); and an estimate of ED, ÊD = 1
]W

∑
x∈W

[
1
m

∑m
j=1 Λ̂sj (x)

Λ̂(x)

]

2.3 A simple test for spatial homogeneity

There are no formal homogeneity tests in spatial random sets and point pro-
cesses literature. Usually, a single observation in a sample window is avail-
able and homogeneous spatial patterns could look like non-homogeneous
depending on the size of the window. Nevertheless, we propose the fol-
lowing scheme to check homogeneity in spatio temporal problems: Step
1. Use the Molchanov method [2] to estimate the intensity function from
each frame. Step 2. Use a batch-means type method to obtain indepen-
dent replications based on the temporal observations. Step 3. Under the
null hypothesis of homogeneity, the estimated value does not depend on
the coordinate. Apply the Friedman non-parametric ANOVA test to the
sample obtained in the previous step, to compare the estimated values at
each position of each frame.
A simulation study has been carried out order to check the performance of
the parameter estimation and the homogeneity testing procedures.

3 Application

Lets analyze clathrin-mediated endocytosis dynamics, from three sequences
of images of COS-7 monkey fibroblast cells. Each sequence consists of 300
frames acquired at one frame every four seconds. One of the original frames
is shown in fig 1 (a). Frames are preprocessed and transformed to binary
images (fig 1 b). The homogeneity test exposed below allows us to reject
the homogeneity hypothesis and to consider our data set as a realization
of a NHTBM. Fig. 1(c) shows the spatial intensity function estimated for
one of the analyzed cells (Cell 2). We can clearly observe a greater density
of endocytic spots in the image centre. Fig. 1 (d) shows the estimation of
the density function of event durations for Cell 2.
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FIGURE 1. (a) A frame of a sequence of 300 TIRFM images of a cell; (b) seg-
mented endocytic spots of the frame showed in (a); (c) Estimated spatial intensity
function for the Cell 2; (d) Estimated density functions of durations for Cell 2.

4 Conclusions

In this paper we have proposed both a probabilistic model and a statistical
methodology that generalize the methodology proposed in [3] to study the
kinetics of endocytosis in living cells. The novelty spatial homogeneity hy-
pothesis has been relaxed by introducing the concept of a non-homogeneous
temporal Boolean model. Regarding the endocytosis, we have detected
parts of the cellular membrane with a higher accumulation of endocytic
spots and slightly lower estimates for the durations of the endocytic events
than the obtained with the methods nowadays in use.
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Abstract: In model selection problems posterior probabilities of entertained
models are simple expressions of the Bayes factors and the prior distribution
over the model space. For the variable selection problem in normal regression
models, in this work we consider the posterior probabilities that arise of com-
bining the Bayes factors in (Bayarri, Berger, Garćıa-Donato, and Forte, 2011)
and the proposal in (Scott and Berger, 2010) for the model prior probabilities.
The result is a default Bayesian approach, based on theoretical arguments, where
posterior probabilities i) are closed-form (in terms of hypergeometric functions),
and ii) automatically control for multiplicity. Notice that both properties are very
appealing specially when the number of potential explanatory variables initially
considered is very large. We compare this approach with other existing method-
ologies like (Zellner and Siow, 1980) and (Liang et al., 2008) for the Bayes factors
and the constant prior for the prior distribution over the model space. A number
of different scenarios are considered, including real data sets with large model
spaces.
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Abstract: The study of the sum of two independent phase–type (PH) distributed
variables is considered, each of them being associated with a Markovian process
with one absorbing state. The distribution function of the variable sum, PH–
distributed, is computed. The exponential function of a block upper triangular
matrix is calculated in terms of its respective blocks to reduce the dimension from
the original processes. In a second step an approximated solution to this previous
method is modelled. An application in bladder carcinoma is shown taking into
account two absorbing states.
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1 Introduction and Motivation.

Bladder carcinoma is the fourth most frequent solid tumor among men and
the seventh most frequent among women, with more than 350.000 new cases
diagnosed annually worldwide. 80% of patients present superficial transi-
tional cell carcinoma (TCC), which can be managed with transurethral re-
section (TUR), a surgical endoscopic technique. However, more than 50%
of the patients will have recurrences (reappearance of a new superficial
tumor) and 10–30% of patients will have progression to muscle invasive
disease which leads to a more aggressive treatment including the bladder
extirpation.
In this regard, Markov models have proven to be useful in the analysis of
the course of chronic diseases with relapse times. The Markov model is
also complemented by the use of phase–type distributions (Aalen, 1995). A
Phase–Type (PH) distribution is the absorption distribution time in a ho-
mogeneous Markov process in a finite state space with one absorbing state.
In our modelling we consider two random continuous variables represent-
ing two independent absorption times, each one of them PH -distributed.
In order to study the risk of the bladder extirpation, we are interested in
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obtaining the distribution function of the sum of these two variables. In a
second step we will obtain an approximation of this function.

2 Approximated Survival Function of the Sum of
Two Independent Markov Processes.

Let X1 and X2 be nonnegative random independent variables representing
the absorption times in two homogeneous Markov processes with m and
n transient states respectively and m + 1 and n + 1 the absorbing ones.
Both variables are PH–distributed with representation (α, T ) and (β, S)
respectively and distribution function F1(·) and F2(·). The distribution of
X = X1 +X2 is the convolution of the distributions of X1 and X2 (Neuts,
1998) and F (·) = (F1 ∗ F2)(·) is a PH-distribution with (γ, L), given by

γ = (α, αn+1β) (1)

L =

[
T T 0β
0 S

]
(2)

The transition rates of X1 and X2 within the set of transient states are
given by the matrix T and S respectively. X is the total time duration of
the whole process: from initial state until the second absorbing n+1 state,
passing through the first absorbing m+1 state. Therefore we consider a new
Markov process with state space {1, 2, . . . ,m, m+1, m+2, . . . ,m+n, m+
n+ 1}, where m+ n+ 1 is the only absorbing one. In this process the first
states {1, 2, . . . ,m} are the transient ones of the first process and the state
m+j, 1 ≤ j ≤ n+1 represents the transient jth state of the second process
when the first process has already arrived at the absorbing state m + 1.
After having reached the state m+1, the chain immediately proceeds to the
second stage. The initial probability vector and the infinitesimal generator
of this new Markov process are (γ, αm+1βn+1) with γ = (α, αm+1β), and

Q =

[
L L0

0 0

]
with L =

[
T T 0β
0 S

]
The distribution function F (x) for the variable sum X is PH–distributed
with representation (γ, L) given by

F (x) = 1− γ exp(Lx)em+n (3)

Notice that in (3) the dimension of the problem increases given that matrix
L is greater than the matrices T and S. In order to reduce the dimension we
apply the Fréchet derivative (Kenny and Laub, 1998) to the term exp (Lx)

F (x) = 1−(α αm+1β)

[
exp

(
Tx 0
0 Sx

)
+

∫ 1

0
exp

[
(1 − s)

(
Tx 0
0 Sx

) ] (
0 T0βx
0 0

)
exp

[
s

(
Tx 0
0 Sx

) ]
ds

]
em+n

(4)
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and operating we arrive at the expression for the distribution function

F (x) = 1− α exp(Tx)em −
(
αm+1β exp(Sx) + α

∫ 1

0

exp(1− s)TxT 0βx exp(sSx) ds

)
en

Applying the Kronecker matrix form on the integral of this last expression,

F (x) = 1−α exp(Tx)em−αm+1β exp(Sx)en−(en

′
⊗α)[S

′
x⊕(−Tx)]

−1
(exp(S

′
x)⊗Im−In⊗exp(Tx))vec(T

0
βx)

(5)

Notice that the calculation of the inverse of the matrix sS
′
x⊕(−Tx) in (5)

can present serious difficulties if this matrix is bad conditioned. With the
aim of avoiding a possible bad conditioning we propose an approach for

calculating the integral
∫ 1

0
exp

(
sS
′
x⊕ (1− s)Tx

)
ds in F (x). For this we

use the Taylor series expansion of the exponential function in the integrate.
We apply the Weierstrass’ criterion of uniform convergence and the Newton
Binomio and finally we arrive to the approximated function of F (x)

F̂1(x) = 1− α exp(Tx)em − αm+1β exp(Sx)en − (6)(
en

′
⊗ α

)(
I +

p∑
k=1

xk

(k + 1)!

k∑
j=0

(S′)k−j ⊗ T j
)
vec
(
T 0βx

)
In a step more with the aim to get a greater convergence and accuracy

for F (x), improving F̂1(x), we construct a second approximation. Applying
again the Frechet derivative and recurrently the Kronecker matrix proper-
ties we arrive to a second approximated distribution function.

F̂2(x) = 1− α exp(Tx)em − αm+1β exp(Sx)en − (7)

(
en

′
⊗ α

)[(
e
s S
′
x

2k ⊗ I + I ⊗ e
Tx
2k
) ( ∫ 1

0

e
s S
′
x

2k ⊗ I + I ⊗ e
(1−s)Tx

2k ds
)]
vec

T 0βx

2k

3 Application to Bladder Carcinoma.

3.1 Initial state assumptions

Three states are distinguished (see Diagram) in bladder carcinoma with the
first moderate progression and the bladder extirpation as absorbing states.

Primary

Tumor
- First

Recurrence
- Moderate

Progression
-

Second
Moderate

Progression

- Bladder
Extirpation

	 	

First Phase Second Phase

Diagram: Markov processes with two absorbing states
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FIGURE 1. Survival function S(x) and the first and second approximation, Ŝ1(x)
and Ŝ2(x) of the distribution function in the Markov process.

Two well differentiated follow–up protocols are distinguished according to
the two phases of the study: one treatment for superficial tumors and a more
specific and different for invasive for invasive tumors. Two independent
databases have been considered from La Fe University Hospital.

3.2 Computing the approximated survival function

In the Figure 1 the first (6) and second (7) approximated survival functions
has been compared with the theoretical model (5). We can observe a light
mismatch between both survival functions with the first approximation
while the second is more secure convergence.
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Abstract: The purpose of this paper is to provide validation for the approxi-
mate algebraic propagation algorithms to accommodate non-Gaussian dynamic
processes. These algorithms have been developed to carry out Bayesian analysis
based on conjugate forms. The validity of the approximation algorithms can be
checked by introducing a metric (Hellinger divergence measure) over the distribu-
tion of the states (parameters) and use it to judge the approximation. Theoretical
bounds for the efficacy of such procedure are discussed.
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1 Introduction

Over the past two decades non-Gaussian time series have been addressed
by many authors, see, e.g., Kitagawa (1987) and Durbin and Koopman
(2000). The dynamic generalized linear models (DGLM) provide a general
framework for dealing with time series data which considers generalized
linear models with time-varying parameters. DGLM have been widely used
for non-Gaussian time series data, see, e.g. West and Harrison. (1997). In
dynamic processes which are known in sufficient detail to be described in
terms of parametric models, the model parameters or states can be re-
garded as the means summarizing the information necessary to forecast
the future system behavior. The learning process sequentially revises the
uncertainty about the parameters, by adjusting the probability distribution
attached to its state variables. An important example of such a process is
the environmental problem of forecasting the geographical spread of a re-
lease of toxic gases in the event of an accident at a chemical or nuclear plant
Smith and French (1993). Puffs of contaminated masses are emitted from
a release source, dispersed by a wind field and fragment into other puffs
over time. The wind field, mass release and fragmentation process follows a
complicated physical model. The problem here is to produce realistic prob-
ability estimates of contamination concentration over space and time. In
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this high-dimensional dynamic system, where the states (parameters) are
allowed to change over time, computational efficiency is essential. To model
such scenarios Bayesian networks were defined over state spaces. When the
system is Gaussian i.e. the states are normally distributed and the obser-
vations have Gaussian density, quick exact propagation algorithms that
calculate the posterior distribution in closed form in the light of incoming
data are well known. Gargoum (2006) and Settimi and Smith (2000) de-
scribed approximate algorithms of propagation and probability updating
for non-Gaussian dynamic systems incoming data. These algorithms which
are based on dynamic generalized linear models. They are extremely ef-
ficient and provide a fast method compared to numerical methods based
on MCMC algorithms to update the probabilities in dynamic systems. The
validity of the these updating algorithms depends critically on how well the
posterior density is approximated. Checking the validity of these algorithms
is the main issue that this work addresses.

2 The dynamic generalized linear model

The DGLM for the time series {yt}, (t = 1, 2, ...) is defined by the following
two components
Observational equation:

p(yt|λt) and λt = g(ηt), ηt = FTt θt

Evolution equation:

θt = Gtθt−1 + wt with wt ∼ N(0,Wt)

Here the sampling distribution of yt given a random variable λt belongs to
the exponential family possibly non-normal and λt is a function of a linear
combination of the state vector parameters θt for some known regression
vector Ft and known invertible map g(.) which, in many cases, will be the
identity map. The evolution equation is the same as in the normal dynamic
linear model. The evolution errors wt are assumed uncorrelated over time.

3 An approximate Bayesian analysis

Now in such complex systems, if the sampling distribution of the observa-
tions is normal, then fast propagation algorithms over the dynamic system
can be used where information can be transmitted through the system by
updating the probabilities of each group of states (a clique) sequentially
very fast and in closed form Smith and French.(1993). However, when the
sampling distribution of the observations given the states is not normal,
then the posterior distribution of the states cannot be determined in closed
form but the conditional independence relationships among variables still
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hold. In this case we deal with a class of models which is a generalization of
the standard DLM to non-normal error models for time series. As we men-
tioned above the observations yt|λt are non-normal and the observational
mean λt is, in general, nonlinear function of θt (and ηt.)The analytical
approach to update the states vector θt cannot be adopted and an approx-
imate analysis is needed. A proposed approximate Bayesian analysis, ( see,
West and Harrison (1997)) develops as follows.

1) Suppose that the posterior distribution of the states at time t − 1,
(θt|Dt−1) or any linear combination of them is partially specified in
terms of the first two moments.

2) Approximate the actual density λt by the distribution in the expo-
nential family which is closed under sampling to yt|λt by equating
the first two moments with those derived from the moments of g(ηt).

3) Perform a standard conjugate analysis to calculate the approximate
density of λt|yt say p̂(λt|yt)

4) Update the distribution of ηt from p̂(λt|yt) as ηt = g−1(λt)

5) Estimate the posterior moments of the states θtfrom the moments of
the distribution ηt after observing yt.

Note that if the states are conditionally normal then the posterior of θt is
approximated by normal distribution with mean and variance derived from
the approximated normal distribution of ηt given yt.

4 The closeness of dynamic approximation

Here, we choose the Hellinger metric to check the appropriateness of the
dynamic approximation. The Hellinger distance between two densities is
defined by

dH(f, h) =

(
1−

∫
f1/2(x)h1/2(x)dx

)1/2

(1)

Define
I(f, g) = 1− d2

H(f, g) (2)

In fact d2
H(f, g) can be calculated in closed form for most densities in a

standard family. It is also sometimes possible to explicitly write down the
Hellinger distance between two densities from different families. For ex-
ample when f is a normal density with mean µ and variance σ2 and g
a Gamma density with the same mean and variance, then I(f, g) defined
above is given by

I2(f, g) = (2π)−1/22(α−1)α1/2α (Γ(1/4[α+ 1]))2

Γ(α)
e1/2α
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where α = µ2/σ2. It is easily checked that I2(f, g) is small when α is
moderately large.
We note that the two properties listed below also hold true both for the
variation metric and the popular Kullback-Leibler separation measure.
Suppose that p and p̂ are joint densities on X = (X1,X2) which have dif-
ferent margins p1 and p̂1 on X1 but whose conditional densities of X2|X1

agree. Then, directly from (1) we have that

dH(p, p̂) = dH(p1, p̂1) (3)

Now within our context we approximate only the distribution of λ, condi-
tional on λ all states are held fixed. It follows that the closeness of the joint
density over states depends only on the closeness of our approximation of
the one dimensional normal posterior density of λ to the true posterior
density of λ. As an example consider the case when p0(x) is a Gaussian
prior density X. Let f1 and f2 denote the posterior densities on x given the
true normalized Gamma likelihood `1 associated with a Poisson observation
Y or a normalized Gaussian approximation `2 of the DGLM, respectively.
Then, by definition, omitting the arguments,

fi =
p`i∫
p`i

i = 1, 2

So

I2(f1; f2) =
(
∫
p`

1/2
1 `

1/2
2 )2

(
∫
p`1)(

∫
p`2)

(4)

d2
H(f1; f2) = 1−

√
I2(f1; f2) (5)

= 1− B√
A

(6)

where B =
∫
p`

1/2
1 `

1/2
2∫

p`1
and B =

∫
p`2∫
pl1

Notice that if `1 and `2 are very close, then both A and B will be close to 1
and consequently dH will be close to zero. An upper bound for d2

H(f1; f2)
can easily be derived.

5 Conclusion

Quick computational methods -based on DGLM- are discussed for dealing
with non-normal data in complex dynamic scenarios. These methods give
a closed form updating and provide approximations whose validity need
to be checked numerically. In this paper I examined the appropriateness
of these dynamic approximations. The Hellinger metric was computed to
check the validity of the approximation.
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Abstract: Diagnostic psychometric models using categorical latent variables
have the potential to provide individualized feedback relevant for instruction
and learning. This paper discusses and compares two approaches, the diagnostic
knowledge space and cognitive diagnosis models, at the modeling and estimation
levels.
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1 Diagnostic Models

In educational testing, over the recent years, there has been an increasing
interest in diagnostic inferences about multiple skills, that is, latent cog-
nitive criteria such as reading comprehension, mathematical or non-verbal
abilities. Diagnostic models provide personalized information at a high defi-
nitional grain size, based on which targeted learning aids can be developed.

1.1 General Purpose of Diagnostic Models

We consider an N ×J data matrix X containing the binary responses, 0 or
1, of N examinees to J test items. The nth row Xn ∈ {0, 1}J of this matrix
represents the response pattern of examinee n. Moreover, a set of K skills
is assumed to underlie the test items. The skills required to master an item
are specified by expert panels, whereas this specification is called skill-item
assignment. Each examinee n possesses a subset of these K skills described
by a latent (i.e., not observed) binary vector αn ∈ {0, 1}K , which is called
the skill pattern of examinee n. The aim is to estimate the occurrence
probabilities of the skill patterns and the prevalences of the individual skills
in the population under reference. Additionally, information is gained about
the response error rates (i.e., guessing and slipping effects) that may cause
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atypical responses in test items. For each examinee, her or his posterior
probability of mastering each of the individual skills, the examinee’s skills
profile, is also determined.

1.2 Two Examples: Skills-based Knowledge Space Theory and
Cognitive Diagnosis Models

In this paper we consider two sorts of diagnostic models: the skills-based
knowledge space theory (KST; e.g., Doignon & Falmagne, 1999) and the
cognitive diagnosis models (CDMs; e.g., Rupp et al., 2010). Skills-based
KST focuses on deterministic ordinal structures, whereas CDMs are sta-
tistical parametric models. Subsequently, we restrict our attention to the
special case of a bijective skill-item assignment, which assumes that each
item loads on exactly one skill. This is for illustration purposes only and can
be generalized. Parameter estimation in CDMs is described, for instance,
by de la Torre (2009). The approach to parameter estimation in skills-based
KST discussed in this paper is proposed for the first time (however, cf. also
Schrepp, 1999).

2 The Structure of Diagnostic Knowledge Space and
Cognitive Diagnosis Models

2.1 Skills-based KST

The general idea of skills-based KST is that, given a skill-item assignment,
only certain response patterns should occur. These model-based response
patterns are called delineated knowledge states. For example, if s1 is the
only skill assigned to the items q1, q3 and q5, then for a respondent having
mastered this skill her or his delineated knowledge state is (1, 0, 1, 0, 1, . . .).
Deviations of an empirical response pattern from the delineated knowledge
states are considered to be response errors. For each empirical response
pattern Xn a set of corresponding delineated knowledge states {Kl}l∈An
is predicted. This set of predicted states is determined by calculating the
minimal Hamming distance δ between the empirical response pattern and
the delineated knowledge states. The index set of predicted states for Xn

is An =
{
l = 1, . . . , P : δ(Xn,Kl) = mini=1,...,P δ(Xn,Ki)

}
, where P is

the number of all delineated knowledge states.

2.2 CDMs

In CDMs endorsement probabilities are modeled based on guessing and
slipping parameters, given the different skill patterns. The probability for
examinee n to solve item j is calculated as a function of the examinee’s
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latent response ηnj , and the guessing and slipping rates gj and sj for item
j, respectively, conditional on the examinee’s skill pattern αn:

Pj(αn) = P (Xnj = 1|αn) = g
(1−ηnj)
j (1− sj)ηnj .

The examinee’s latent response ηnj is binary, 0 or 1, indicating absence or
presence of all required skills for item j, respectively. Assuming conditional
independence of the item responses given the skill patterns and the exam-
inees being sampled randomly, the conditional likelihood of the observed
data X is

N∏
n=1

L(Xn|αn) =

N∏
n=1

J∏
j=1

Pj(αn)Xnj [1− Pj(αn)]1−Xnj .

3 Parameter Estimation

3.1 Skills-based KST

Let {Kl}l∈Am be the set of predicted knowledge states for each empirical
response pattern Xm. For any item j ∈ {1, . . . , J}, the guessing and slipping
probabilities gj and sj can be estimated based on the deviations between
the empirical response patterns and their sets of predicted states:

ĝj =

∑M
m=1

(∑
l∈Am

hm
|Am|I{Xmj>Klj}

)
∑M
m=1

(∑
l∈Am

hm
|Am| I{Klj=0}

) ,

where M is the number of different response patterns Xm, observed with
absolute frequencies hm, and I denotes the indicator function. Analogously,
ŝj is defined. The sets of predicted states can be updated, taking into
account the different estimated error probabilities for the various items, as
these can change the plausibility of the delineated knowledge states for the
observed response patterns. This can be iterated yielding new estimates for
the guessing and slipping probabilities. Having calculated the occurrence
probabilities for the predicted states, the occurrence probabilities of the
skill patterns can be derived given the bijective skill-item assignment.

3.2 CDMs

Parameter estimation in CDMs is performed maximizing the marginal like-
lihood of the data over β = (g1, . . . , gJ , s1, . . . , sJ) (de la Torre, 2009):

L(X) =

N∏
n=1

L(Xn) =

N∏
n=1

L∑
l=1

L(Xn|αl)p(αl),
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where L(Xn) is the marginal likelihood of the response pattern of examinee
n, p(αl) is the prior (uniform) probability of the skill pattern αl, and L =
2K . The estimation routine can be implemented using the EM algorithm.
The (posterior) occurrence probabilities of the skill patterns are calculated
using Bayes’ theorem.

4 Simulation Study

For investigating the estimators in KST and CDMs the following steps are
performed. Data for a number of items with known slipping and guessing
rates are simulated using the R (R Development Core Team, 2010) com-
puting environment. Delineated knowledge states corresponding to a given
set of skills are determined and contaminated by slipping and guessing er-
rors. The skill patterns are taken as uniformly distributed, and therefore
their occurrence probabilities are 1/2K , and the population prevalences of
the skills are 1/2. For the error rates, occurrence probabilities and popu-
lation prevalences, the bias is taken as a measure between the estimated
and the true parameters. The simulation is performed for several param-
eter settings. Preliminary simulations with J = 11 items, K = 4 skills,
N = 2000 examinees and error probabilities varying between 0.01 and
0.30 yield the following results: In KST models, one-step estimates of the
response error probabilities, occurrence probabilities of skill patterns and
population prevalences of individual skills are of the same magnitude as the
true parameter values, with moderate differences for any of the parameter
settings. Compared to CDMs, the results obtained for the KST models are
neither better nor worse. Some systematic bias is found for the one-step
KST estimates, which can be explained by the underlying parameter set-
tings and possibly be reduced by further iterations. In contrast, the bias in
the estimates for CDMs seems to be more item specific.
The current simulations are a starting point for more in-depth analyses.
Future research may address the effects of variation of sample size (espe-
cially small sample sizes), non-uniform prior distributions of skill patterns,
and the effects of misspecification of the assignment of skills to items.
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Abstract: This paper utilises the GAMLSS framework for the statistical mod-
elling of movie box-office revenues. The dominant modelling paradigm of the
film industry, traditionally exemplified by the nobody knows anything principle is
based upon the infinite variance of the Pareto distribution. We here use GAMLSS
to show that total box-office revenue can be better modelled by distributions with
finite variance contradicting the Paretian hypothesis. Moreover the paper illus-
trates that the Box-Cox power exponential distribution gives models where the
parameters vary smoothly with an important explanatory variable, namely the
opening box-office revenue, leading to the substantive conclusion that the post-
opening revenue can be explained by the opening box-office revenue.

Keywords: GAMLSS; movies; Pareto distribution; BCPE distribution, semi-
parametric regression.

1 Introduction

Film revenues are highly skewed, in such a way that a small number of large
revenue films coexist alongside considerably greater numbers of smaller rev-
enue films. Moreover, the skewed nature of these distributions appears to
be an empirical regularity, with Pokorny and Sedgwick (2010) dating this
phenomenon back to at least the 1930s, making it an early example of a
mass market long tail. De Vany and Walls (2004) comment on the conse-
quential difficulty in modelling the dispersion, skewness and kurtosis of film
revenues. We here overcome this difficulty using the GAMLSS (General-
ized Additive Models for Location Scale and Shape) framework developed
in Rigby and Stasinopoulos (2005), using a dataset of box-office revenues
in the 1930s.
Our initial approach is to compare many competing models for the total
box-office revenue and specifically to compare these with models based on
the Pareto-Levy (or stable Paretian or L-stable) distribution, which has
dominated the modelling of end-of-run box-office revenues since De Vany
and Walls (1996).
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The paper compares distributions that best fit the post-opening box-office
revenue, conditional on the opening box-office revenue. The parameters of
the distributions are modelled as smooth non-parametric functions of the
opening box-office revenue; the latter accounts for 32.2% of the end-of-run
box-office cumulative revenue. The model can be used in planning post-
opening film distribution.

2 The GAMLSS methodology

GAMLSS provides a very general and flexible system for modelling a re-
sponse variable. The distribution of the response variable is selected by
the user from a very wide range of available distributions including highly
skewed and kurtotic continuous and discrete distributions. GAMLSS in-
cludes distributions with up to four parameters, denoted by µ, σ, ν and
τ , which usually represent the location (e.g. mean), scale (e.g. standard
deviation), and skewness and kurtosis shape parameters, respectively. All
the parameters of the response variable distribution can be modelled using
parametric and/or nonparametric smooth functions of explanatory vari-
ables, thus allowing modelling of the location, scale and shape parameters.
Specifically, a GAMLSS model assumes that, for i = 1, 2, . . . , n, indepen-
dent observations Yi have probability (density) function fY (yi|θi) condi-
tional on θi = (θ1i, θ2i, θ3i, θ4i) = (µi, σi, νi, τi) a vector of four distribu-
tion parameters, each of which can be a function to the explanatory vari-
ables. Rigby and Stasinopoulos (2005) define an original formulation of a
GAMLSS model as follows. For k = 1, 2, 3, 4, let gk(.) be a known mono-
tonic link function relating the distribution parameter θk to predictor ηk.
Then we set

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk), (1)

where hjk is a smooth nonparametric function of variable xjk.

3 Description of the film data

Figures 1 (a) and (b) (the plots in the first row) plot the total end-of-
run box-office revenues. Figures 1 (c) and (d) (the plots in the second
row) plot the post-opening box-office revenue (= total end-of-run box-office
revenue minus opening box-office revenue). These univariate and bivariate
exploratory plots give an indication of the complexity of the data in terms
of skewness and kurtosis. The first two plots, boxplot and histogram, show
the extreme long-right tail frequency distribution of the end-of-run box-
office revenues. The third plot shows the post-opening box-office revenues
plotted against the opening box-office revenues and a nonparametric curve
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FIGURE 1. a) and (b) total revenue (c) and (d) post opening revenues against
opening revenue

using a locally-weighted polynomial regression to aid interpretation. The
fourth plot shows the log of post-opening box-office revenues plotted against
the log of opening box-office revenues using a two-dimensional histogram
smoothing to aid the interpretation of the distribution in dense areas.

4 Model selection strategy

We first analyse the total end-of-run box-office revenues. as given in Figures
1(a) and (b). Given the skewness in this response variable, an initial set of
more than 20 distributions is selected for model fitting. The main criterion
used is the Generalised Akaike Information Criterion (GAIC), with residual
plots and worm plots to add confidence to our selection. We fit the Pareto
I and Pareto II distributions as approximations to the L-stable distribution
(Mandelbrot, 1997).

5 Analysis of the end-of-run box-office revenues.

Table 1 shows a selected subset of distributions used to model the total end
of run box-office revenues. The Pareto I fits poorly. The generalised inverse
Gaussian, Weibull and gamma all have lower Schwartz Bayesian Criterion
value, GAIC(log(n))=SBC, than the Pareto II distribution. It is clear that
the Pareto assumption of infinite variance has little support.
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A confirmation of our conclusion is shown in the worm plots (van Buuren
and Fredriks, 2001) of Figure 2 where the worm plot (a detrended QQ-plot
of the normalised residuals) is shown for selected distributions.

df GAIC(k = log(n))

Generalised Inverse Gaussian 3 24919.12
Weibull 2 24938.77
Gamma 2 24942.10

Pareto II 2 24943.94
generalised beta type 2 4 24952.18

Box-Cox t 4 24960.92
Generalised Gamma 3 24981.75
Box-Cox Cole-Green 3 25218.75

Inverse Gaussian 2 25271.45
Pareto I 1 26355.43

TABLE 1. SBC for end-of-run box-office revenues.
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FIGURE 2. Worm plot of a) Pareto 1 b) Pareto 2 c) Generalised Inverse Gaussian,
d) Weibull distributions

5.1 Regression-type of modelling of box-office revenues

Here, we model the log of the post-opening box-office revenue against an
explanatory variable, namely the log of the opening box-office revenue. We
use different distributions for log(Y ), and we use smooth functions (Eilers
and Marx, 1996) of the log of the opening box-office revenue for some or all
of the parameters of the distributions. Table 2 shows the AIC for different
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Distributions df AIC

Box Cox Cole & Green 7.55 2216.33
Box Cox power exp. (ν, τ) 14.30 2216.80
Box Cox power exp. 8.55 2218.32
Box Cox t 8.55 2218.33
Box Cox Cole & Green (ν) 8.54 2218.33
Box Cox t (ν) 10.35 2220.37
Box Cox power exp (ν) 10.35 2220.37
Box Cox t (ν, τ) 12.97 2222.77
Weibull type 3 6.98 2223.90
Generalised Gamma 8.28 2262.20
Generalised Gamma (ν) 9.51 2263.21
Normal 6.32 2267.54
Gamma 7.36 2303.62
Inverse Gaussian 7.34 2325.57

TABLE 2. AIC for analysis on the post-opening box-office revenue,.

fitted models. All models have smooth curves fitted for the location and
scale parameters, µ and σ, respectively. The appearance of ν and τ in the
table indicates whether or not those parameters have also been modelled
using a smooth function of the log of the opening box-office revenue.
The best fitting model appears to be the Box Cox Cole and Green (BCCG)
model where (only) µ and σ are modelled as smooth functions of the ex-
planatory variable. A similar fit to this model is given by the Box Cox
power exponential (BCPE) model (Rigby and Stasinopoulos, 2004) where
all four parameters of this distribution (including ν and τ) are modelled
as a function of the explanatory variable. Although not reported in detail
here, the BCPE model also fits well to more recent film data from the
1990’s. For consistency in comparing different epochs and also because of
its flexibility we prefer the BCPE distribution model. The models shown
in the first two rows of Table 2, namely the BCCG and BCPE models,
show similar residuals and worm plots (not shown here due to space limi-
tation). The data with fitted regression is shown in Figure 3, together with
superimposed fitted probability density functions at specific values of the
log opening box office revenue.
In conclusion, the model indicates that, given the opening box office income,
we can make reasonable predictions of the post-opening box office revenue
and, hence, of the total income. This leads us to the substantive conclusion
that the nobody knows anything paradigm of the film industry is not correct.
To the contrary, we can in fact predict the distribution of the total box office
revenue of films.
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random structure in growth mixture models
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Abstract: To understand developmental processes, health researchers increas-
ingly explore patterns of trajectories in their outcomes using longitudinal data
with multiple assessments of each study participant. Commonly used methods
include latent growth curve modelling (LGCM) (Bollen and Curran 2006; Dun-
can et al. 2006) and its extension growth mixture modelling (GMM) (Kreuter
and Muthen 2008). GMM aids interpretation if subgroups can be identified that
have utility in subsequent analyses. Outcomes are typically modelled as parame-
terised (i.e. ‘smooth’) underlying trajectories. For a large part of the lifecourse an
individual’s growth often tracks this fitted trajectory well, with deviations due
to variations in biological, behavioural or environmental factors. Due to similari-
ties amongst successive measures a degree of autocorrelation is generally present,
but a fitted smooth trajectory usually accounts for much of this. With GMM,
if outcomes exhibit less within-subject than between-subject heterogeneity even
greater autocorrelation may be generated as an artefact of the model because in-
dividual growth trajectories may then deviate consistently from class mean tra-
jectories. This leads to model-generated autocorrelation amongst the residuals
between subject-specific and class-mean trajectories. It is desirable to parame-
terise this explicitly, thereby capturing the correct underlying random structure
of the data, but typically this is not done. The impact on models of not doing so
therefore remains unclear.

Keywords: Autocorrelation, Growth Mixture Models, Latent Variable Methods.

1 Data and methods

We investigate model-generated autocorrelation for a growth outcome that
typically exhibits greater within-person than between-person homogeneity:
body mass index (BMI), a parameter of great interest in understanding
normal growth and development, as well as the current worldwide obesity
epidemic. BMI has already been considered within the GMM framework
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(Goodman et al. 2003; Li et al. 2007; Mustillo et al. 2003; Needham et al.
2010). We used data from a school-based cohort of adolescents from the
Cincinnati Ohio, US area with repeated measures of BMI over a 3-year pe-
riod (Goodman, Adler, Daniels, Morrison, Slap, & Dolan 2003). The study
began in the 2001-2002 school year and included students in grades 5-12
at baseline with three further annual waves of data collection. A physical
exam measured height and weight. As the cohort was 95% non-Hispanic
black and white, analyses were restricted to these two ethnic groups. Anal-
yses focused on measured BMI, as opposed to age-sex standardized z-scores
(Berkey and Colditz 2007), because the latter is based on data from studies
including some with an almost exclusively non-Hispanic white population
(Kuczmarski et al. 2000). We examine cohort trajectories rather than age-
specific growth trajectories to reflect the structure of the data (students
nested within measurement occasions). BMI trajectories were taken to be
quadratic in (centred) time. Outcome variances were constrained to be iden-
tical across waves for each class trajectory (homoscedastic) and variances of
linear and quadratic terms were constrained to be zero to attain parsimony
and improve convergence. Growth trajectory intercepts were conditional
on age at measurement, sex, age-sex interaction, and race. Covariate coef-
ficients for each trajectory were constrained to be identical to ensure that
parameterisation of underlying BMI growth curves were identical across
classes. Trajectory slopes were conditional on age, accommodating trajec-
tory differences in change in BMI by age during adolescence. With four
repeated measures, autocorrelation was modelled as a 1st-order autore-
gressive structure. Contrasts focused on models with or without AR(1),
the general form of which was:

BMIti =

C∑
c=1

P (c|ageti, sexi, racei)
(
βc0ti + βc1iageti + βc2age

2
ti

)
with BMIti at ageti measured at time t = 1, . . . , 4, for individual i =
1, . . . , 1528; c is latent class (c = 1, . . . , C), for which P (c|ageti, sexi, racei)
is the probability that individual i is in class c, conditioned on age, sex and
race; βc0ti = βc0 +ec0ti+γ1ageti+γ2sexi+γ3(age ·sex)ti+γ4racei is the ran-
dom intercept for class c, conditioned on age, sex, age-sex interaction and
race identically across all C classes; βc1i = βc1 +γ5ageti is the slope for class
c, conditioned on age identically across all C classes; βc0, β

c
1 and βc2 are the

class-dependent marginal mean intercept, slope and acceleration, respec-

tively; ec0ti ∼ N
(

0, σ2
(c)e0

)
is the class-dependent occasion-specific normal

residual with zero mean and variance σ2
(c)e0

, estimated empirically; and

γm (m = 1, . . . , 5) are class-independent covariate trajectory coefficients
describing the underlying population mean growth for intercept and slope
respectively. For models with AR(1) the constraint Corr(e(t)i, e(t+1)i) = ρ
(t = 1, . . . , 3) applies identically across all C classes, else Corr(epi, eqi) ≡ 0
(∀p 6= q).
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Within the Mplus (v6) software we derive BMI trajectories with and with-
out autocorrelation modelled as AR(1) to establish to what degree this
affects: (i) model convergence and model-fit, assessed by the BIC; (ii) class
size and composition; and (iii) class trajectory variance structure. Since the
risk of models converging to local minima increases with increasing num-
ber of classes, models were run for 20k random starts, from which the best
10% were used to derive model estimates. The number of classes examined
ranged from two to eleven.

2 Results

Nearly all random starts converged for models with no AR(1) structure,
though the proportion of the best 10% that settled on the same maximum
likelihood (ML) value varied. Amongst models with an AR(1) structure,
only 20% of random starts converged, indicating a much smaller solution
space for models with the AR(1) parameterisation. Amongst the best 10%,
consistency in the optimum ML again varied, but was less than for models
without an AR(1) structure. According to the BIC, models with AR(1)
consistently fitted better; BIC attained a plateaux around 10 or 11 classes
for models without AR(1) and a minimum at 6 classes with AR(1). Under
the assumption that relative class sizes are similar (i.e. classes ranked by
size corresponded to similar classes across both model types), probabilisti-
cally assigned correspondence ranged from 54.1% for the 2-class to 18.7%
for the 11-class model, and modally assigned correspondence ranged from
90.7% for the 2-class model to 20.5% for the 9-class model. For models with
3 or more classes there was net ’drift’ of membership from smaller to larger
classes when AR(1) was incorporated. Intercept residual variances amongst
class trajectories with AR(1) was three times greater than amongst models
with no AR(1), indicating that individual trajectories had a greater range
of intercepts when autocorrelation is modelled than when not. In contrast,
residual variances across slopes amongst models with an AR(1) structure
were up to five times smaller than amongst models with no autocorrela-
tion, suggesting that individual trajectories had a narrower range of slopes
when AR(1) is modelled. Overall, class composition differed depending on
whether an AR(1) structure was modelled or not.

3 Discussion

Autocorrelation in these data was mainly model-generated due to variation
between individuals within classes at any time point being more marked
than variation in individual BMI trajectories over time. BMI typically ex-
hibits less individual than population heterogeneity throughout the life-
course, even though this may vary for key growth periods, such as the
first few years of life and puberty. Misspecification of the random structure
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impacts upon subject classification more than the model’s fixed effects,
as these are simply the average of individual fitted curves whilst subject
classification is based on individual curves. Subject classification is key to
the utility of GMMs; models that capture model-generated autocorrelation
within the GMM framework are thus preferred. Whilst the exact choice
of parameterization remains open, our findings suggest that some kind of
explicit modelling of autocorrelation is warranted in these types of models.
In any event, correct parameterization of the random structure is needed
for growth mixture modelling of outcomes that exhibit less within-subject
than between-subject heterogeneity.
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sidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal (email:
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Abstract: The swimming marks in the 100m men’s freestyle long course are
modelled using extreme value theory. Using the statistical package R, extreme
value and generalized Pareto models were adjusted in order to estimate the left
endpoint of these models. The left endpoint can be interpreted as the best mark
that can ever be reached, admitting that swimming pool conditions, athlete’s
equipment and training methods remain the same.
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1 Introduction

Extreme value models are frequently used for the analysis of samples of
maximum or minimum and generalized Pareto models are commonly used
to analysing the samples of exceedances over a high or low threshold.
The swimming marks of 100m men’s freestyle (long course), that appear in
FINA (“La Federation Internationale de Natation”) Website (www.fina.org),
are the personal best in a very large sample of marks, so we could say that
we are in the presence of extreme value — in this case minima. In this
sense, we consider analysing and modeling this type of data by means of
extreme value models.
Using two methods of extreme value analysis — the blocks method (De
Haan and Ferreira, 2001) and the peaks over threshold (POT) method
(Pickands, 1975; Robinson and Tawn, 1995) — we are going to model the
swimming marks and estimate their left endpoint. This left endpoint can
be interpreted as the best mark that can ever be reached, admitting that
swimming pool conditions, athlete’s equipment and methods of training
remain the same.
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TABLE 1. The three best annual marks (in seconds), through 1948 to 2010, of
Men’s Long Course World Records in 100m freestyle.

year rank mark athlete nationality
1948 1 57.3 Wally Ris USA
1948 2 57.6 Keith Carter USA
1948 3 57.8 Alan Ford USA
· · · · · · · · · · · · · · ·

1999 1 48.35 Pieter van den Hoogenband NED
1999 2 48.73 Michael Klim AUS
1999 3 48.82 Alexander Popov RUS
2000 1 47.84 Pieter van den Hoogenband NED
2000 2 48.18 Michael Klim AUS
2000 3 48.27 Alexander Popov RUS
· · · · · · · · · · · · · · ·

2010 1 48.54 Simon Burnett GBR
2010 2 48.56 William Meynard FRA
2010 3 48.69 Kyle Richardson AUS

A draft of the dataset with the three best annual marks (in seconds) of
the men’s long course world records in 100m freestyle are presented in the
Table 1. The information was available from 1948 to 2010, with missing
value for 1950 and 1951.
In Figure 1, the marks are plotted against the year and by ranking. As
we expected, there is a decreasing trend in the marks. So, the relevant
question is: Until when these marks could fall? In order to give answer to
this question two different approaches of extreme value theory were used.

FIGURE 1. Scatter plot of mark against year by ranking.

2 Two different approaches

To apply the extreme value methodology we must have independent and
identically distributed observations (Reiss and Thomas, 2001). As we can
observe in Table 1, there are some athletes (e.g., Michael Klim and Alexan-
der Popov) which contributed with more than one mark. So to use this type
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of analysis we only select the best mark of each athlete. In order to adjust
an extreme value or generalized Pareto model, the trend also needs to be
removed.
In the POT approach the inference is based in the exceedances over a high
threshold that is unknown. Our empirical way of choosing this threshold
was through the analysis of the diagram of the shape parameter’s estimates.
To apply the POT method we adjust a model in the family of generalized
Pareto models. For different shape, location and scale parameters we obtain
three different submodel families: exponential, Pareto and beta.
In the block method we adjust a model in the family of extreme value
models. Also depending on the shape, location and scale parameters we
could reach the Gumbel, Fréchet or Weibull submodels.
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Abstract: In this work it is constructed a hydro-meteorological factor to improve
the adjustment of statistical time series models, such as state space models, of
water quality variables by observing hydrological series (recorded in time and
space) in a River basin. The hydro-meteorological factor is incorporated as a
covariate in multivariate state space models fitted to homogeneous groups of
monitoring sites. Additionally, in the modelling process it is considered a latent
variable that allows incorporating a structural component, such as seasonality, in
a dynamic way.
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1 Introdution

Water quality monitoring is an important tool in the management and
assessment of surface water quality. This study focuses on a rather extended
data set relative to the River Ave basin (Portugal) and consists mainly of
monthly measurements of biochemical variables in a network of monitoring
water quality stations.A hydro-meteorological factor is constructed for each
monitoring station based on monthly estimates of precipitation obtained by
means of a rain gauge network. Through stochastic interpolation (Kriging)
it is estimated the mean area rainfall during each month in the area of
influence of each water quality monitoring site. These estimates are based
on rain gauges located in the respective area of influence. In a recent work,
Costa and Gonçalves (2010) show that a set of water quality monitoring
sites can be modelled applying cluster techniques that minimize the number
of models.
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2 Data Set Description

The Northern Regional Directory for the Environment and Natural Re-
sources (DRARN) and the National Institute of Water (INAG) has been
collecting various water quality variables (monthly physical-chemical and
microbiological analyses) from 16 quality monitoring sites. The data set
of the 16 water quality monitoring sites, comprising 11 water quality vari-
ables, have been monthly measured between 1988 and 2006. At this time,
this work focuses on Dissolved Oxygen (DO) (mg/l) in water because it is
one of the most important variables in the evaluation on river water qual-
ity. For instance, it is shown the data and the results of one cluster with
five water monitoring sites identified in Costa and Gonçalves (2010) as the
less polluted cluster.

3 Methods

As starting point, it is constructed a hydro-meteorological factor used as
covariate in the modelling process. This covariate will integrate a hydro-
meteorological component that is recognized as crucial in any water quality
modelling process. This factor is constructed through stochastic interpola-
tion (Kriging) based on an udometric network (Figure 1) with 19 meteo-
rological stations. The model of spatial continuity, which is inferred from
monthly precipitation estimates, assumes hypothesis of homogeneity of the
process: the process is stationary of 2nd, i.e., intrinsically stationary and
isotropic. Under this hypothesis, two observations in the same location
but in different times are independent and the spatial variability pattern
remains the same (Kyriakidis and Journel, 1999). The empirical semivari-
ogram is given by

γ̂
Z

(h | l) =
1

2T |N(h|l)|
T∑
t=1

∑
(i,j)∈N(h|l)

[(Zt(si)− Zt(sj)]2

with N(h|l) = {(i, j) : ‖si − sj‖ − ‖h‖ ≤ l; 1 ≤ i ≤ j ≤ n} and |N(h|l)| =
#N(h|l). The river basin is discretized in 368 points with 2Km x 2Km
(Figure 1) and at each point s0 the estimate of the monthly mean area
precipitation is given by the Kriging estimator, i.e., by a linear combination

of the 19 known points sj , j = 1, ..., 19 and Zt(s0) =

19∑
j=1

λjZt(sj).

3.1 Hydro-meteorological factor

It is constructed one covariate for each water monitoring site based on the
estimate of the monthly mean precipitation of its influence region. In this
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FIGURE 1. Spatial distribution of 19 meteorological monitoring sites in the River
Ave basin and discretization of River Ave basin in 368 points.

context, the influence regions of each water monitoring site were defined by
technicians of the INAG and they are supported on the region’s topography
and the land’s drainage dynamics. Firstly, for each water monitoring site, it
was computed the monthly mean area precipitation in its influence region
based on the average of point prediction. Naturally, a large influence region
tends to have a greater precipitation amount. Indeed, it is clear that the
precipitation amount influences oxygen concentration in water. However,
if the goal of this work is to found a prediction model to DO in a month
t, the covariate should not incorporate the precipitation amount of the

current month, but only the past information. Let P
(i)
t be the estimate of

the precipitation amount in the influence area of a water monitoring site i

at month t. We considered a covariate H
(i)
t computed as a weighted average

of precipitation amount at months t− 1 and t− 2.

3.2 State space model

For each cluster i with homogenous water monitoring site it is fitted a state
space model to Dissolved Oxygen concentration incorporating two struc-
tural components: the hydro-meteorological factor and a seasonality. In or-
der to simplify, it is considered monthly seasonality assuming 12 known co-
efficients (for each month it is taken the month mean; Costa and Gonçalves,
2010):
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Since normal distribution is not always the best distribution to fit mete-
orological variables in this work, we adopted consistent distribution-free
estimators developed from the original work by Costa and Alpuim (2010).
The state space model with these parameters estimates associated to the

TABLE 1. Parameters estimates.
µ̂X φ̂ Σ̂V Σ̂µ Sites

1 0.277 −1.045 0.016 −0.005 0.597 0.000 0.000 0.000 0.000 CANT

−0.0003 0.038 0.738 −0.005 0.003 0.000 0.265 0.000 0.000 0.000 GOL

0.000 0.000 0.417 0.000 0.000 FER

0.000 0.000 0.000 0.383 0.000 V SA

0.000 0.000 0.000 0.000 0.737 TAI

Kalman filter produces monthly one-step predictions for Dissolved Oxy-
gen concentration at each water monitoring site (Table 1). Figure 2 shows
observed data and predictions in Vizela Santo Adrião (VSA) and Golães
(GOL) monitoring sites.

FIGURE 2. Observed and one-step predictions of Dissolved Oxygen concentration
in Vizela Santo Adrião (VSA) and in Golães (GOL).

4 Conclusions

It is possible to conclude that the hydro-meteorological factor is an impor-
tant component adding information beyond the usual seasonality. More-
over, the adoption of the consistent distribution-free estimators for the
state space models requires a future comparison with gaussian likelihood
estimation, assessing its relative efficiency, and possibly comparing its fore-
casts mean square error. However, distribution-free estimators are an easy
solution without computed problems, nor iterative procedures and neither
requires initial values. The next step is to analyse the filtered estimates of

states X
(i)
t|t given by the Kalman filter, which allows an interesting analysis

of these latent variables as calibrate factors of the two structural compo-
nents.



280 Surface water quality variables modelling

References

Bengtsson, T., Cavanaugh, J. (2008). State-space discrimination and clus-
tering of atmospheric time series data based on Kullback information
measures. Environmetrics, 10, 377-394.

Costa, M., Alpuim, T. (2010). Parameter estimation of state space models
for univariate observations. J Stat Plan and Inference, 140(7), 1889-
1902.
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1 Introduction

The association between fertility and educational achievement is one of the
strongest relationships recorded in social science. There is a large agree-
ment among scholars that the level of education represents a pivotal factor
that drives differences in fertility choices both in developing and devel-
oped countries. Education is in fact a potent marker of individuals’ labour
market performance and prospects, earnings potential, and social status.
For women, higher education also underlines the possibility to behave in
autonomy of the male partner and of social norms (Hoem et al. 2001).
The influence of education on fertility developments is essentially ascrib-
able to demographic and socio-economic reasons. From a demographic per-
spective, women who decide to continue education at higher levels tend to
postpone the transition to motherhood, which may have consequences on
completed fertility because of the potential room, or lack thereof, that is
left for second- or higher-order births. Moreover, delaying the entry into
motherhood may in some cases lead to involuntary childlessness. Those
women who wish to have more than one child are therefore under a time
squeeze and they need to progress to second childbearing more quickly
than those who had their first child early in life (Kreyenfeld, 2002). From
a socio-economic perspective, child-related career breaks imply income lost
due to non-participation and depreciation of human capital as well as lost
opportunities for promotion, work-career and independent life.
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Overall, empirical studies have shown that the direction of the effect of
education on fertility depends on women’s parity-specific status: better
educated women have lower first birth intensities, even after the time spent
in education is taken into account (e.g., Matysiak and Vignoli 2009 for Italy
and Poland), whereas the effect of education on second order fertility is
found to be positive in many European countries (e.g., Kreyenfeld 2002 for
West Germany; Kravdal 2001 for Norway).
Kravdal (2001) and Kreyenfeld (2002) strongly contributed to this debate
suggesting the existence of a self-selection effect. They anticipated that
some women with tertiary education who gave birth to the first child have
a remarkable, unobserved preference for children. Following the method-
ological framework proposed by Lillard and Panis (2003), they tested this
hypothesis adapting a simultaneous-equations survival model that jointly
estimates the time-to-event for the first and the second child birth, includ-
ing a time-constant shared frailty term Ui ∼ N(0, τ2), shared by both the
two possible events for each woman. Controlling for this unobserved com-
ponent, that they interpreted as women’s family-orientation, the significant
and positive effect of education on second birth risk vanished.
A possible limit of Kravdal and Kreyenfeld’s approach is that they con-
sidered family orientation constant over time, using a time-invariant in-
dividual level unobserved-heterogeneity component in modelling first and
second birth transitions.
The objective of this work is twofold. The role of educational attainment
for fertility of Italian women will firstly be explored in the presence of
time-invariant heterogeneity. This model can describe a persistent family
orientation over the life-course. Secondly, the hypothesis of time-constant
heterogeneity will be relaxed to account for possible changes in family ori-
entation during the life-course.

2 Model and data description

The role of educational attainment for fertility of Italian women is here
based on retrospective data, stemming from the Household Multipurpose
Survey Family and Social Subjects (FSS). The FSS survey was conducted
by the Italian National Statistical Office (Istat) in November 2003 on a
sample of about 24,000 households and 49,451 individuals of all ages. We
selected women aged 20-45 at the time of the interview. Fertility has been
measured by means of time to first and second child birth for each woman.
Education, together with area of residence, cohort and parents’ educational
level have been included as explanatory variables. The final sample includes
9,029 women (i.e., cohorts 1958-1983). Time to the interview represents an
exogenously fixed censoring time.
Survival models are an ideal framework for studying event occurrence and
for modelling the relationship between the risk of an event occurrence and
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selected predictors. The interest can be therefore focused on the associate
point process X(t), with t representing the time-to-event, t ∈ (0, Tc], the
time origin corresponding to 14 years old age and Tc to age at the interview.
Specifically, the fertility process in analysis here admits two kinds of event,
the first and the second child birth. Such a process can be viewed as a
marked point process X(t,m) (Arjas, 1989), in which the mark m ∈M =
{1, 2} indicates the kind of event occurred. Notice that the two kinds of
event are not competing, but consecutive, as the second child cannot be
born before the first child.
The complete description of the finite-dimensional distribution of this kind
of process can be formulated in terms of its mark-specific hazard function
hm(t), the instantaneous rate of having in t the mth child. Similarly, the
mark-specific survival function can be then specified as

Sm(t) = exp{−
∫ t

0

hm(s)ds}.

A set of explanatory variables can be included by defining a conditional
version of the mark-specific hazard function. The likelihood function for
the considered fertility process is then

L =

n∏
i=1

2∏
m=1

hm(tim | Zi,H(t−im))δim · Sm(tim | Zi,H(t−im))ζim

in which tim represents, occurrence or censoring time for woman i for event
m, Zi is the vector of observed explanatory variables, H(t−im) represent the
past history of the process and δim and ζim are adequately to deal with
censured events.
In this work, we assume a parametric model assumed for the fertility pro-
cess, with a piecewise-constant specification. The conditional mark-specific
hazard function has the form

hm(tim | Zi,H(t−im)) =

K∑
k=1

(λkm · µim) · 1{tk−1<t≤tk}

in which log(µim) is assumed as a linear function of the explanatory vari-
ables and past history of the process, not depending on k. Here K = 6 and
tK = Tc.
A time-constant frailty component can be inserted similarly, as

log(µim) =

J∑
j=1

βjmZij + Ui.

with, typically, Ui ∼ N(0, τ2) and J representing the number of included
explanatory variables. This kind of model specification assumes that the
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unobserved heterogeneity representing family orientation is constant over
time. A time-varying random effect can be viewed as random slopes of time-
varying dummy variables. Particularly, in this research, we are assuming a
piecewise constant random effects, supposing three fixed time intervals.

log(µim) =

J∑
j=1

βjmZij + U1iI1 + U2iI2 + U3iI3, (1)

where each Ir equals 1 in the rth time interval, r = 1, 2, 3.
Because of the particular application we have in mind, it seems sensible to
assume the three random effects to be dependent, so that for example,

U2i = δ12 U1i + ε2i.

Equivalently, with ρrs = δrsτr/τs, U1

U2

U3

 ∼ N
 0

0
0

 ,

 τ2
1 ρ12τ1τ2 ρ13τ1τ3

ρ12τ1τ2 τ2
2 ρ23τ2τ3

ρ13τ1τ3 ρ23τ2τ3 τ2
3

 (2)

Whenever ρrs is positive, the individual (unobserved) hazard functions will
be more heterogeneous when passing to period s. On the contrary, the haz-
ard functions will be more similar in the sth period, if ρrs is negative. Call-
ing ρ13 the element (1, 3) in the inverse of the variance covariance matrix
in (2), whenever ρ13 = 0, then U3 is independent of U1 given U2, suggesting
an AR(1) dependence model among the unobserved components.
To implement the Bayesian survival model (see, for example, Ibrahim et
al., 2001), prior distributions for model parameters have been specified. To
reflect a vague prior knowledge, we opted for non-informative, although
proper, prior distributions. Particularly, denoting αkm = log λkm it has
been assumed

αkm|α(k−1)m ∼ N
(
α(k−1)m, σ

2
α

)
k = 1, . . . 6,m = 1, 2

with α0m = 0 and σ−2
α ∼ Gamma (0.01, 0.01). The inverse of the variance-

covariance matrix in (2) for the vector of random effect has been assumed to
have a Wishart distribution. Moreover, the coefficients of the explanatory
variables in (1) are assumed as βjm ∼ N(0, 100).
Posterior distributions have been then simulated by using a Markov chain
Monte Carlo algorithm. The estimates are based on three chains of 80,000
Monte Carlo replications, after a burn-in stage of 20,000 replications.

3 Some results

At least two crucial findings do emerge from our study. First, the impact
of education of fertility is negative on for the transition to the first child,
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FIGURE 1. Effect on the baseline hazard for the transition to second child of (a)
education and (b) time-varying frailty.

and positive for the transition to the second child. Namely, our results
illustrate that high educated women tend to postpone the birth of the
first child, but to anticipate the birth of the second child with respect to
low educated women. In Italy, therefore, higher educated women seem to
delay the consideration of the right time to conceive the first child, which
leaves them less time for second and higher order births. As a consequence,
better educated women desiring more than one child need to progress to
second childbearing more quickly than their least educated counterparts.
The effect of education on the hazard function specific for the transition to
the second child is reported in Figure 1(a). Point estimates depicted in the
Figure are obtained as the mean value of the posterior distributions.
Second, controlling for a common unobserved time-constant or time-varying
unobserved heterogeneity component in each fertility transition, the posi-
tive and highly significant impact of women’s tertiary education on fertility
decisions softens. The time-varying frailty component seems to better con-
trol for possible changes in women’s family-orientation over time. These
results suggest that the impact of women’s tertiary education on Italian
fertility development is at least partially driven by women orientation to-
wards family formation, that is, women who plan to have a child will self-
select themselves into family formation prior to childbearing irrespective of
their education level. This interpretation applies particularly to the Italian
situation, in which women who opt for motherhood are likely to have a high
degree of family orientation or low career ambitions, given the unfriendly
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institutional setting for balancing work and family life.
Figure 1(b) illustrate the effect of the time-varying unobserved heterogene-
ity component on the baseline hazard function specific for the transition to
the second child. In particular, it depicts the baseline hazard function for
an average woman (with a zero effect of the frailty component), together
with the baseline hazard function for two women having the frailty one
standard deviation above and below the average. The figure takes into ac-
count the dependence between the unobserved components. It can be seen
as the impact of the frailty components seems wider than the education
effect. Moreover, posterior distributions for the partial correlation coeffi-
cients between the frailty components suggest a persistence of the women’s
family-orientation over time.
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Abstract: The association between disease risk and socio-economic indicators
such as material deprivation or education-based indexes is often investigated using
ecological data. In this kind of analysis a contextual effect has been documented.
We developed a series of empirical Bayes models to integrate aggregate data on
a discrete response variable (frequency of disease) with a large sample of individ-
ual data on risk factors (material deprivation) and to estimate both individual
and contextual effects. We found an important effect of material deprivation on
mortality which is consistent with epidemiological literature.

Keywords: Empirical Bayes; Ecological regression; Health inequalities.

1 Introduction

The variability of disease occurrence among populations is generally higher
than that within population. Notwithstanding, epidemiological studies usu-
ally evaluate differences in individual risk of disease within population
and may loose power in identifying association with potential risk fac-
tors. Hybrid ecological models that integrate aggregate information on the
frequency of disease with individual data on risk factors have been pro-
posed (Prentice and Sheppard, 1995) to overcome such difficulties. These
models are extensions of Generalized Estimating Equation approach but
are not robust and, in some cases, fail to converge (Lancaster et al., 2006).
Wakefield e Salway (2001; 2008) provided Bayesian solutions. The associ-
ation between disease risk and socio-economic indicators such as material
deprivation or education-based indexes is often investigated using ecologi-
cal data. In this kind of analysis a contextual effect has been documented
(e.g. Biggeri et al., 2004). The hybrid models previously mentioned do not
provide estimates of contextual effects. We developed a series of empirical
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Bayes models to integrate aggregate data on a discrete response variable
(frequency of disease) with a large sample of individual data on risk fac-
tors (e.g. material deprivation) and to estimate both individual and contex-
tual effects. Model comparisons have been addressed through the Expected
Predicted Deviance (Gelfand e Ghosh, 1998). The motivating example was
given by the assessment of the predictive validity of the Italian deprivation
index on all causes mortality (Grisotto, 2009).

2 Data

We considered ISTAT death certificates for all causes of death (ICD IX
001-999) for the period 2000-2004. Total, males plus females, deaths were
aggregated by Province (n=103). Expected counts were obtained by inter-
nal indirect age-gender standardization. Data on socio-economic factors at
individual level come from the Multiscopo survey for the year 1999-2000
(ISTAT, 2002). A material deprivation at individual level has been con-
structed as the sum of zeta scores of four indicators of adverse events: low
education (less then 6 yrs of education), unemployment, being a tenant and
crowding index.

3 Methods

We first describe the statistical models for ecological, individual, and con-
textual effects.We then present their Bayesian specification.

3.1 Basic formulations

The data consist of the number of disease cases by province, Yj , and a
sample of nj subjects for each province with information on individual
material deprivation, Xij .
Let assume that the number of observed of cases Yj in the j-th province
follows a Poisson distribution with parameters Ejθj , where Ej represents
the expected counts fixed by design, and θj the unknown relative risk.
Xij is the deprivation index for the i-th individual in the j-th province.
Let define µxj and σ2

xj the mean and variance of the distribution of the
material deprivation index for the generic j-th province. The parametric
ecological model of Salway and Wakefield (2008) is defined as:

log(θj) = α+ βµxj +
β2

2
σ2
xj . (1)

To derive a model for both the individual and the contextual effect recall
that the ecological effect is given by the sum of the two (Cronbach and
Webb, 1975; Firebaugh, 1978). Therefore with simple algebra we get:
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log(θj) = α+
β2
I

2
σ2
xj + βAµxj (2)

where βA = βC + βI , βA is the ecological effect, βC the contextual effect
and βI the individual effect. Since we have infomation on X from a sample
of nj individuals, µxj and σ2

xj are model parameters. A Besag York Mollié
(1991) spatial convolution model is specified on the α intercept.

3.2 Hierarchical bayesian models

As benchmark, we specifiy a measurements model under a full Bayesian
approach to model (1) (Best et al., 2001). We then propose a class of
Empirical Bayes models. For model (1) we specify a parametric EB model
with the following priors:

µxi ∼ Normal(xj , σ2
j /nj)

σ2
xi ∼ Chiνj (s2

j/nj)

where xj and s2
j are the sample mean and variance. For model (2) we specify

a plug-in empirical Bayes solution.
Weakly informative prior distributions on βI , βA are assumed. We use Ex-
pected Predictive Deviance (EPD) (Gelfand and Ghosh, 1998) to compare
full Bayesian models and the EB models previously defined. All computa-
tions were performed with WinBugs 1.4 (Lunn et al., 2000).

3.3 Simulation study

We use the spatial layout of Italian Provinces with expected counts from
internal standardization. We assume covariate values fixed to the observed
at Province and Individual level in the ISTAT 2002 Multiscopo survey. The
pseudo-data were generated in two steps:
- first, we obtain a baseline count at unit j-th Y Pj drawing from a Poisson(Ejλj)
with log(λj) = µ+ uj + vj ;
- second, the additional case due to the extra-risk by covariate effect at
individual level i-th Y PBij drawing from a Bernoulli(πij) with logit(πij) =
βI(xij − xi) + βAxi.
We then generate the counts at unit j-th summing up the two contributions.
The model parameter uj and vj are fixed to the posterior means obtained
fitting a spatial convolution model to the aggregate province data. The
simulations plan is to generate 1000 datasets for each combination of: 1)
βA = 0.00 and βI = 0.15; 2) βA = 0.30 and βI = 0.15 .
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TABLE 1. All Cause mortality. Italy, male and female, 2000-2004. Regression
coefficient (log relative risk and credibility interval 95%) for material deprivation.
βI : individual effect; βA: ecological effect.

Model βI βA
FB 0.076 0.108 0.132 −
EB 0.057 0.102 0.146 −
Cronbach −0.224 0.035 0.314 0.085 0.120 0.151

4 Results

Table 1 shows the results of the different fitted models. There is an impor-
tant effect of material deprivation. The individual effect in the Cronbach
model showed a large imprecision. We found that the amount of infor-
mation on individual effect in hybrid designs is small (Sheppard, 2003).
Noticeable, different modelling choices lead to different weight to the indi-
vidual or contextual component of the ecological effect.
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Abstract: This paper proposes a flexible modeling approach for so-called comet
assay data regularly encountered in pre-clinical research. While such data con-
sist of non-Gaussian outcomes in a multi-level hierarchical structure, traditional
analyses typically completely or partly ignore this hierarchical nature by summa-
rizing measurements within a cluster. Molenberghs et al (2010) proposed a broad
class of generalized linear models accommodating overdispersion and clustering
through two separate sets of random effects. Here, we used this method to model
comet assay data that exhibit an extra level of hierarchy. Whereas a conjugate
gamma random effect is used for the overdispersion random effect, both gamma
and Normal random effects are considered for the hierarchical random effect.
Apart from model formulation, we place emphasis on Bayesian estimation.

Keywords: Frailty; Hierarchical model; Random effect; Weibull model.

1 Introduction

The comet assay is a technique used to assess the genotoxic potential of a
compound by means of its ability to induce DNA damage in organ cells of
male rats. Because the comet assay is quick, sensitive, and cheap, the assay
is now widely used and a number of protocols have been developed for use
in different types of investigations (Lovell and Omori 2008). However, the
statistical analysis of such a comet assay is complicated because of several
issues in the data:the multi-level structure of the data, the type of data,
and the skewness of the outcome of interest.
In a typical comet assay study, a set of cells from exposed animals are
investigated for DNA damage. This is done by considering the migration
of DNA fragments out of the nucleus after electropheresism which induces
typical comet-like structures. In many protocols, the cells from a single
animal are placed on a number of slides. Each cell is then investigated for
DNA damage by measuring the tail length and tail intensity of the comet.
Because variability is expected between slides and between animals, this
needs to be taken into account in the statistical analysis. This results in
three-level hierarchies, with clustering at the animal and slide level.
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Moreover, exploration of the distribution of the gathered data and previous
work in this area indicate that the distribution for the responses (tail length
and tail intensity) are asymmetric (Lovell and Omori 2008). The standard
approach of modeling non-normal data, such as the tail intensity in the
comet assay is using a generalized linear model (e.g., a Weibull model).
The generalized linear model framework (McCullagh and Nelder 1989) is a
very rich one. Nevertheless, already in the univariate case, it is well known
that many standard members of the family may exhibit overdispersion.
This results from the fact that various commonly used members prescribe
a relationship between mean and variance. For example, in the Poisson
model for count data, mean and variance are equal. In the exponential
and Weibull cases, there is a quadratic relationship between them, etc.
Molenberghs et al (2010) proposed an extended framework where two types
of random effects are considered simultaneously, so as to deal, at the same
time, with overdispersion on the one hand and data hierarchies on the
other. Hierarchical random effects are frequently assumed to be normal, but
they can take various distributional forms. An illustrious counterexample
is time-to-event data where gamma random-effects, usually termed gamma
frailties, are in common use. We considered both.

1.1 Data

The data refer to four groups of six male rats that received a daily oral
dose of a compound in three dose levels (low, medium, and high) or ve-
hicle control. On the day of necropsy, an extra group of three animals
received a single dose of a positive control (200 mg/kg ethyl methanesul-
fonate, EMS, PC). The animals were sacrificed 3 hours after the last dose
administration, their liver was removed and processed for the comet assay.
For each animal, a cell suspension is prepared. From each cell suspension,
three replicate samples were prepared for scoring. Fifty randomly selected,
non-overlapping cells per sample were then scored for DNA damage using
a semi-automated scoring system. A total of 150 liver cells were thus scored
per animal. DNA damage was assessed by the software system by measur-
ing tail migration, % tail intensity, and tail moment. Tail migration is the
distance from the perimeter of the comet head to the last visible point in
the tail; % tail intensity is the percentage of DNA fragments present in the
tail; and tail moment is the product of the amount of DNA in the tail and
the mean distance of migration in the tail.

2 General Frailty Models

For a one level of hierarchy, Molenberghs et al (2010) use a combined
model with a normal random effect to handle the hierarchy in the data and
a conjugate random effect to account for overdisperion in the response.we
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propose extending the model to account for an extra level of hierarchy by
the use of three random effects of which one is the overdispersion effect. In
addition, while typically a normal random effect is included in the linear
predictor to account for the clustering, as in Molenberghs et al (2010), also a
multiplicative factor using a multivariate gamma distribution can be used,
similar to the multiplicative factor for the overdispersion random effect.
consider a model with a normally distributed random effect for the first
hierarchy in the data and a gamma random effect for the second hierarchy
in the data. In addition, we allow for the overdispersion in the model via
another gamma-random effect.

f(yijk|θijk, bi, bij) = λρθijkbijy
ρ−1
ijk e

xijk
′ξ+bie−λy

ρ
ijkθijkbije

xijk
′ξ+bi

, (1)

f(θijk) =
1(

1
α1

)α1

Γ(α1)
θα1−1
ijk e−α1θijk , (2)

f(bi) =
1

(2πd)1/2
e−

1
2d b

2
i , (3)

f(bij) =
1(

1
α2

)α2

Γ(α2)
bα2−1
ij e−α2bij , (4)

xijk
′ξ = β0 + β1Lijk + β2Mijk + β3Hijk + β4PCijk. (5)

Yijk is the Tail Intensity or Tail length measured for cell k = 1, . . . , nij
of rat i = 1, . . . , N , in slide j = 1, . . . , ni. The fixed effect β0 denotes
the control (vehicle) effect. The parameters β1 to β4 are the contrasts of
interest that represent the effect of low dose, medium dose, high dose, and
positive control versus vehicle. The random intercept bi corresponds to the
rat-specific effect whereas bij corresponds to the slide-specific effect j of
rat i. θijk is the overdispersion random effect. Other models can be defined
where either a gamma or a normal random effect is considered. We refer to
Table 1 for the overview of the models considered. Models are implemented
in R2winbugs.

3 Result and Conclusion

The different models considered are compared using Deviance information
criterion (DIC). Weibull Gamma(RE2) was the preferred model followed
by Weibull Normal(RE1) Gamma(RE2) model for Tail Intensity. We re-
fer to Table 2 for the summary result. comparison of the classical Weibull
model and Weibull Gamma(RE2), the parameters of interest are highly
significant in both cases. Yet, the standard errors, likewise the credible
intervals of Weibull Gamma(RE2) are twice that of the classical Weibull
model. While not the case in this example because of the high toxicity of
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TABLE 1. Overview of models considered with DIC for Tail Intensity(TI)and
Tail Length(TL)

Distribution for
Response Overdisp. RE1(rat) RE2(slide)

Model Weibull Gamma Normal Gamma Normal Gamma DIC(TI) DIC(TL)

1
√

33869.6 30878.8
2

√ √
33823.9 30421.6

3
√ √

33823.5 30420.2
4

√ √
33895.6 27378.5

5
√ √ √

33853.7 26901.6
6

√ √ √
33852.5 26883

7
√ √

33728.9 29622.6
8

√ √
33728.5 29620.8

9
√ √ √

33760.7 26386.9
10

√ √ √
33760.6 26377

11
√ √ √

33728.7 29623.4
12

√ √ √
33728.6 29619.5

13
√ √ √

33730.3 29631.1
14

√ √ √
33729.7 29605.2

15
√ √ √ √

33761.6 26374.4
16

√ √ √ √
33760.5 26333.1

17
√ √ √ √

33760.6 26338
18

√ √ √ √
33758.6 26209.6

the compound of interest, this suggests that ignoring the hierarchical struc-
ture and overdispersion could have major influence on the final conclusion.
Significant estimates in the classical Weibull model may be insignificant in
Weibull Gamma(RE2). In other words, a compound might be erroneously
declared toxic.
Based on the analysis for tail intensity, more elaborate models did not
outperform (not much improvement in terms of DIC). However, this was
not the case for the second response, tail length. Based on the DIC, the
most complicated model has the best fit, showing the importance of the
hierarchical structure as well as overdispersion. Models with one hierarchi-
cal random effect were better fitting as compared to the classical Weibull
model. Models with two random effect improved the fit further, and models
with the complete hierarchical structure and overdispersion random effect
appear to be best. Generally, for tail length like for tail intensity, we did
not reach a different conclusion, due to high toxicity of the compound;
however, inclusion of the hierarchical structure and overdispersion random
effect had severe impact on the magnitude, standard errors as well as the
credible intervals. Results for the classical Weibull, a model with two hier-
archical random effects model and the preferred model with full hierarchical
structure and overdispersion are summarized in Table 3.
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TABLE 2. Parameter estimates obtained from Models 8 [Weibull-Gamma(RE2)]
and 12 [Weibull-Normal(RE1)-Gamma(RE2)] for Tail Intensity.

Weibull-Gamma(RE2)

Effect Parameter Est.(s.e.) 95% C.I.

Vehicle β0 -2.419(0.079) [-2.57,-2.26]
Low versus vehicle β1 -2.854(0.097) [-3.04,-2.66]
Medium versus vehicle β2 -3.092(0.098) [-3.29,-2.90]
High versus vehicle β3 -3.317(0.098) [-3.51,-3.12]
Pos. control versus vehicle β4 -1.829(0.115) [-2.05,-1.60]
Weibull shape ρ 1.420(0.019) [1.38,1.46]
RE2 parameter α2 18.33(4.036) [11.68,27.3]

Weib.-Norm.(RE1)-Gamma(RE2)

Effect Parameter Est.(s.e.) 95% C.I.

Vehicle β0 -2.427(0.085) [-2.59,-2.25]
Low versus vehicle β1 -2.850(0.104) [-3.06,-2.65]
Medium versus vehicle β2 -3.088(0.106) [-3.30,-2.88]
High versus vehicle β3 -3.312(0.107) [-3.53,-3.11]
Pos. control versus vehicle β4 -1.826(0.124) [-2.07,-1.58]
Weibull shape ρ 1.419 (0.019) [1.38,1.46]
Precision of RE1 1

d 114.2(79.29) [28.60,331.61]
RE2 parameter α2 19.99(4.493) [12.08,29.54]

3.1 Conclusion

In this paper, we proposed a flexible modeling framework for the comet
assay data using a Bayesian hierarchical model that takes into account the
complete hierarchical nature, the possible overdispersion and the appro-
priate non-Gaussian probability distribution for the response. The more
conventional models with either the overdispersion, or just one hierarchical
random effect being submodels.
The method was applied to the comet assay data gathered to assess the tox-
icity of 1,2-Dimethylhydrazine dihydrochloride at different dose levels. For
this particular dataset, a Weibull-gamma(RE2) model seemed adequate for
tail intensity, whereas a Weibull-gamma(OD)- gamma(RE1)-gamma(RE2)
was better fit for tail length. A comparison of these analysis with the con-
ventional approach, which ignores the overdispersion and the hierarchy in
the data, revealed that both models led to the same qualitative conclusion
of severe toxicity of the compound at all dose levels. This notwithstanding,
estimates, standard errors, and credibility intervals were severely affected,
underscoring the risk of using models that are too simple. In general, proper
models encompassing at the same time the hierarchical nature in the data,
combined with overdispersion effects, need to be adopted. In this case,
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TABLE 3. Parameter estimates obtained from Weibull Gamma(OD)
Gamma(RE1) Gamma(RE2) and Weibull Normal(RE1) Gamma(RE2) and
Weibull Model for Tail Length.

Weib. G G G Weib. N G Weibull

Effect Parameter Est.(s.e.) Est.(s.e.) Est.(s.e.)

Veh. β0 -30.44(0.6646) -15.26(0.2519) -12.76(0.1543)
Low vs. veh. β1 -11.99(0.4977) -4.79(0.2468) -3.55(0.0530)
Medium vs. veh. β2 -12.14(0.5061) -4.89(0.2479) -3.65(0.0535)
High vs veh. β3 -12.57(0.4946) -5.10(0.2509) -3.85(0.0550)
Pos. C. vs veh. β4 -9.75(0.5523) -3.79(0.3028) -2.70(0.0590)
Weibull shape ρ 10.71(0.2727) 4.96(0.0572) 4.01(0.0422)
Precision of RE1 1

d
− 45.83(54.60) −

OD parameter α1 0.894(0.0431) − −
RE1 parameter α2 4.597(3.179) − −
RE2 parameter α3 1.611(0.2985) 3.031(0.5393) −

the use of the overdispersion and hierarchical structure improved the fit
for one response. Furthermore, even when the more elaborate model does
not provide a substantially improved fit, nor alters the inferences drawn,
the development is still very useful because it provides further confidence,
by way of model specification assessment, on the quality of the purported
model.
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Abstract: Semi-parametric frailty models are widely used to analyze clustered
survival data. In this talk, we propose the use of the hierarchical-likelihood (HL)
interval for frailties (random effects). We study the relationship between HL,
empirical Bayesian, and fully Bayesian intervals for frailties. The proposed HL
interval can be interpreted as a frequentist confidence interval and fully Bayesian
credible interval under a uniform prior. We also propose an adjustment of the
proposed interval to avoid null intervals. The proposed methods are demonstrated
using numerical studies based on a data set from the design of a multicenter
clinical trial.
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1 Introduction

It is important to investigate the potential heterogeneity in survival among
clusters in order to understand and interpret the variability in the data
(Vaida and Xu, 2000). Multivariate semi-parametric frailty models offer
a flexible framework for modeling this heterogeneity. For example, the ef-
fects of a treatment can vary substantially across participating centers in a
multicenter clinical trial with a censored event-time endpoint (Gray, 1994).
Such heterogeneity can be accounted for by using random treatment effects,
possibly in addition to random cluster effects on the baseline hazard. In
addition to the estimation (or prediction) of random effects, a measure of
uncertainty for these point estimates is useful and necessary. The standard
methods in use are empirical Bayes (EB) confidence intervals, based on the
conditional posterior distribution of random effects given the observed data
and the estimated parameter values (Vaida and Xu, 2000). However, the
EB interval estimators have been criticized for not maintaining the nomi-
nal level (Carlin and Louis, 2000). Gray (1994) and Legrand et al. (2005)
developed fully Bayesian methods. Recently, Lee and Ha (2010) used HL
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methods to estimate random effects and their confidence intervals for hier-
archical generalized linear models (HGLMs, Lee and Nelder, 1996). In this
talk, we extend these methods to semi-parametric frailty models. Here, one
particular difficulty is that in certain cases, likelihood methods may lead to
zero estimates for strictly positive variance components, leading to null con-
fidence intervals. For the non-null interval we also extend the adjustment
proposed by Morris (2006) in linear mixed models to general random-effect
models, including HGLMs and frailty models. Through numerical studies,
we show that the proposed interval improves the empirical Bayes interval
by maintaining the stated nominal level.

2 Model formulation

Suppose that the data consist of censored time-to-event observations col-
lected from q clusters (e.g. centers). Let Tij be the survival time for the jth
observation in ith cluster, i = 1, . . . , q, j = 1, . . . , ni, n =

∑
i ni. Denote by

vi an s-dim’l vector of unobserved log-frailties (random effects) associated
with the ith cluster. Given vi, the conditional hazard function of Tij is of
the form

λij(t|vi) = λ0(t) exp(ηij), (1)

where λ0(·) is the unknown baseline hazard function, ηij = xTijβ + zTijvi
is the linear predictor for the log-hazard, and xij = (xij1, . . . , xijp)

T and
zij = (zij1, . . . , zijs)

T are p×1 and s×1 covariate vectors corresponding to
fixed effects β = (β1, . . . , βp)

T and log-frailties vi, respectively. We assume
vi are independent and follow a multivariate normal distribution,

vi ∼ Ns(0,Σ) (2).

The covariance matrix Σ = Σ(φ) depends on a vector of unknown pa-
rameters φ. The normal distribution has been used for modelling multi-
component (Ha et al., 2007) and correlated frailties (Rondeau et al., 2008).

3 Interval estimators for random effects

For observations j of cluster i, let Tij and Cij be the event and censoring
times, respectively, and response variable yij = min{Tij , Cij} with event
indicator δij = I(Tij ≤ Cij). Since the functional form of λ0(t) in (1) is
unknown, following Breslow (1972), we consider the baseline cumulative
hazard function Λ0(t) to be a step function with jumps at the observed
event times, Λ0(t) =

∑
k:y(k)≤t λ0k, where y(1) < . . . < y(r) are the ordered

distinct event times and λ0k = λ0(y(k)). Following Lee and Nelder (1996)
and Ha et al. (2001), the HL for semi-parametric frailty models (1) is
defined by the joint likelihood of (y, δ) and v, which is of the form

h = h{(β, λ0, φ), v} = log f(y, δ|v;β, λ0) + log f(v;φ).
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Since (β, λ0, v) and φ in (2) are asymptotically orthogonal as in HGLMs
(Lee and Nelder, 1996), we only need to consider the Hessian matrix of
v and ψ = (βT , λT0 )T . Along the lines of Lee and Ha (2010), the interval

estimation of v is based on v̂(ψ̂) with ψ = (λ0, β) and the inverse of Hessian
matrixH(h;ψ, v) = ∂2h/∂ψ2 of v and ψ which gives the estimated standard
error of v̂ − v in sense of Conditional MSE (CMSE) of Booth and Hobert

(1998). Here, v̂(ψ̂) ≡ v̂(ψ)|ψ=ψ̂, where v̂(ψ) is the solution to ∂h/∂v = 0 for

a given ψ. Note that v̂(ψ) = Eψ(v|y, δ) asymptotically. Since the number of
nuisance parameters λ0k increases with sample size n, H(h;ψ, v)−1 requires
an inversion of a high-dimensional (p + q + r) matrix. Following Ha et al.
(2001), we propose the use of the profiled HL, h∗, that eliminates λ0:

h∗ = h|λ0=λ̂0
,

where λ̂0k are solutions of ∂h/∂λ0k = 0. Again, the covariance estimates for
v̂−v are obtained from H(h∗;β, v)−1, leading to an efficient computation of
the confidence interval for v. Thus, we propose that the individual (1−α)-
level HL confidence intervals for the components vk of v are of the form

v̂k ± zα/2 · SE(v̂k − vk),

where zα/2 is the normal quantile with probability α/2 in the right tail and
SE(v̂k − vk) is obtained from the square root of lower-right-hand corner

of H(h∗; β̂, v̂)−1. For EB confidence intervals, SE(v̂k − vk) is also obtained
from the square root of (−∂2h∗/∂v∂v>)−1. Furthermore, for the non-null
interval for v, following the Morris method (2006), we propose the use of
the adjusted likelihood padj, defined as

padj = pβ,v(h
∗) + log det(Σ).

Here pβ,v(h
∗) is an adjusted profile h-likelihood (an extended restricted like-

lihood) for φ and it is the first-order Laplace approximation to a modified
marginal likelihood, which becomes exact as N = min1≤i≤q ni → ∞: see
Lee et al. (2006) and Ha et al. (2010) for more justifications of asymptotic
property.

4 Numerical Study

We conducted a numerical study, based upon 500 replications of simulated
data, in order to compare the operating characteristics of the EB and HL
intervals. Following the setup of the Vaida and Xu (2000) data analysis of
a multicenter lung-cancer clinical trial, we consider the two frailty models,
from (1):
M1: ηij = β1xij1 + β2xij2 + vi0,
M2: ηij = (β1 + vi1)xij1 + β2xij2 + vi0.
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FIGURE 1. Simulation results for coverage probabilities of the nominal 95%
(dotted line) EB and HL intervals of all random effects (vi0’s) in frailty model
(M1) under σ2

0 = 1 and 15% censoring.

Here we assume λ0(t) = 1, β1 = −0.5, β2 = 0.5, σ2
0 = σ2

1 = 0.2, 1, and
ρ = −0.5 for vi = (vi0, vi1)T in M2. The binary covariates xij1 and xij2
are each generated from a Bernoulli distribution with success probability
0.5. We set the following sample sizes: n =

∑q
i= ni with n = 150, 300, 600,

and 1200, and (q, ni) =(30,5), (60,5), (30,20), and (60, 20). The censoring
times were each generated from an exponential distribution with 15% and
50% rates. HL(S) and EB(S) denote the HL and EB methods using stan-
dard and adjusted REML estimators for variance components, respectively.
Though not reported here, the coverage probabilities (CPs) of the nomi-
nal HL(S) and EB(S) 95% intervals for all random effects (vi0’s) in M1
are liberal, particularly for a small variance (σ2

0 = 0.2) and small sample
(ni = 5) which often give null intervals. Figure 1 shows that the adjustment
HL(A) adequately corrects this issue. That is, for a large variance σ2

0 = 1.0
the EB(A) does not maintain the nominal level, even when ni is large. In
contrast, the HL(A) intervals maintain the nominal 95% level in all cases
studied, indicating that it is necessary to correct for the uncertainty in the
estimation of β. Although not shown here, the CPs of intervals for all vi’s
in M2 were similar to those of M1, and the results for 50% censoring were
also to 15% censoring.
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Abstract: A functional data analysis (FDA) approach is presented to investigate
the grouping structure of water bodies that is used for classification within the
EU Water Framework Directive. FDA has been used to compare groups of Scot-
tish standing waters in terms of temporal dynamics of several different chemical
determinands of interest with a functional clustering model proposed to exam-
ine the existing grouping structure currently used by the Scottish Environment
Protection Agency (SEPA).
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1 Introduction

1.1 Background

Under the EU Water Framework Directive (European Parliament, 2000),
water bodies can be grouped together and classification of all members
of the group are based on the classification of a single representative site.
Currently, the groups that are used for classification of standing waters are
based on typology which is derived from broad categories of alkalinity and
altitude. Often, the representative site within each group is determined by
logistics and ease of access for sampling purposes. There is some question
as to how reliable the current grouping approach is as wrongly specifying
either the groups, or the representative site within each group, could poten-
tially result in misclassification of all members. It is therefore of interest to
investigate statistical approaches for clustering sites and hence alternative
group structures.

1.2 Data

In total there are approximately 104 standing waters in Scotland that are
classified within groups for the Water Framework Directive. These lochs
make up 30 distinct groups, with the number of sites within a single group
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ranging from two to eight. From 2007 onwards, when classification based
on groups was first introduced, there is often only data available on the
representative loch. Ideally, in order to ensure a reasonable comparison of
groups and sites, a dataset is required where there are observations taken
over a common period on all sites within each group. For this reason, data
from a subset of lochs were provided by SEPA. The dataset used in this
paper consists of 21 lochs which make up seven groups. The time period
covered by the data is from January 2003 to December 2006. The number of
samples, and the dates at which samples were collected varies enormously
from site to site. Data were available on 5 different determinands of interest
however this paper will focus on alkalinity values measured in micrograms
per litre (µg/L). Values have been log transformed to stabilize the variance.

2 Methods - Functional Data Analysis (FDA)

Grouping sites using standard clustering techniques often only utilises an-
nual averages of the variables of interest and so valuable information about
the variables’ temporal dynamics is lost. FDA is an approach which enables
curves, that are constructed from time series collected on individual sites, to
be analysed using functional equivalents to many standard statistical tech-
niques. A detailed discussion of FDA techniques is given in Ramsay and
Silverman (2003). The functional clustering model based approach (James
and Sugar (2003)) not only enables curves to be partitioned into distinct
groups but also provides a confidence in classification by quantifying the
uncertainty in the partition. In addition, the model accounts for sparse data
which is a problem in the loch grouping data. A brief description of the
model is given below. Further to this, more details are provided in James
and Sugar (2003) and in Pastres et al. (2010).
Let there be n individual sites and let the function which represents log
alkalinity at site i at time t be written as

Yi(t) = gi(t) + εi(t), where i = 1, ..., n (1)

then gi(t) is the true value of the i-th curve at time t and εi(t) is the
corresponding measurement error. Dropping the time index notation then
Equation (1) can be written more simply as Yi = gi + εi. It is assumed
εi ∼ N(0, σ2) and are independent. Following this, gi can be expressed as
the sum of a group effect and a random independent site effect to give the
functional clustering model which can be written as

Yi = Si(λ0 + Λαk + γi) + εi (2)

εi ∼ N(0, σ2I) and γi ∼ N(0,Γ)

where i = 1, .., n and Si is the spline basis matrix for the i-th curve eval-
uated at time points ti1, ..., timi . Further details on spline functions are
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provided in Green and Silverman (1994). In Equation (2), λ0 is a p di-
mensional vector which represents the overall mean for all sites, αk is an h
dimensional vector which represents the group effect and Λ is a p×h matrix
where h ≤ min(p,G− 1), where G is the number of groups. It is assumed
that all random site effects, γi, have a common covariance structure rep-
resented by Γ. Subject to certain constraints, detailed in James and Sugar
(2003), the unknown model parameters are estimated using a maximum
likelihood approach. In addition to these parameters, the probability that
the ith curve comes from group k can also be estimated. While h and G
have to be specified prior to fitting the model to the data, optimal values
of these two parameters can be obtained by minimising Bayes Information
Criterion (BIC). Subsequently, the G clusters are formed by allocating each
of the n sites into the group for which they have the greatest corresponding
membership probability.

3 Results

3.1 Scottish Loch Analysis

Cubic P-splines were used to fit curves to the log transformed alkalinity
data at each loch with a different smooth function fitted in each case.
Figure 1 shows the smooth function fitted to each of the sites. It is clear
from Figure 1 that there is a great deal of overlap in the sites and no
clear indication that 7 groups (the number currently used by SEPA) is
the most appropriate. After application of the functional clustering model,
with a range of different parameter values, the values which minimised the
BIC were found to be 3 groups and h = 1. Figure 2 shows the estimated
cluster mean curve for each of the 3 groups, represented by the heavier
solid lines. The dashed lines represent each of the individual sites with
the different shading representing the predicted groups. Figures 3 and 4
show the geographical locations of the sites along with both the original
SEPA group structure, and the new predicted group structure based on
the fitted model for log(Alkalinity) respectively. SEPA groups 4, 5 and 6
become groups B, C and A respectively in the new groups. The remaining
sites within SEPA groups 1, 2, 3 and 7 are split and are predicted to fall
into groups A and B in the new group structure.

3.2 Summary and Future Work

The functional clustering model is a useful tool for exploring both existing
group structures and monitoring networks for classification of water bodies.
It has been shown that the model works well in terms of identifying distinct
groups where the within group heterogeneity is small. The methods pre-
sented here have been applied to several different chemical determinands.
However, further work will include investigation of group structures based
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on multiple variables of interest and development of methods for applica-
tion to a set of monitoring sites connected by a network of streams and
rivers.

FIGURE 1. Fitted cubic spline functions for log(alkalinity) at each site

FIGURE 2. Cluster means and predicted group structure for log(alkalinity)
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FIGURE 3. Map of Scotland showing
original SEPA groups

FIGURE 4. Map of Scotland showing
predicted groups for log(alkalinity)
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Abstract: We propose an approach for creating software design patterns clas-
sification scheme based on probability models and statistical methods used in
information retrieval domain. The approach looks for a set of words, phrases,
and topics, i.e. concepts embedded or represented by words and phrases that
describe the pattern. We also present a process that generates a list of terms,
associate each list with a pattern category, and search the resulting list with user
queries to select a particular pattern.
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1 Introduction

It has been evident that design patterns are extremely useful design tools
for software designers because each design pattern describes both a prob-
lem and a design solution. Generally, software design problems tend to be
general enough that they surface repeatedly in a variety of design situa-
tions. Since their introduction to the software community by Gamma et al.
(1993,1995), Coad and Yourdon (1991), Coplien (1992), Buschmann et al
(1996), design patterns’ acceptance has grown considerably and they have
become an important new approach to software design. Originally, Gamma
et al. have published 23 design patterns, but it was not very long before
that number has increased considerably by the software community. So
while hundreds of design patterns have been published, it is not unlikely
that many more of those will be discovered. While this is great news for
software re-use, one big problem still remains: how do you find a particular
design pattern quickly and efficiently?
This paper focuses on addressing one problem area in using software design
patterns: the lack of a process to catalog the hundreds of design patterns
that have appeared since this concept was introduced to the software de-
velopment community.
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In a previous research Hasso PhD (2007), we relied heavily on manual
process in analyzing and selecting terms (keywords) for classification pur-
poses. Ultimately, the classification structure produced resulted in a set of
pre-determined and limited set of controlled vocabulary that became the
basis for indexing any software pattern. Locating a pattern then becomes
a matter of identifying relevant topics we are interested in.
There is an alternative to this manual process and it provides for an auto-
mated way to generate indexes based on probability theory that is used for
indexing and searching a vast volume of data like the internet. Specifically,
we will explore Poisson Distribution as a filtering tool Harter (1975) used
to filter out, throw away, unwanted or irrelevant terms, and then using
Bayesian Text Classification to classify patterns.

2 Classifying Software Patterns using Probabilistic
Tools

Classification is the act of grouping like things together. Classification dis-
plays relationships between things and between classes of things Buchanan
(1979). The ‘things’ we classify could be anything. In our research, they are
software design patterns. Classification, in general, is an essential tool to
find structure and relationships between terms in any document Aitchison
et al. (1997). In Information Retrieval systems, used to retrieve relevant
documents, two processes are involved to facilitate the retrieval: indexing
and retrieval. In indexing, a concise representation of a document is derived
based on key terms used in the document title or document description,
while retrieval refers to the search method by which relevant document is
identified Srinivasan (1992).
We propose a method by which we adapt the use of probabilistic tools
specifically to help us extract relevant terms from patterns documents and
use these as a basis for pattern classification that, in the end, serves as
a patterns search tool. The following describes briefly the steps in our
proposed approach, and in the full version we will give the theoretical
details and overview of an end-to-end process to prepare, build, classify,
and query patterns repository. Figure 1 depicts graphically this end-to-end
process.

1. Use Poisson distribution as a filter to throw away any unwanted terms
from a description of patterns.

2. We will use the results of previous step (step 1) as an indicative of
the important topics that a pattern document is about.

3. We use the list of terms extracted from step 2 as an input to a
Bayesian text classification tool Graham-Cumming (2005) that serves
as a training set. This text classifier is an automated means by which
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FIGURE 1. A probabilistic pattern classification and query process illustration
using UML’s (Booch et al., 1999) activity diagram.

we can determine which category a document belongs to. Effectively,
the classifier suggests categories for indexing a pattern description.
We assign categories and we input the training set to tell the classifier
to use as indexing terms. The classifier learns to associate a category
with a particular set of terms and we will use this knowledge in pre-
dicting the class of a new document.

4. During pattern searching, we collect terms from users and create a
search criteria to be submitted to the classifier tool from step 3 to de-
termine approximately the likelihood of a pattern a user is searching
for.

3 Conclusion

This paper introduced another method to systematically analyze patterns
and create a classification scheme based on tools used successfully to index
and classify documents. The statistical approach used here offers promising
potential much needed in the area of software engineering to provide a com-
prehensive, unified, and efficient way to create software patterns catalogs
and query tools to retrieve patterns at design time when required.
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Abstract: Hierarchical Generalized Linear Model (HGLM) and the Generali-
zed Linear Model for the location, scale and shape (GAMLSS) were proposed to
model the mean and the dispersion parameters using linear predictors considering
random effects and fixed effects using their own set of covariates, where the
response variable belongs to families of distributions appropriate in each case. In
this work we present the results from a comparison simulation study considering
fixed effects and normal random effects for the linear predictor for the mean and
fixed effects linear predictor for the dispersion parameter. Two scenarios were
considered, response variable distributed normal and gamma. We found that
fixed effects estimates obtained by GAMLSS and HGLM were similar in both
scenarios.
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1 Introduction

Generalized Linear Model (GLM) proposed by Nelder & Wedderburn (1972)
assumes that the dependent variable y belongs to the Exponential Family
(EF) and allows to model the mean µ of the variable y as µ = g−1(η)
where g(·) is a known link function and η corresponds to the linear predic-
tor which is a linear function of explanatory variates. GLM considers the
variance V (y) of y as a function of the mean through the following rela-
tion V (y) = φv(µ) where φ corresponds to the dispersion coefficient and
v(µ) is the variance function which is known. For the distributions that
belong to the EF, variance, skewness and kurtosis are generally functions
of µ and φ (Rigby & Stasinopoulos (2005)). Generalized Nonlinear Models
(GNLM) are characterized due to the linear predictor η of GLM is replaced
by a nonlinear predictor. Generalized Additive Model (GAM) proposes to
replace the linear predictor η of GLM by an additive predictor consisting
of nonparametric functions of explanatory variables. In Generalized Linear
Mixed Model (GLMM) the linear predictor η of GLM is formed by a fixed
component (parametric) and a random component (random effects). With
each approach GLM, GNLM, GAM and GLMM variance and other mo-
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ments of the response variable depend on the estimation of µ and φ and it is
not possible to model them using a different set of covariates from the used
in the estimation of µ. Two proposals are found in the statistical literature
that consider the previous problem. The first proposal was presented by Lee
& Nelder (1996) and Lee and Nelder & Pawitan (2006) called Hierarchical
Generalized Linear Model (HGLM), which allows that µ and φ are struc-
tured through their own sets of covariates and that eases the distribution
of random effects in EF. The second proposal by Rigby & Stasinopoulos
(2005) is called Generalized Additive Model for location, scale and shape
(GAMLSS) and allows the distribution of the response variable y can be
selected from a general family of distributions that include the EF. The
systematic part in GAMLSS is expanded to model the mean µ and other
parameters associated with the distribution of y.

2 Simulation study

It was considered a normal-normal model with mean and variance struc-
tured, the model is based on an example given by Ronnegard et al. (2011).
Considering yi as the answer to the i-th group (with i = 1, . . . , n) the model
can be written as:

yi|β, u, βd = N (Xi.β + Zi.u, exp (Xd,i.βd)) (1)

where β and u ∼MVN(0, Iσ2
u) correspond to the fixed effect and random

effect to the mean respectively, βd to the fixed effects for the variance. The
model matrices are denoted by X, Z and Xd; the notation Xj. and X.k

represent the j row and k column for X respectively, the same for Z and
Xd. In the simulation study the parameters σ2

u, the number of groups n and
the number of observations by group m varied while β, βd remained fixed.
The values considered in the study were as follows: σ2

u = 0.1, 0.5, 1.0, 2.0,
n = 5, 10, 15 number of groups, m = 5, 10, 15, 20, 25 observations by group,
β
′

= (5,−4, 7) and β
′

d = (2,−3, 1). 10000 iterations were performed for
each combination of the above parameters. The model matrix X is such
that X.1 = 1, X.2 ∼ P (λ = 2) and X.3 ∼ Exp(γ = 0.5). The model matrix
Xd is such that Xd.1 = 1, Xd.2 ∼ Bi(n = 1, p = 0.5) and Xd.3 ∼ Bi(n =
1, p = 0.7).

The criterion used to compare the fits obtained with HGLM and GAMLSS
was the multivariate Mean Squared Error (MSE). The MSE for the esti-

mator b̂ of b is defined as

MSE(b) = tr
(

Σ(b̂)
)

+
(
b̂− b

)′ (
b̂− b

)
where Σ(b̂) corresponds to the variance-covariance matrix for b̂. The MSE

was calculated for β̂MLGH , β̂GAMLSS , β̂dMLGH and β̂dGAMLSS the esti-
mators for β and βd with HGLM and GAMLSS.
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In the figure (1) are the observed results to the mean MSE for n = 5
groups. For any value of σ2

u and 5 observations by group there are differences

between MSE of β̂dMLGH and β̂dGAMLSS . For 10 or more observations per
group the performance with HGLM and GAMLSS are similar. This pattern
was also observed in the cases for n = 10 and n = 15.
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FIGURE 1. Mean MSE for the estimators obtained by HGLM and GAMLSS
with n = 5 for the normal-normal model

It was also considered a gamma-normal model based on data from the
application of semiconductor presented by Myers et al. (2002). The figure
(2) presents the results of the mean MSE in this case. The mean MSE with
HGLM and GAMLSS for the dispersion parameter is the same regardless of
the σ2

u value. For a value of m = 5, mean MSE of the dispersion parameter
is higher with GAMLSS. As the number of observations per group the
mean MSE decreases. The mean MSE for the mean is similar for HGLM
and GAMLSS and increases with increasing σ2

u.

3 Conclusions

For the normal-normal scenario was found that the performance for esti-
mating vectors of fixed effects for the mean and dispersion parameter with
GAMLSS and HGLM were very similar. As the number of observations,
the MSE decreases. For the gama-normal scenario was found again that
the performance with GAMLSS and HLGM was similar.
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FIGURE 2. Mean MSE for the estimators obtained by HGLM and GAMLSS for
the gama-normal model
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Abstract: In survival analysis, the lifetimes may be observed in some specified
order, where the time to event Tk, cannot be observed until T1, ..., Tk−1 have
been observed. The present work proposes a joint model of two sequential times
to events together with longitudinal information, extending the joint model of
Wolfsohn and Tsiatis (1997) for one time to event and one longitudinal variable.
We apply the model to the clinical trial called TIBET, in which an intermit-
tent therapeutic strategy has been assigned to each patient. Of special clinical
interest is the lifetime that a patient needs before restarting treatment given the
progression of biological markers recorded during the followup period.
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Times.

1 Joint Models in the Literature

Likelihood and Bayesian approaches rely on the specification of an appro-
priate likelihood for the joint model parameters; for both, much of the early
literature focuses on models without autocorrelation structure for longitu-
dinal model. Good review can be found in Tsiatis and Davidian (2004).
Wulfsohn and Tsiatis (1997) proposed and EM algorithm for a simple
joint model, but many proposals for more complex joint models developed
recently, have based the estimating procedures in it, among others, the
joint model for one time to event with multiple longitudinal variables (Lin
et al., 2002), a joint modelling of accelerated failure time and longitudi-
nal data, (Tseng et al., 2005), and a robust joint modelling of longitudinal
measurements and competing risks failure time data (Li et al. 2009). In
Bayesian framework, Chi and Ibrahim (2006) give a model for multivariate
longitudinal and multivariate survival data by using MCMC techniques.
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2 Notation

The idealized data for each subject i = 1, ..., n followed over an interval [0,
τ) are {T1i, T2i, Ri(u), 0 ≤ u ≤ τ,Xi}, where T1i and T2i are event times,
{Ri(u), 0 ≤ u ≤ τ} is the longitudinal response trajectory for all times
u ≥ 0 and Xi = [XT

1i XT
2i]
T is a vector of baseline (time 0) covariates,

X1i with influence over T1, and X2i over T2, which may have elements in
common or not.
We will consider only a situation where T1 and T2 may be right censored
by the censoring times C1 and C2 respectively, so instead of Tji we observe
(Yji, δji), j = 1, 2, where Yji = min{Tji, Cji} and δji = I(Tji ≤ Cji)
which indicates whether Yji is an uncensored right value of Tji. On the
other hand, for some set of times tij , j = 1, ..., ni, instead of the true values
Ri(tij) we observe Zi(tij), then the observed data for subject i is Oi =
{Xi, Yi, δi, Zi, t̃i}, where t̃i = (ti1, ..., tini)

T , Zi = (Zi(ti1), ..., Zi(tini))
T ,

Yi = (Y1i, Y2i), and δi = (δ1i, δ2i).

3 Joint Modelling of One Time to Event Data and
one Longitudinal Variable

For the longitudinal response process, a standard approach is to character-
ize Ri(u), u ≥ 0, only in terms of random effects b0i and b1i like

Ri(u) = b0i + b1iu. (1)

Associations among the longitudinal and time to event processes and co-
variates, is characterized by the following semi-parametric model for the
hazard risk:

λi(u) = limdu→0 Pr(u ≤ Ti < u+ du | Ti ≥ u,RHi (u), Xi)/du
= λ0(u) exp(ηTXi + βRi(u)),

where RHi (u) = {Ri(t), 0 ≤ t < u} is the history of the longitudinal process
up to time u, and the parameters are represented in β and the η vector.
If model takes βRi(u) as β1b0i + β2b1i + β3(b0i + b1iu), the parameters
β1, β2 and β3 measure the association induced through the intercept, slope
and current R value, respectively. Wulfsohn and Tsiatis (1997) give and
EM algorithm to estimate the joint model maximizing the resultant log-
likelihood.
Zeng and Cai (2005) rigorously prove under the normal assumption for the
random effects, among other assumptions, the strong consistency of the
maximum likelihood estimators for joint models of repeated measurements
and survival time, and derive their asymptotic distributions, which is mul-
tivariate normal. Moreover, the asymptotic results hold even if the random
effect, has slightly heavier tails than the normal density. The theoretical
results further confirm that nonparametric maximum likelihood estimation
provides efficient estimation.
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4 Joint Modelling of Two Sequential Times to Events
and One Longitudinal Variable

We have proposed a joint model for two sequential times to events with
one longitudinal variable, as an extension of the Wulfsohn and Tsiatis’s
model (1997) with a model for two sequential times to events (Lawless
2003, section 11.3). The model permit us to give prognosis for a time to
event given covariates, the longitudinal process and the previous event time.
Usually the trend of the longitudinal variable changes with the first time
to event. If we take the longitudinal variable with two piecewise linear
mixed models, the knot where the slope changes is obviously the time to
first event T1, and a particular joint model in which the longitudinal and
survival sub-models are linking with the current value may be as:

Zij = b0i + (b1i tij + b2i(tij − t1i)I) + ei(tij) (2)

λ(t1 | bi;β1) = λ1,0(t1) exp{β1(b0i + b1it1)} (3)

λ(t2 | t1i, bi;β2, γ) = λ2,0(t2) exp{β2(b0i+b1i ·t1i+(b1i+b2i)t2i)+γ t1i} (4)

where I = I(tij ≥ t1i), β1 and β2 are parameters of association between the
longitudinal and survival process, and γ describes the relation among the
times to event. Both baseline risks λ1,0(·) and λ2,0(·) are left unspecified
and different. In the likelihood construction we have the same assumptions
made by Wulfsohn and Tsiatis (1997). The assumption of non-informative
censoring extend to this case of censoring process. The errors ei are assumed
mutually independent, normally distributed with mean 0 and variance σ2

ε ,
and independent with bi and for all other variables conditional on (bi, Xi).
If we may assume that, given random effects and covariates, Z, T1, and
T2 | T1, are all independent, then the observed likelihood is:

L(Ω) =

n∏
i=1

∫
bi

{ ni∏
j=1

f(zij | bi;σ2
ε )

}
f(Yi, δi | bi, Xi;ψT |b)f(bi;B,Γ)dbi, (5)

where Ω = (ψT |b, B,Γ, σ
2
ε ) and ψT |b = (η1, η2, β1, β2, γ, λ1,0, λ2,0). The vec-

tor of random effects bi = [b0i b1i]
T is taken to be normally distributed with

mean B and covariance matrix Γ. The function for the survival process is
defined as (omitting parameters for simplicity),

f(Yi, δi | bi, Xi) =
[
S(Y1i, δ1i | bi, X1i)λ(Y1i, δ1i | bi, X1i)

δ1i
][

S(Y2i, δ2i | bi, t1i, X2i)λ(Y2i, δ2i | bi, t1i, X2i)
δ2i
]δ1i

.

We estimate the joint model with an EM algorithm as a natural extension of
the algorithm developed by Wulfsohn and Tsiatis (1997). With simulation
we can advertise that this EM algorithm may have two convergence points,
due to fact that the time to dropout it is not expressed directly in (6) across
of the sequential density of T1 and T2.
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The models for longitudinal data in presence of informative dropout, use
the time to dropout to correct bias estimations. In survival point of view for
the joint modelling, the observed event time cut the longitudinal process
and may be see as the dropout cause. The joint modelling produce proper
longitudinal estimations, and of course, good estimations for the survival
model. But in this case we do not have a single time to dropout, we have
a sequence of times to event.
We might to include properly the time to dropout in the modelling, fitting
strategically the models for T1 +T2, T1 and T2 | T1, and taking the parame-
ters of the model of T1 +T2 as nuisance parameters. The suggested method
fits the longitudinal process with a unique time to dropout measured by
T = T1 + T2 with δt = δ1 · δ2 as censoring time, afterwards the survival
process is fitted, given the parameter estimations of the Z model. Thus,
we estimate the parameters for the model of Z and T1 + T2 as the same
form of the Wulfsohn and Tsiatis’s method (1997), then, the estimation for
the model of T1 and T2 | T1 are made applying twice and separately for
each model the EM algorithm, but having fixed the longitudinal parameter
estimates. So this method in essence calculates several times the model by
Wulfsohn and Tsiatis (1997).
The alternative in the way that uses a traditional Cox model (1972) to fit
the survival models of T1 and T2 | T1 after and given the model fitting of
Z and T1 + T2, produce some bias estimations in its.
The Cox model for T1 + T2 may be fitted with baseline covariates and the
random effects across of anyone: the current value, the intercept and the
slop. Letting T = T1 + T2, the hazard risk modeled only with the current
value is

λ(t | bi;βt) = λt,0(t) exp{βt(b0i + b1it)}. (6)

Although our problem consist of two times to different events (Restart
and suspension of therapy), the proposed model could be used to model
data sets where the events are similar, like the problems with disabled
recurrences: the first time being the time to some disabled, and the second,
the time to the same disabled from the first (having repeated measurements
for some marker).

5 Simulation

Simulations are carried out to explore how robust and reliable is our method.
In general, our method gives proper estimations for sample sizes bigger
than 300, with moderate correlation and variability of the random effects
(or less), and with not heavy censoring. Although the results are acceptable
with sample sizes n=100 with low censoring.
Because Zeng and Cai (2005) mention that the asymptotic properties of
normality and consistency of the maximum likelihood estimators for the
joint models with one time to event and one longitudinal variable, are
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extensive to the joint models with multivariate survival times, we expect
that these properties hold to our maximum likelihood estimators. We have
some evidence in that sense supported with simulation.

6 Application

We apply the above described technique to the TIBET clinical trial. The
trial contemplates the incorporation of interruption periods in the admin-
istration of an intensive therapy HAART (Highly Active Antiretroviral
Therapy). A cohort of 100 patients enters the study with suspension of the
treatment (state OFF ). Basal and retrospective information is gathered,
and every 4 weeks there is registered information of the CD4 cell count. If
the patient’s conditions deteriorate, the therapy is restarted (state ON ),
and so on. The times to event are T1: time to first restart of therapy, and
T2: time from the first restart of therapy to the suspension of therapy. The
longitudinal variable is the evolution of the CD4 which is not increasing
until the first time to event, and then is increasing.
We fit different joint models with two piecewise in the longitudinal part,
finding that the best joint model among the analyzed, has for the model
of T1 the viral load pre-therapy (VL), and the effect of the slope and the
current value along of T1. The model of T2 has the effect of the slope along
of T2 and the effect of T1 as significative covariates, nevertheless we fit the
model also with the current value and the viral load pretherapy, in order
to see how is the effect of these variables in the models of T1 and T2. We
have that b1 + b2 is the effect of the slope in T2 and b0 + b1(t1 + t2) + b2t2
is the current value effect. The selected joint model is as follow, and the
results are shown in Table 1.

Zij = b0i + (b1i tij + b2i(tij − t1i)I) + ei(tij) (7)

λ(t1 | bi, V Li; η1, β1) = λ1,0(t1) exp{η1V Li + β11(b0i + b1it1) + β12b1i} (8)

λ(t2 | t1i, bi, V Li; η2, β2, γ) =
λ2,0(t2) exp{η2V Li + β21(b0i + b1i(t1i + t2) + b2it2) + β22(b1i + b2i) + γ t1i}.

(9)

We refer the following principal findings: 1. the only baseline covariate
significative in T1 was the viral load pre-therapy but this effect is diluted
in T2, 2. The relationship between T1 and T2 is inverse, 3. The slope of
the longitudinal variable along of T2 and the observed values of the first
time to event T1, are the only significative covariates in the survival model
of T2, and 3. The influence of the intercepts b0 and b0 + b1t1 in T1 and
T2 respectively, is not significative. It is logic since the patients begin the
trial without therapy with good and similar conditions, and the restart of
therapy is due to the threshold reached in the levels of the CD4 and viral
load.
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TABLE 1. Joint model for T1 and T2 with two piecewise mixed model for the
CD4 evolution, based in EM modified algorithms. It is assumed semi parametric
form in the hazard risks.

Parameter Estimate s.e. p− value
Mixed

B0 25.8263 0.4569 < 0.0001
B1 -0.0502 0.0041 < 0.0001
B2 0.1248 0.0080 < 0.0001
σ11 20.8764 2.9524 < 0.0001
σ12 -0.1186 0.0221 < 0.0001
σ13 0.0166 0.0364 0.6484
σ22 0.0017 0.0002 < 0.0001
σ23 -0.0016 0.0004 < 0.0001
σ33 0.0063 0.0009 < 0.0001
σ2
ε 6.1463 0.1881 < 0.0001

Survival T1

β11 (b0i + b1it1) -0.2044 0.0405 < 0.0001
β12 (b1i) -14.3298 3.5632 < 0.0001
η1 (V Li) 0.6521 0.1858 0.0004

Survival T2

β21 (b0i + b1i(t1i + t2) + b2it2) 0.0257 0.0430 0.5500
β22 (b1i + b2i) 6.7904 2.4090 0.0048
η1 (V Li) -0.0169 0.2302 0.9414
γ (t1i) -0.0210 0.0079 0.0079
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curvatures are derived to study the sensitivity of the estimates. An illustration
of the methodology is presented for real data set.
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1 Introduction

Semiparametric mixed models (SMMs) adopt the following relationship:

yi = Xiβ + Nif + Zibi + εi , (1)

where yi is an (mi × 1) random vector of observed responses from the ith
cluster, Xi is an (mi × p) design matrix, β is the (p × 1) fixed parame-
ter vector, Ni is an (mi × r) incidence matrix with the (j, `)th element
equal to the indicator I(tij = t0

`), for j = 1, . . . ,mi and ` = 1, . . . , r,
f = (f(t0

1), . . . , f(t0
r))

T with t0
1, . . . , t

0
r being the distinct and ordered val-

ues of tij , f(·) is a smooth function, Zi is the (mi × q) design matrix
associated to the (q × 1) vector of random effects bi, and εi is an (mi × 1)
vector of within-cluster errors. In this work we will assume that(

yi
bi

)
∼ Elmi+q

{(
µi
0

)
,

(
Σi ZiD

DZTi D

)}
,

where µi = Xiβ + Nif , Σi = ZiDZTi + φImi and D = D(λ), with λ =
(λ1, . . . , λd)

T . Consequently, yi ∼ Elmi(µi , Σi). Then, the penalized log-
likelihood function can be expressed as

Lp(θ, α) =

n∑
i=1

[
− 1

2
log |Σi|+ log g(δi)−

α

2n
fTKf

]
,

where θ = (βT , fT , τT )T , with τ = (τ0, τ1, τ2, . . . , τd)
T , τ0 = φ and τ` = λ`

(` = 1, . . . , d), δi = rTi Σ−1
i ri, ri = yi −µi, g(·) is a function of R → [0,∞]

such that
∫∞

0
δm/2−1g(δ)dδ <∞, K is a smoothing matrix (see Green and

Silverman, 1994) and α is the smoothing parameter (for simplicity, fixed).
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2 Parameters estimation
Here we consider the maximum penalized likelihood estimate (MPLE) of θ,
which leads to a natural cubic spline estimate of f(t) and can be obtained
via the following procedure (see also Ibacache-Pulgar and Paula, 2011):

(a) Firstly, we maximize Lp(β, f , τ , α) over β by remaining fixed the pa-

rameters f and τ . The maximum value, β̂(f , τ ), is attained for val-
ues of β in a set B(f , τ ) depending on the parameters f and τ .
Thus, if β ∈ B(f , τ ), the penalized log-likelihood function value is
Lcp(f , τ , α) = maxβ Lp(β, f , τ , α).

(b) Then, in the second step, we maximize the concentrated penalized

log-likelihood function Lcp(f , τ , α) = Lp(β̂(f , τ ), f , τ , α) over f by re-

maining τ fixed. The maximum value, f̂(τ ), is attained for values
of f in a set F(τ ) depending on the parameter τ . Therefore, if f
∈ F(τ ), the penalized log-likelihood function value is Lcp(τ , α) =
maxf L

c
p(f , τ , α).

(c) Finally, in the third step, we maximize the concentrated penalized log-

likelihood function Lcp(τ , α) = Lp(β̂(f , τ ), f̂(τ ), τ , α) over τ . The
maximum value, τ̂ , is attained on a set C of τ values. Then, three-step
procedure (a)-(c) lead to the following iterative process:

Step 1 (Back-fitting algorithm) Let Wi = Σ−1
i . For r, s = 0, 1, . . ., repeat-

edly cycling, until convergence, between the following two equations:

β(r+1,s+1) = (XTW(r)X)−1XTW(r)
(
y −Nf (r+1,s)

)
and

f (r+1,s+1) = (NTW(r)N + αK)−1NTW(r)
(
y −Xβ(r+1,s+1)

)
,

where y = (yT1 , . . . ,y
T
n )T , with X and N being denoted in the same

way, and W(r) = diag{v1W1, . . . , vnWn}
∣∣
θ(r) , with vi = −2d log g(δi)

dδi
.

Step 2 (Concentrate penalized log-likelihood) Update the parameter τ by

τ (r+1) = arg maxτ{Lp(β̂
(r+1,s+1)

, f̂ (r+1,s+1), τ , α)}. Thus, alternat-
ing between Stages 1 and 2, this iterative process leads approximately
to the MPLE of θ.

3 Local influence analysis
Let ω = (ω1, . . . , ωn)T be an (n × 1) vector of perturbations restricted to
some open subset Ω ∈ Rn and the logarithm of the perturbed penalized
likelihood denoted by Lp(θ, α |ω). Suppose that there is a point ω0 ∈ Ω
that represents no perturbation of the data so that Lp(θ, α |ω0) = Lp(θ, α).
According to Cook (1986), the normal curvature in the unitary direction `
is given by C`(θ) = −2{`T∆T

p L−1
p ∆p`}, where Lp = ∂2Lp(θ, α)/∂θ∂θT

∣∣
θ̂

and ∆p = ∂2Lp(θ, α |ω)/∂θ∂ωT
∣∣
θ̂, ω0

. In this work we to study the normal

curvature in the direction ` = ei ∈ Rn, where ei is an vector with 1 in the
ith position and zeros in the remaining positions.
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4 Application and discussion

The data set used in this work was reported in a medical study conducted
with 30 patients to describe the behaviour of the ocular pressure of the right
and left eyes on a specific day (see Ibacache-Pulgar et al., 2011). In some
patients it was only possible to measure the ocular pressure in one of the
eyes. For the purpose of this work we consider all patients with whom it was
possible to measure the pressure in the left eye, totaling 29 patients. The
response variables correspond to the measurements of ocular pressure reg-
istered at three-hour intervals, that is, at 6am, 9am, midday, 15am, 18am,
21am and midnight. We fit the following semiparametric mixed model:

yi = Xiβ + Nif + Zibi + εi ,

where yi is a vector of responses from the ith patient, Xi = 1 xi (with xi
denoting the age of the ith patient), Ni = I7 is the identity matrix of order
7, f is a vector whose components are the function f(·) evaluated at the
time values in the set t0 = { t0

1 = 6, t0
2 =9, . . ., t0

7 = 24 }, bi is the random
effect for the ith patient, Zi = 1 and εi is a random error vector for which
we will assume normal distribution and Student-t distribution with ν = 8
degrees of freedom. The age is not significant under both models.
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FIGURE 1. Individual profiles of the apparent outliers with the mean profile (a)
and the fitted cubic splines ± 1.96 (pointwise) standard errors under Student-t
(solid lines) and normal (dotted lines) models (b).

One has in Figure 1a the profiles of some apparent outliers together with
the mean profile and in Figure 1b the fitted cubic splines ± 1.96 (pointwise)
standard errors are displayed for the two fitted models. We see from the last
figure the robust aspects of the MPLEs from the Student-t model whose
fitted cubic splines appear to be less sensitive to the apparent outliers than
the ones from the normal model. In addition, in order to identify possible
influential observations, we will present some local influence graphs. Figure
2 presents the index plots of Ci = Cei(f) under the case-weight pertur-
bation scheme. The dotted lines drawn on the graphs correspond to the
cutoffs Ci = 2C̄, where C̄ is mean of C = {Ci = Cei(f) : i = 1, . . . , n}. We
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see observations {3, 26, 28} pointed out under the normal model, but none
observation is pointed out under the Student-t model.
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FIGURE 2. Index plots of Ci for assessing local influence on f̂ under case-weight
perturbation scheme under normal and Student-t models.

Thus, we has indication from this example that the well-known robust
aspects of the parameter estimates from Student-t model with few degrees
of freedom seem to be also extended to the semiparametric mixed case.

Acknowledgments: The authors are grateful to CAPES, CNPq and FAPESP,
Brazil.
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1 Introduction

The change-point problem in regression continues to be one of the most
interesting and challenging problems in statistics since the paper by Quandt
(1958). The interest is partly due to its widespread applicability in many
scientific disciplines including epidemiology and economics as shown in Kim
and Siegmund (1989). The methodological problems remain challenging
because standard maximum likelihood (ml) asymptotic theory does not
apply. We consider the model

yi = α0 + β0xi + ui, i = 1, . . . , τ (1)

yi = α1 + β1xi + ui, i = τ + 1, . . . ,m, where

ui = ρui−1 + εi and u1 = ε1

and the εi are i.i.d. N(0, σ2
1) for i = 1, . . . , τ and N(0, σ2

2) for i = τ +
1, . . . ,m where τ denotes the unknown change-point. We also assume equally
spaced x’s. The model can also be written in matrix form in the obvious
way as

Y = Xβ + u, Cov(Y ) = V (2)

We consider likelihood ratio tests (lrt’s) of the hypothesis of no change,
H0 : β0 = β1 and α0 = α1, against the alternative HA: there exists a
j(1 ≤ j < m) such that β0 6= β1 or α0 6= α1.
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2 Approximations and Simulations

Firstly, consider the model given in equation (1), where V = σ2I i.e ρ = 0.0
and σ2

1 = σ2
2 . Let AT1 = (1,−1, 0), AT2 = (0, 1, 0,−1), Y T = (y1, . . . , ym),

X1i =



1 0 x1

...
...

...
1 0 xi
0 1 xi+1

...
...

...
0 1 xm


, X2i =



1 x1 0 0
...

...
...

...
1 xi 0 0
0 0 1 xi+1

...
...

...
...

0 0 1 xm


Kim and Siegmund (1989) showed -2log(likelihood ratio) statistic for H0

versus HA (generalized slightly) is of the form

ˆσ−2 max
m0≤i≤m1

(U2
1,m(i) + U2

2,m(i)) (3)

where σ̂2 is the mle of σ2 under the null model and for µ = 1 or 2

Uµ,m(i) = A′µ(X ′µ,iXµ,i)
−1X ′µ,iY/[A

′
µ(X ′µ,iXµ,i)

−1Aµ]1/2 (4)

For µ = 1 or 2, λ = 1 or 2, let,

Cλ,µ(i, k) = σ−2 Cov[Uλ,m(i), Uµ,m(k)] (5)

Kim (1988) shows that taking limits in this equation gives the covariances
of the process (U1,m([mt]), U2,m([mt])), 0 < t < 1. These will be denoted
by λ11(t, s), λ12(t, s), λ21(t, s), λ22(t, s). She then shows the probability that
the random variable in equation (3) exceeds b2 is given by

p2 ≈ (2π)−1b2(1− b2/m)(m−6)/2

∫ t1

t0

∫ 2π

0

µ(t, θ)ν

[
(
2c2µ(t, θ)

(1− c2)
)(0.5)

]
dθdt (6)

where c = b/
√
m, Φ denotes the standard normal distribution function,

ν(x) = 2x−2exp
[
−2Σ∞n=1n

−1Φ(−1/(2x
√
n))
]
, x > 0 and

µ(t, θ) =
−d
ds
λ11(t, s)|s=t + sin2(θ)A1(t)− cos(θ)× sin(θ)A2(t), (7)

A1(t) = −
[
d

ds
λ22(t, s)|s=t −

d

ds
λ11(t, s)|s=t

]
, A2(t) =

[
d

ds
λ12(t, s)|s=t +

d

ds
λ21(t, s)|s=t

]
This simplifies to

µ(t, θ) =
.5 + [1− 6t(1− t)]sin2(θ)−

√
3(2t− 1)cos(θ)sin(θ)

t(1− t)(1− 3t(1− t)) (8)
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for V = σ2I and xi = i/m, (i=1,. . . ,m).
Now consider the model (1) where ρ is not necessarily 0 and σ2

1 not neces-
sarily equal to σ2

2 . It can be shown that it is possible to find a unique non-
singular symmetric matrix P such that P ′P = PP = P 2 = V = Cov(Y ).
Writing f = P−1u then f ∼ N(0, I). If we pre-multiply equation (2) by
P−1 we obtain a new model
Z = P−1Y = P−1Xβ + P−1u = Qβ + f. We apply equations (3-7) to this

new model with x replaced by ˆP−1
i x in Qµ,i where ˆP−1

i is the mle of P
assuming the change-point is at i, and the degrees of freedom is adjusted to
(m-8). To compute the p-value, we evaluate the covariances in equation (5)
by sample values, the derivatives in equation (7) by discrete sample ap-
proximations and integrals by Riemann sums.
Note using these p-values approximate confidence intervals for the change-
point can be found using Worsley’s (1986) method. This includes j in a
(1−α) confidence region if the lrt’s for no change in [0, j − 1] and in [j,m]
are both accepted at significance levels greater than 1− (1− α)0.5 ≈ α/2.

In a 10,000 repetition Monte Carlo experiment, sample sizes m=20 and
40 were considered, with xi = i/m(i = 1, . . . ,m) and ρ = 0, .1, .4, and .7.
The 90th, 95th and 99th percentiles of the distribution of the statistic in
equation (3) were estimated by means of the experiment and the p-values of
equation (6), with (7) and (8) respectively, evaluated at the estimated per-
centiles. In the case ρ = 0 both approximations were similar and for m=40
gave values 0.11,0.05 and 0.01. The approximation (6) with (8) was very
poor for correlated data as to be expected while agreement by equation (6)
with (7) was good especially for m=40 and smaller probabilities.

3 Examples

3.1 Physiology data

Kelly et al. (2001) describe data from healthy subjects undergoing incre-
mental ramp exercise (20 W· min−1) on a bicycle to the limits of tolerance.
Oxygen uptake (V̇ O2) and carbon dioxide output (V̇ CO2) are measured on
a breath-by-breath basis. At a point, known as the gas exchange threshold
(GET), the linear relationship between V̇ CO2 and V̇ O2 changes and be-
comes steeper, as the subject switches from aerobic to a mixture of aerobic
and anaerobic metabolism. The GET i.e. change-point is found on (nor-
malised) breath number. For subject 1, the mle of the GET is 198 assum-
ing both correlated observations and a variance change at the change-point
and using equation (6) with (7), the p-value of the lrt for a change-point
is 0.0006. The associated 95% confidence interval is the single point (198).
This is not surprising, as Kelly et al. (2001), using a somewhat different
model, found the bootstrap distribution of the estimated change-point had
a large single mode. Wyse and Kelly (2008) using Bayesian methods with
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independent flat priors for the regression parameters, a discrete uniform
prior for the change-point and a uniform prior on (−1, 1) for ρ, got a cred-
ible interval of (188,200) with an extremely small pseudo-Bayes factor i.e.
strong evidence for a change-point. Bai’s (1997, Section D, 3., based on
asymptotic approximations to Wald type statistics) method gave an inter-
val of (178,205). The differing results indicate that some methodological
problems remain even with respect to simple change-point estimation.

3.2 Quandt data

For these simulated independent data, described in Quandt (1958), the ex-
act p-value (by simulation) for the lrt for a change-point is 0.045. Using
equation (6) with (8) the p-value is 0.048 and with (7) is 0.047 with 95%
confidence interval (5,15) in both cases. Bai’s method gave the interval
(7,15). Wyse and Kelly (2008) with flat priors reported a credible inter-
val (6,16). As the true p-value of the lrt is close to 0.05 the widest 95%
confidence interval is perhaps to be preferred here.

Acknowledgments: This research was partly supported by Science Foun-
dation Ireland grant 06/RFP/MAT024.
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1 Introduction

Multiple outcomes, both continuous and discrete are routinely gathered
on subjects in longitudinal studies. During IWSM 2010 (Komárek, 2010),
we introduced a model-based statistical method for clustering (classifica-
tion) of subjects into a prespecified number of groups with apriori unknown
characteristics on basis of repeated measurements of all longitudinal out-
comes. The methodology is complemented also by a software implementa-
tion, namely extension of the R (R Development Core Team, 2011) package
mixAK (Komárek, 2009) which was only briefly mentioned in the IWSM
2010 presentation. Hence, it is the main purpose of the poster to show
in more details capabilities (extended in the meantime) of the R package
mixAK for the purpose of clustering based on multivariate continuous and
discrete longitudinal data.

2 Methodology

The methodology is based on modelling the evolution of each longitudinal
outcome using the classical generalized linear mixed model (GLMM) where
we capture possible dependence between the values of different outcomes by
specifying a joint distribution of all random effects involved in the GLMM
for each response. The basis for subsequent clustering is provided by as-
suming a heteroscedastic mixture of multivariate normal distributions in
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the random effects distribution where each mixture component corresponds
to one cluster in subsequent classification. Mainly for computational rea-
sons, the inference is based on a Bayesian specification of the model and
simulation based Markov chain Monte Carlo (MCMC) methodology. This
allows us to calculate characteristics of the posterior distribution of individ-
ual component probabilities (probabilities that a random effects vector for
particular subject was sampled from a specific mixture component) which
define the classification rule. Not only point estimates represented by pos-
terior means or medians are calculated but also credible intervals which
allows us also to evaluate uncertainty in the classification. See Komárek
and Komárková (2011) for methodological details.

3 Data and Model

The use of the package will be illustrated on the analysis of the data from
a Mayo Clinic trial on 312 patients with primary biliary cirrhosis (PBC)
conducted in 1974–1984 (Dickson et al., 1989). We will consider only pa-
tients (i = 1, . . . , N , N = 260) who survived without liver transplantation
the first 910 days of the study and conduct the cluster analysis on basis of
the longitudinal measurements of (i) continuous logarithmic serum biliru-
bin (Yi,1,j), (ii) discrete platelet count (Yi,2,j), (iii) dichotomous indication
of presence of blood vessel malformations in the skin (Yi,3,j) available by
the pre-specified time point of 910 days. For all markers, j = 1, . . . , ni,r,
where ni,r, r = 1, 2, 3 is the number of available observations for patient
i and marker r. The following multivariate GLMM with (i) Gaussian, (ii)
Poisson and (iii) Bernoulli distribution, respectively, will be considered to
illustrate the use of the clustering procedure based on the observed values
y = (y1,1,1, . . . , yN,3,nN,3)> of all outcomes for all patients:

E(Yi,1,j | bi,1,1, bi,1,2) = bi,1,1 + bi,1,2 ti,1,j ,

log
{
E(Yi,2,j | bi,2,1, bi,2,2)

}
= bi,2,1 + bi,2,2 ti,2,j ,

logit
{
P(Yi,3,j = 1 | bi,3, α3)

}
= bi,3 + α3 ti,3,j ,

 (1)

where ti,r,j is the time in months from the start of follow-up when the
value of Yi,r,j was obtained. Further, bi = (bi,1,1, bi,1,2, bi,2,1, bi,2,2, bi,3)>

is a vector of patient specific random effects and α3 is a fixed effect. The
model further involves unknown residual variance σ2

1 from the mixed model
on the first line of expression (1), where a Gaussian distribution is assumed.

In a sequel, let ψ =
(
α3, σ

2
1

)>
be a vector of unknown GLMM related

parameters. The random effects vectors b1, . . . ,bN are assumed to be i.i.d.
with a density

p(b |θ) = |S|−1
K∑
k=1

wk ϕ
(
S−1(b− s)

∣∣µk, Dk

)
, (2)
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where ϕ(· |µ, D) is a density of the (multivariate) normal distribution with
mean µ and a covariance matrix D, and θ =

(
w1, . . . , wK , µ

>
1 , . . . ,µ

>
K ,

vec(D1), . . . , vec(DK)
)>

is a vector of unknown mixture related parame-
ters. Finally, s is a fixed shift vector and S a fixed diagonal scale matrix
which are included in the model mainly due to a possibility of improving
the mixing and numerical stability of the MCMC algorithm which is used
to obtain a sample from the posterior distribution p

(
ψ, θ

∣∣y) derived from
the likelihood and a weakly informative prior distribution p(ψ, θ) for the
model parameters.
Mixture model (2) can also be specified hierarchically if we introduce latent
component allocations u = (u1, . . . , uN )> and then write p(b |θ, u = k) =
|S|−1 ϕ

(
S−1(b− s)

∣∣µk, Dk

)
, P(u = k |θ) = wk, k = 1, . . . ,K. This allows

us to develop a clustering procedure which is based on characteristics of
the posterior distributions (posterior means, medians, credible intervals) of
the individual component probabilities

pi,k(ψ, θ) = P
(
ui = k

∣∣ψ, θ, yi), i = 1, . . . , N, k = 1, . . . ,K, (3)

where yi denotes a vector of all observed outcomes for the ith patient.

4 R Package Capabilities

As stated in Introduction, it is the main purpose of the poster to illustrate
how the R package mixAK can be used to apply the proposed clustering
methodology in practice. Suppose that the data are stored in a data.frame
called pbc with columns lbili, platelet and spiders holding the ob-
served values of considered longitudinal markers (one row for each visit),
column id which identifies the patients and column month which gives the
time of the visit in months. The sample of size M = 10 000 from the poste-
rior distribution of parameters of model (1) with the mixture distribution
(2) for random effects with K = 2 components and weakly informative prior
distribution with default values for fixed hyperparameters is obtained by
running MCMC (1 000 burn-in iterations, 1:100 thinning) using the follow-
ing command:

library("mixAK")

mod <- GLMM_MCMC(y = pbc[, c("lbili", "platelet", "spiders")],

dist = c("gaussian", "poisson(log)", "binomial(logit)"),

id = pbc[, "id"],

x = list("empty", "empty", pbc[, "month"]),

z = list(pbc[, "month"], pbc[, "month"], "empty"),

random.intercept = c(TRUE, TRUE, TRUE),

prior.b = list(Kmax = 2),

nMCMC = c(burn = 1000, keep = 10000, thin = 100, info = 1000))

By extending the prior.b argument, the user is able to modify the default
values of the parameters of the prior distribution.
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It is well known that the posterior distribution is invariant towards K!
possible label switching of mixture components which if not taken into
account prevents us from using the MCMC sample for clustering. This
issue can be solved by applying a suitable re-labelling algorithm (see, e.g.,
Stephens, 2000) which is provided by running

mod <- NMixRelabel(mod, type="stephens", keep.comp.prob=TRUE)

The object mod now includes sampled values of model parameters and some
derived quantities. These include, among other things, posterior sample of
individual component probabilities (3), their posterior means and selected
quantiles, all of them needed for clustering, posterior sample of observed
data deviances useful for subsequent model selection including selection of
a number of mixture components, posterior sample of moments of the mix-
ture distribution (2) which can be used to calculate and plot longitudinal
profiles of typical patients, both overally or cluster specific. The package
further includes easy to use routines for visualisation and reporting of the
results and we illustrate their use on the poster.

Acknowledgments: The work on this paper has been supported by the
grant GAČR 201/09/P077, Czech Science Foundation and the grant MSM
0021620839, Ministry of Education, Youth and Sports of the Czech Repub-
lic.
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Abstract: An additive model for the location, dispersion and the conditional
distribution of a continuous interval-censored response was presented in Lambert
(2010). P-splines (Eilers and Marx, 1996) and Bayesian arguments (Jullion and
Lambert, 2007) are used to estimate the three components in the location-scale
model. Monte-Carlo Markov chains are generated to explore the joint posterior
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the smoothness of the functional components in the model.
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for the penalty parameters on the quality of the inference. An extension to deal
with interval censored covariates in the additive model will also be presented. We
conclude with illustrative examples.

Keywords: Interval censored data ; additive model ; location-scale model ; P-
splines ; smooth distribution.

1 Introduction

If Y is a continuous response, Xµ, Xσ a set of continuous covariates (with
values on (0,1), say) and Zµ, Zσ a set of categorical covariates, the location-
scale model assumes that

Y = µ(Xµ, Zµ) + σ(Xσ, Zσ)ε (1)

where ε is independent of the covariates, µ(Xµ, Zµ) denotes the unknown
regression surface and σ(Xσ, Zσ) enables to depart from the homoskedastic
case.
Assume the following additive model for the conditional location and dis-
persion of Yi given (xµi , z

µ
i ) (i = 1, . . . , n):

µ(xµi , z
µ
i ) =

J1∑
j=1

fµj (xµij) +

βµ0 +

p1∑
j=1

βµj z
µ
ij

 , (2)
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log σ(xσi , z
σ
i ) =

J2∑
j=1

fσj (xσij) +

βσ0 +

p2∑
j=1

βσj z
σ
ij

 (3)

Provided that these are smooth, the functional forms in µ(xµi , z
µ
i ) and

σ(xσi , z
σ
i ) can be approximated using a linear combination of the elements

of a (large) B-splines basis {sl(·) : l = 1, . . . , L} (see Brezger and Lang,
2006, in a GLM setting):

fµj (xµij) =

L∑
l=1

sl(x
µ
ij)θ

µ
lj ; fσj (xσij) =

L∑
l=1

sl(x
σ
ij)θ

σ
lj .

Given ψ = (βµ,Θµ, βσ,Θσ), one can associate to each observation,

{(xµi , zµi ), (xσi , z
σ
i ), yi},

the residual εi(ψ) such that

εi(ψ) =
Yi − µ(xµi , z

µ
i )

σ(xσi , z
σ
i )

.

The location-scale model assumes that ε1, . . . , εn are i.i.d. with density fε.
Using a generous cubic B-splines basis on the support of ε and a partition
of that support into a large number (100, say) of consecutive bins {Jj :
j = 1, . . . , J} of equal width ∆ with midpoints uJj=1, one can approximate
the density through∫

Jj
fε(e)de = πj =

exp([Bφ∗]j)∑L
`=1 exp ([Bφ∗]`)

≈ fε(uj)∆

(Lambert and Eilers, 2009).
If nj = nj(ψ) (j = 1, . . . , J) denotes the number of observed εi(ψ)’s
(i = 1, . . . , n) belonging to bin Jj , then the conditional joint distribution
of (N1(ψ), . . . , NJ(ψ)) is multinomial Mult(n;π1(φ), . . . , πJ(φ)). Therefore,
the log-likelihood will be

logL(ψ, φ|D) =

J∑
j=1

nj(ψ) log πj(φ).

where D stands for the available data.

2 Penalties and Bayesian formulation

The flexibility provided by the large numbers of B-splines to describe the
additive components in location and dispersion as well as the density fε
can be counterbalanced by a roughness penalty in a frequentist setting
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(Eilers and Marx, 1996). In a Bayesian framework, it translates into prior
distributions on the spline coefficients:

p(φ|τφ) ∝ (τφ)K/2 exp
(
−0.5τφ φ′Pφφ

)
, (4)

p(θµj |τµj ) ∝ (τµj )L/2 exp
(
−0.5τµj (θµj )′Pµθµj

)
, 1 ≤ j ≤ J1 (5)

p(θσj |τσj ) ∝ (τσj )L/2 exp
(
−0.5τσj (θσj )′Pσθσj

)
, 1 ≤ j ≤ J2 (6)

3 Interval censored responses

Assume that the data take the form {(xi, zi, (yLi , yUi )} with an interval for
the response. Then, the standardized intervals are (εLi , ε

U
i ) where

εLi =
yLi − µ(xµi , z

µ
i )

σ(xσi , z
σ
i )

. ; εUi =
yUi − µ(xµi , z

µ
i )

σ(xσi , z
σ
i )

.

If cij is the proportion of bin Jj contained in (εLi , ε
U
i ), then the log-

likelihood is

logL(θ|data) =
I∑
i=1

log

 J∑
j=1

cijπj

 .

A Metropolis-within-Gibbs algorithm can be used to sample the joint pos-
terior. From the generated chain, one can build point estimates and credible
regions for the spline parameters and any derived quantity.

4 Further extensions

It also happens that some of the covariates are interval interval censored.
Assuming a random design for such a covariate, a B-spline approximation
to its density can be set up, see Lambert & Eilers (2009). For each unit of
observation, an extra step in the Metropolis algorithm is used to sample a
value for the covariate within the reported interval. Conditionally on that
quantity, one is back to the setting in Lambert (2010).
The quality of Laplace approximations to the posterior distribution of
splines coefficients and the impact of the substitution of evidence based
estimates for the penalty parameters on the quality of the inference will
also be discussed.

5 Application

The data of interest are the number of marriages in Belgium (in 2006)
for given ages of the spouses when the husband already divorced. Ages
are reported in one of 11 categories of width 2, 5 or 10 years. Our goal is
describe how the distribution of the age of the spouse is changing with that
of the partner. The estimated deciles for such a model are shown on Fig. 1
together with the starting contingency table.
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FIGURE 1. Estimated deciles for the age of a spouse conditionally on the age of
the partner.
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Abstract: In medical diagnostics, it is important to measure the effectiveness
of a biomarker for classifying individuals in two groups (healthy versus diseased)
and to determine the optimal threshold to perform this classification. In order
to do so, we propose a second order delta method for estimating the Youden
index and its associated threshold value. We also include confidence intervals for
both of them. In the simulation study, we compare our new approach with the
traditional first order delta method under different scenarios. Finally, the new
methodology is illustrated using a real example of prostatic cancer, well-known
in the literature.

Keywords: Box-Cox transformation; ROC curve; Youden index.

1 Introduction

The effectiveness of a binary biomarker is described by the sensitivity (‘true
diseased subjects’) and the specificity (‘true healthy subjects’). When a
continuous biomarker, Y , is used, we need to choose a cut-off (‘threshold’)
value c in order to consider an individual with Y > c as diseased and
an individual with Y ≤ c as healthy. With the help of a cut-off point
c, we can define the sensitivity q(c) and the specificity p(c). Plotting the
pairs (1− p(c), q(c)), we construct the ‘Receiver Operating Characteristic’
(ROC) curve, which is usually summarized with the global index of the
area under this curve (AUC) (see, for example, Pepe, 2003). Sometimes
there are available several continuous diagnostic variables and it is usual
to combine them into a univariate biomarker (see, for example, Pepe et al.,
2006, and Ma and Huang, 2007). From here on, we will assume that we are
in the univariate case.
A key point in this methodology is to find an optimal threshold, in order
to maximize the effectiveness of the biomarker. There are two main meth-
ods for identifying the optimal cut-off point: the northwest corner and the
Youden index (see Le, 2006, Perkins and Schisterman, 2006, and Letón and
Molanes-López, 2009, among others).
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The Youden index J , is defined as

J = max{J(c); c ∈ <} ,

where

J(c) = q(c) + p(c)− 1 = F̄1(c) + F0(c)− 1 = F0(c)− F1(c),

F0 and F1 are the cumulative distribution functions (cdf’s) of the biomarker
Y0 in the healthy population and of the biomarker Y1 in the diseased pop-
ulation, respectively, and F̄0 and F̄1 are their complementary ones.
This work is organized as follows. In Section 2, we introduce a second or-
der delta method for estimating J and c, and their confidence intervals. In
Section 3, we perform a simulation study under different scenarios, where
we compare our approach with the traditional first order delta method. Fi-
nally, in Section 4, the new methodology is illustrated using a real example
of prostatic cancer, well-known in the literature.

2 Methodology

The main application of the delta method is for constructing approximate
confidence intervals (see, for instance, Miller, 1981, Graybill, 1983, and
Collet, 2003). In the context of ROC curves, the variance of the Youden
index and the associated threshold has been approximated using a first
order delta method under the binormal and bigamma models (see Schister-
man and Perkins, 2007), providing the following asymptotic (1 − α)100%
confidence intervals for J and c:

CI(1−α)100%(J) = Ĵ ∓ z1−α/2

√
V̂ar[Ĵ ],

CI(1−α)100%(c) = ĉ∓ z1−α/2

√
V̂ar[ĉ],

where Ĵ and ĉ are maximum likelihood estimates of J and c, respectively,
and z1−α/2 refers to the (1 − α/2)-quantile of the standard Gaussian dis-
tribution, N(0, 1).
In this section, we define a modified version of the delta method based
on a second order term on Taylor series expansion. Let θ̂ be the vector
of maximum likelihood estimates of the parameters involved in the para-
metric model assumed for the biomarker. Under the assumption that the
distribution of θ̂ is known, the second orden approximated variance of Ĵ is
given by

Var(Ĵ) ≈ DJ
θ̂

T
Σθ̂D

J
θ̂

+DJ
θ̂

T
E[(θ̂ − E[θ̂])(âθ̂ − bθ̂)]

+
1

4
E[(âθ̂ − bθ̂)2], (1)
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where Σθ̂ is the variance-covariance matrix of θ̂, DJ
θ̂

is the Jacobian matrix
of J ,

âθ̂ = (θ̂ − E[θ̂])THJ
θ̂

(θ̂ − E[θ̂]), bθ̂ = tr(HJ
θ̂

Σθ̂),

with HJ
θ̂

denoting the Hessian matrix of J and tr(A) referring to the trace

of the matrix A. When θ̂ is normally distributed, (1) can be rewritten in a
simple way as follows

Var(Ĵ) ≈ DJ
θ̂

T
Σθ̂D

J
θ̂

+
1

2
tr

((
HJ
θ̂

Σθ̂

)2
)
. (2)

Analogously, the variance of ĉ can be approximated by replacing DJ
θ̂

and

HJ
θ̂

in (1)-(2) by Dc
θ̂

and Hc
θ̂
, the Jacobian and Hessian matrices of c,

respectively.

3 Simulation study

A study of interval width, interval coverage and consistency of the point
estimates is done through a simulation study based on different sample
sizes and several scenarios, previously considered in Fluss et al. (2005).
These scenarios cover different real situations, such as symmetry, skewness
and distributions outside and inside the Box-Cox transformation family.
Details of these scenarios are given in Table 1, where we use the nota-
tion Y = Normal−1/3 to indicate that Y −1/3 is normally distributed and
Y = Lognormal to indicate that lnY is normally distributed. Besides, µi,
σ2
i refer to the mean and variance of a normal distributed population, re-

spectively, and αi > 0 and βi > 0 are the shape and scale parameters of a
gamma distributed population, respectively, for i = 0, 1. The simulations
are carried out in MATLAB.

TABLE 1. Parameters under the binormal and bigamma models

Y0 and Y1 µ0 σ2
0 σ2

1 µ1 corresponding to J(AUC)
0.4 (0.739) 0.6 (0.865) 0.8 (0.958)

Normal 6.5 0.09 0.25 6.873 7.143 7.505
Normal−1/3 3.5 0.09 0.25 3.127 2.857 2.495
Lognormal 2.5 0.09 0.25 2.873 3.143 3.505

β0 α0 α1 β1 corresponding to J(AUC)
0.4 (0.765) 0.6 (0.873) 0.8 (0.956)

Gamma 2 2 2 4.345 7.002 13.828

The second order confidence intervals have good performance in terms of
nominal coverage and width, being superior to the first order delta method,
recently used by Schisterman and Perkins (2007).
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4 Example

The new methodology is illustrated with a real example of 53 patients with
prostate cancer: 20 out of them with nodal involvement and 33 without.
The biomarker used in this example is the level of acid phosphatase in blood
serum (×100). More details of this dataset can be found in Le (2006).
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Abstract: This paper describes the use of nonlinear mixed effect modeling to
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tern.
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1 Introduction

The swift tern (Sterna bergii) is a nomadic seabird species dispersed around
the southern African coastlines(Cooper et al., Hockey et al.,2005). The
data used in this study refers to swift tern chicks on Robben Island, off
the south-west coast of South Africa. It consists of measurements of body
mass(grams), wing length(mm), foot length(mm), head length(mm) and
culmen length(mm) taken on several unequally spaced occasions during
the period May to June 2001. Chicks were not all measured from day of
hatching and thus the time of measurement is not equivalent to age. From
a sample of 253 chicks, only 34 chicks were followed from nestling stage
and the remainder were first captured when they were already runners (Le
Roux,2006).
Of interest was to model the growth patterns of the individual body features
and to compare these patterns between features. We fitted and compared
several parametric growth functions to the body features, individually and
simultaneously.

2 Methodology

Empirical data plots showed that s-shaped and concave growth curves were
applicable for our data. Four growth models, Gompertz, logistic, Richards
and inverse exponential were fitted using nonlinear mixed effect models to
account for the repeated measures within each individual bird using the
nlme function in R (R Development Core Team, 2006). The choice of best
fitting model was based on likelihood ratio tests and Aikaiki’s information
criterion. Our model building, estimation and validation approach followed
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that described by Pinheiro and Bates (2000. In this paper we focus mainly
on the methodology and results for the logistic model. Prior to fitting the
growth model, we had to estimate age at time of hatching for the individual
birds.

2.1 Age determination

For the 34 nestling birds we assumed that age at first capture was two
days and fitted a logistic model to the body mass for these nestling birds
to obtain estimates of the parameters α, µ and β. We assumed that the
growth rate parameters (µ and β) were the same for all birds and that
individuals should only differ with respect to their asymptotic weights,
thus allowing α = α̂ + ∆αi. The growth curve for the runner birds was
thus specified as

yit =
α̂+ ∆αi

1 + exp(− t+∆ti−µ̂
β̂

)
.

We estimated ∆ti and ∆αi by minimizing the sum of absolute residuals,
while constraining their values to the following ranges: ∆αi = α̂ ± 55 and
∆ti = 2±30. We used the optim function in R (R Development Core Team,
2006).

2.2 Logistic model

We fitted a single logistic growth model for all six body features by adding
a categorical covariate to the model that discriminated between the six
body features, leading to the following model formulation:

yijk =
α

1− exp(− tijk−µβ )
+ εijk

with
εijk ∼ N(0, Rik),

where

α = α1 + Σ6
k=2τkαk + b1i

µ = µ1 + Σ6
k=2τkµk + b2i

β = β1 + Σ6
k=2τkβk + b3i,

where τk is an indicator variable equal to 1 if feature equals k, zero oth-
erwise (except for k=1 when τk = 0) and αk, µk and βk are differences in
parameter values for feature k compared to parameter values for feature 1.
We chose body mass as the reference category k = 1. Random effects bi
were assumed to be independent and following a Normal distribution with
mean zero and diagonal variance-covariance matrix D. A variance function
was fitted to the within bird errors such that the variance increased as a
power of the fitted values, var(εij) = σ2|µij |2δk and we imposed a first
order autoregressive correlation structure on the within-bird errors.
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FIGURE 1. (a)Predicted curves obtained from univariate inverse exponential
(blue dotted line), univariate (red line) and simultaneous(dotted green line) lo-
gistic growth models superimposed on growth data for six body features of Swift
terns and (b)Scaled predicted growth curves obtained from the simultaneous lo-
gistic growth models for the six body features of Swift terns

3 Results

The results from the simultaneous logistic models are illustrated in Figure
1a. The multivariate logistic model provides an easy and meaningful multi-
ple comparison of growth rates between features as all growth parameters
have the same units(days) irrespective of units of the features. Table 1 pro-
vide pairwise differences between features with respect to time to reach half
of their asymptote values. A feature in a given row is compared to a feature
in any column. For instance, 15.07 (second row and first column) indicates
that for a wing it took 15.07 days longer to reach half of the maximum wing
length than it took for body mass to reach half of its asymptotic value.
For each body feature, the estimates obtained from the logistic model were
scaled by dividing the predictions by their asymptotic value. The scaled
values were plotted against time to produce Figure 1b, which describes
and compares growth of different body features. From this figure it is es-
timated that ±20 days after hatching, the foot and tarsus of a tern chick
have attained maximum length. For the head, culmen and body mass, it
appears that their growth is completed approximately within 50 days. The
wing takes longer to reach the maximum length relative to the other body
parts and is still not completed at the end of 60 days. From these ob-
servations it may be deduced that growth of the swift tern body features
follow the following order: (foot,tarsus) - (body mass, bill head) - wing.
This growth patterns seems to be justified as it responds to the gradual
adaptation of a chick to environmental conditions: adapt to the life in the
ceche first (through developed feet and tarsus), followed by developing the
capability of getting food on its own(with a developed culmen), and finally
the development of wings so that a chick can fly.
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TABLE 1. Estimates of differences (in days) (with standard errors) between body
features with respect to growth parameter u.

Feature Mass Wing Culmen Head Tarsus

Mass

Wing 14.11(0.30)

Culmen -11.08(0.36) -25.20(0.40)

Head -14.13(0.24) -28.24(0.30) -2.97(0.39)

Tarsus -16.70(0.51) -30.82(0.54) -5.66(0.60) -2.57(0.50)

Foot -19.90 0.44) -34.02(0.48) -8.89(0.54) -5.77(0.42) -3.20(0.59)

4 Discussion

To fit growth curves to multiple responses simultaneously, we have used a
different approach from that used in Davidian and Giltinan (1995). Our
approach can be used provided the same structural function is valid for
all responses. We coped with heteroscedasticity by using feature-specific
powers in the variance function. We specified the same within-subject cor-
relation matrix for each feature but we were not able to include estimates
of correlations from measurements from different features. The differences
in scales for different features is to some extent taken into account by the
fixed effect parameters in the model and to some extent by different powers
for the variance function.
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Abstract: High maternal mortality rate is still one of the main health problems
in developing countries. In this study, the objective was to investigate factors
related with institutional maternal mortality in Mozambique. We used data from
the “Needs in Maternal and Infant Health” survey and applied Zero inflated
models for count data to model the mortality rate. Particularly, we compared
zero-inflated Poisson with zero-inflated negative binomial and their extensions
to account for hierarchy or clustering in the data. Results indicate a better fit
for zero-inflated negative binomial with regional differences and rural areas being
related to an increase in maternal mortality rate. In addition, the mortality rate
tends to increase within health centers with an increase in HIV cases, implying
a poor management of these cases within these centers.
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1 Introduction

Since the launch of Safe Motherhood Initiative in 1987 and the addition of
maternal mortality in the Millennium Development Goals (MDG 5), ma-
ternal mortality has increasingly received a special attention by the various
governments worldwide. Mozambique’s recent statistics showed a high ma-
ternal mortality rate of about 408 deaths per 100 000 live births in 2003,
even though the rates tend to decrease since 1990. Obstetric complications
are the most common cause of maternal deaths (Romagosa et al., 2007)
in the country. This is mostly due to lack of infra-structures and human
resources (Cutts et al. 1996), which in many situations requires referrals
of patients to larger and better health centers. The transfers to another
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centers makes it possible that many other centers will report zero deaths
during a period of time, thus the data presenting more excessive zero counts
than expected.
In these cases, zero-inflated models have been suggested to model such
count outcomes and some extensions (Ridout et al. 1998; Hall, 2000; Lee
et al, 2006). The most frequently used models are the zero-inflated Pois-
son (ZIP) and zero-inflated negative binomial (ZINB). An inflated model
assumes that for each observation, there are two possible data generation
processes with different probabilities: one generates the zero and the other
the Poisson or negative binomial counts. A Bernoulli model is used to de-
termine which of the two processes is used. The negative binomial distribu-
tion is a good alternative to Poisson distribution whenever overdispersion
is present. Hall (2000) and Lee et al (2006) extended the ZIP models to ac-
count for heterogeneity or correlated data, due to multi-level or hierarchical
designs by introducing random effects into the ZIP models.
In this study, these models are applied aiming at investigating factors re-
lated with the maternal mortality within health centers. Specifically, we
investigated the effect of geographical location (region and district), type of
health center, existence of emergency obstetric care, waiting house, propor-
tion of HIV and malaria cases (over obstetric admissions), ratio of medical
doctors (over total medical staff) on institutional maternal mortality rate
defined here as maternal deaths over obstetric admissions. The data used
come from the Needs in Maternal and Infant Health survey, with a national
wide coverage which included 450 health centers of different types.

2 ZIP and ZINB models

Let Yij be the number of maternal deaths in the ith province and jth health
center (i = 1, ...,m; j = 1, ..., ni). In the Poisson model, Yij is assumed to
follow a Poisson distribution with mean and variance E(Yij) = V (Yij) = µi.
From Figure 1, it is clear that the observed zero frequency is more than
expected under the Poisson distribution.
An alternative and commonly used approach for modeling excess zero fre-
quency is to assume that Yij is distributed according to a two component
mixture of a Poisson or negative binomial and a degenerated distribution
with mass 1 at 0 (Böhning, 1998). The general form of a zero-inflated model
is as follows:

P (Yij = y) =

{
pi + (1− pi)f(yij) yij = 0

(1− pi)f(yij) yij > 0
, (1)

with pi the probability of a zero count and f(yij) the density of either
a Poisson or a negative binomial distribution. In this case, for both the
Poisson and the negative binomial, the E(Yij) = (1 − pi)µi = λi; the
Poisson variance equals V (Yij) = λi+(pi/(1−pi))λ2

i while for the negative
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FIGURE 1. Histogram of aggregated number of maternal deaths in health centers
in Mozambique from 2006-2007. The counts have been grouped to ease visualiza-
tion, but only crude counts were used in analysis.

binomial the variance is given by V (Yij) = λi + [(pi + ρ)/(1− pi)]λ2
i , with

ρ > 0 the dispersion parameter. The parameters pi and µi can be modeled
simultaneously while allowing for covariates effects via a canonical GLM
link as:

g1(µ) = log(µ) = η0 +XT
1 β, and gp(p) = logit(p) = XT

2 α, (2)

where g(.) is a link function linking µ = (µ1, µ2, . . . , µm)T and p = (p1, p2, . . . , pm)T

to the linear predictor and η0 is a vector containing the offset effect or
log(Eij), with Eij representing the number of obstetric admissions to the
health center or women at risk. The design matrices X1 and X2 con-
tains the covariates effects which may overlap, and α and β represents
the parameters vectors. The α parameters have interpretations in terms
of a covariate’s effect on the probability of no intra-health center maternal
deaths and the β’s have interpretations in terms of the effect on the mean
maternal mortality rate. The inclusion of covariates in the logit portion of
the model is due to the fact that in many applications no prior knowledge
about the structural zeros exists.
Due to the hierarchical study design, where hospitals were clustered within
provinces, extensions of the above models were considered, with random
effects being included in the log portion of the model in accordance with the
model suggested by Hall (2000), since no motivations for otherwise could
be found. Thus, conditional on the random effects (province effect) b, Yij
follows a distribution as in (1) and:

g1(µ) = log(µ) = η0 +XT
1 β + b, and gp(p) = logit(p) = XT

2 α, (3)
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Model −2ll AIC

Poisson model 2222.87 2260.87
Negative Binomial model 1030.61 1070.61
ZIP model 1634.14 1682.14
ZINB model 982.0 1032.0
ZIP with random effects (ZIPR) 1469.1 1519.1
ZINB with random effects (ZINBR) 982.0 1034.0

TABLE 1. Model fit comparison for Poisson and Negative Binomial models

where b = (b1, b2, ..., bm)T is a vector of random effects assumed to be
distributed according to a normal distribution with mean 0 and variance σ2.
The model then assumes independence between provinces, but not within.

3 Results

There were 364564 obstetric admissions registered in the sampled health
centers (416 excluding missing cases), from which resulted in 2367 maternal
deaths (ratio of 649 maternal deaths per 100,000 obstetric admissions).
About 68% were due to direct obstetric complications and 32% caused
by nonobstetric complications. Only 7.7% of maternal deaths occurred in
health centers of class 2 (health centers type II, III and health posts),
about 89.9% of all centers sampled, which also included class 1 centers
(hospitals and health center type I), much larger and located at the cities
or district capital. This low maternal death level may due to the fact that
class 2 centers were responsible for approximately 87.5% of referrals due to
obstetric complications to class 1 health centers.
Table 1 presents a comparison on the fit for the Poisson and Negative bino-
mials models considered for this analysis. A backward selection procedure
was used to select the variables using ZIP for the logistic part of the mod-
els, where only significant effects were retained in the model. We also used
the proportion of transferred patients (over total obstetric admissions) to
correct the estimates of referrals to and from health centers. Models with
a zero inflation seemed to improve the fit in both Poisson and Negative
binomial models. For ZINB model the inclusion of a province effect as ran-
dom effect were not significant (p-value=1.0, from χ2

0,1) unlike in ZIP with
random effects model (p-value¡0.0001, from χ2

0,1).
Parameter estimates and standard errors were compared for ZINB and ZIP
with random effects. The standard errors were generally large in the ZINB
as compared to ZIPR though note that the latter model has a hierarchical
interpretation. The dispersion parameter in the ZINB model, ρ = 1.21, was
found to be significant (p-value<0.0001, from χ2

0,1) indicating the adequacy
of the model for the overdispersion presented by the data.
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or the ZINB model, the odds of reporting no deaths were higher by exp
(0.97) 2.6 in the central region as compared to the south region. Also,
the odds of reporting no maternal deaths was exp(2.26) 9.5 higher for
health centers located outside the district capital than at the capital, and
reduced by 17% (exp(-0.19) 0.83) with 1% increase in the malaria cases
(p-value=0.09), while controlling for other covariates. For the log part, the
expected maternal mortality ratio increased by 10% (exp(0.10)) and 1%
(exp(0.01) with 1% increase in the HIV and malaria cases, respectively, for
the south region, though the latter was not significant. However, the effect
of type of health center was not found to be significant, unlike in the ZIPR
model. In addition, there was no significant waiting house or emergency
obstetric care effects. A comparison of models fit by plotting the predicted
counts versus the observed is presented below for the ZIPR and ZINB
models. It can be seen that the ZINB fitted the data considerably better
than the ZIPR model, though note that the prediction for the ZIPR model
referred to the case where bi = 0 and not population-averaged.

FIGURE 2. Comparison of model fit by plotting observed versus expected counts
for the ZIP model with random effects and the ZINB model.

4 Conclusion

This application showed the flexibility of zero-inflated Negative binomial
(ZINB) model to handle both overdispersion caused by excess of zero counts
as well as lack of independence, compared to zero-inflated Poisson model
with and without random effects. An explanation might be the fact that
inclusion of a dispersion parameter in the negative binomial model increases
the probabilities of both zero counts and non-zero counts, so that inclusion
of random effect did not improve the fit. Nevertheless, both models showed
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that probability for reporting no maternal deaths depended on geographical
location of the health center and proportion of malaria cases. This might
be due to a high number of health centers in the sample located outside the
district capital which tend to referral most of complicated cases to other
facilities. The ZINB model also showed that an increase in the proportion
of HIV will tend to increase the maternal mortality rate, reflecting a poor
management of patients with this disease. No significant effects for type
of health center, existence of emergency obstetric care, ratio of medical
doctors and waiting houses were found.
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Abstract: We compare and contrast the properties of the bivariate Weibull
and GTDL regression survival models. An analytic expression for the correlation
between times is derived for the Weibull model and a modified Kullback-Leibler
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1 Introduction

The Weibull model has the Proportional Hazards (PH) property. The Gen-
eralised time-dependent logistic model (GTDL), proposed by MacKenzie
(1996) is a wholly parametric competitor that can deal with non-PH data.
In the univariate time framework, these models were compared by Blago-
jevic at IWSM in 2003. A cluster is a group of objects sharing a common
unobserved characteristic called a frailty. We assume that within the ith
bivariate cluster, there is only one unobserved frailty, ui and that the unob-
served frailties follow a common distribution across clusters, ie, U ∼ g(u; ·).
If the frailty term, ui, were known, the observed bivariate times (t1i, t2i)
would be independent, whence f(t1, t2) = f(t1)f(t2), Hougaard(2000). We
further assume that this random frailty effect acts multiplicatively on the
hazard functions in the ith cluster.

2 Bivariate Weibull Model

For the jth. object in the ith bivariate cluster, the Weibull frailty hazard
function is:

λ(tij ;ui, θ) = uiρλ
ρ(tρ−1

ij ) exp(x′ijβ),

where θ = (λ, ρ, β); i = 1, . . . , n; j = 1, 2.

The corresponding survivor function is:

S(tij ;ui, θ) = exp{−ui
(
tρij
)
λρ exp(x′ijβ).
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The bivariate density of ti1 and ti2, inclusive of frailty, is given by:

f(ti1ti2;ui, θ) = λ(ti1, ti2;ui, θ)S(ti1, ti2;ui, θ); i = 1, . . . , n;

= (uiρλ
ρ)

2
(ti1ti2)ρ−1 exp{x′i1 + x′i2)β}

× exp [−ui{(ti1λ)ρ exp(x′i1β1) + (ti2λ)ρ) exp(x′i2β)}] .

The frailty density in the ith cluster is given by:

g(ui;σ
2) =

u
1
σ2−1

i exp
(−ui
σ2

)
Γ
(

1
σ2

)
(σ2)

1
σ2

.

This gamma frailty model has shape and scale parameters both equal to
1
σ2 . The expected value of the random effects is E(U) = 1

σ2 /
1
σ2 = 1 and the

variance is var(U) = 1
σ2 /(

1
σ2 )2 = σ2. This model was suggested by Clayton

(1985) for the analysis of correlation between clustered survival times in
genetic epidemiology.

2.1 Marginal Functions

The marginal bivariate Weibull density function of t1 = ti1, and t2 = ti2, for
i = 1, . . . , n is found by integrating the bivariate density over the random
effects, u = u1, . . . , un, and is given by:

fm(t1, t2; θ) = (1 + σ2)(ρλρ)2 exp(x′1β + x′2β)tρ−1
1 tρ−1

2

×
[
σ2λρ{exp(x′1β)tρ1 + exp(x′2β)tρ2}+ 1

]−(2+ 1
σ2 )

.

The marginal bivariate survival and hazard functions are then given by:

Sm(t1, t2; θ) =
[
σ2λρ{exp(x′1β)tρ1 + exp(x′2β)tρ2}+ 1

]− 1
σ2 .

λm(t1, t2; θ) =
(1 + σ2)(ρλρ)2 exp(x′1β + x′2β)tρ−1

1 tρ−1
2

[σ2λρ{exp(x′1β)tρ1 + exp(x′2β)tρ2}+ 1]
2 .

3 Bivariate GTDL Model

For the jth object in the ith bivariate cluster, the GTDL frailty hazard
function is:

λ(tij ;ui, θ) = λ0uipij ,

where pij = exp(tijα + x′ijβ){1 + exp(tijα + x′ijβ)}−1, θ = (λ0 > 0, α, β),
i = 1, . . . , n, and j = 1, 2.
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The corresponding survivor function is:

S(tij ;ui, θ) = (qijgij)
uiλ0
α ,

where qij = {1 + exp(tijα+ x′ijβ)}−1, and gij = 1 + exp(x′ijβ).

The bivariate density of ti1 and ti2, inclusive of frailty, is given by:

f(ti1ti2;ui, θ) = (uiλ0)
2
pi1pi2 (gi1gi2qi1qi2)

uiλ0
α .

3.1 Marginal Functions

The marginal bivariate GTDL density function of t1 = ti1, and t2 = ti2, for
i = 1, . . . , n is found by integrating the bivariate density over the random
effects, u = u1, . . . , un, and is given by:

fm(t1, t2; θ) = λ0
2(1 + σ2)p1p2

{
1− λ0σ

2

α
log (g1g2q1q2)

}−(2+ 1
σ2 )

.

The marginal bivariate survival and hazard functions are then given by:

Sm(t1, t2; θ) =

{
1− λ0σ

2

α
log (g1g2q1q2)

}− 1
σ2

.

λm(t1, t2; θ) =
λ2

0(1 + σ2)p1p2{
1− λ0σ2

α log (g1g2q1q2)
}2 .

4 Correlation between times

By calculating the first and second moments of T1 and T2, we can evalu-
ate the correlation between the two random variables as a function of the
parameters in the Weibull model. Then the correlation ρ∗ between T1 and
T2 is:

ρ∗(T1, T2) =

{
Γ
(

1 + 1
ρ

)}2
[
Γ
(

1
σ2 − 2

ρ

)
− {Γ( 1

σ2− 1
ρ )}2

Γ( 1
σ2 )

]
Γ
(

1 + 2
ρ

)
Γ
(

1
σ2 − 2

ρ

)
− {Γ(1+ 1

ρ )}2{Γ( 1
σ2− 1

ρ )}2
Γ( 1

σ2 )

. (1)

The correlation function depends only on the shape parameter, ρ, and the
frailty variance, σ2. It is independent of the scale parameter, λ, and the β
parameters of fixed effects.
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Correlation in bivariate Weibull frailty model

ρ [2.6 : 10]
σ

2
 [0.25 : 1.25]

ρ*

FIGURE 1. Correlation, ρ∗, as a
function of frailty variance, σ2, and
of shape parameter, ρ.

In Figure 1, it can be seen, without recourse to simulation, that higher
correlation is recorded at lower values of ρ and higher values of σ2, with
variations in the latter having the more potent effect on correlation. It is
not possible to find the moments in closed form in the bivariate GTDL
frailty model and thus the correlation function cannot be obtained analyt-
ically. Figure 2 shows how the sample correlation varies as a function of
the α and σ2 parameters in the bivariate GTDL model with λ0 = 1. The
correlation increases with increased frailty variance. The time-dependent
parameter α has no effect on the correlation.

 Sample correlation in bivariate GTDL model

α [0.01 : 0.1]
σ

2
 [0.05 : 2.72]

r*

FIGURE 2. 3-d graph of sample es-
timate of correlation, r∗, between
times as a function of parameters
in bivariate GTDL model.
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5 Dependence

The dependence between times can be measured by a modified Kullback-
Leibler (KL) divergence, i.e.:

KL = log

{ ∏n
i=1 fm(ti1, ti2)∏n

i=1 fm(ti1)fm(ti2)

}

=

n∑
i=1

log{fm(ti1, ti2)} −
n∑
i=1

log{fm(ti1)fm(ti2)}.

If times are independent, the KL value is 0, while higher KL values are
indicative of dependence between times. Using simulation, we show that
this result holds for both the bivariate Weibull and GTDL models. While
the analytical correlation in the case of the Weibull model is dependent
on ρ and σ2, the KL value in both models is dependent only on σ2. In
Table 1, we see that as σ2 increases, the KL divergence and the correlation
between bivariate Weibull times increase. The correlation is reduced by
higher values of the shape parameter ρ. In Table 2, with λ0 = 1, γ1 =

TABLE 1. Results for bivariate Weibull frailty model: model parameters
(and MLEs), exact Kullback-Leibler(KL) values, sample estimate, r∗, of
ρ∗ based on simulated data, and MLEs of ρ∗ across ten scenarios.

Scenario λ(λ̂) ρ(ρ̂) σ2(σ̂2) KL r∗n=200 ρ̂∗
n=200

1 1.1(1.099) 2.6(2.61) 0.05(0.05) 0.24 0.04 0.05
2 1.1(1.100) 10(10.04) 0.05(0.05) 0.24 0.03 0.03
3 1.1(1.099) 2.6(2.61) 0.37(0.37) 8.87 0.31 0.30
4 1.1(1.100) 10(10.03) 0.37(0.37) 8.89 0.24 0.24
5 1.1(1.100) 2.6(2.61) 1.00(1.00) 38.87 0.73 0.68
6 1.1(1.100) 10(10.00) 1.00(0.99) 38.46 0.57 0.64
7 1.1(1.101) 2.6(2.61) 1.13(1.13) 45.00 0.79 0.84
8 1.1(1.100) 10(10.01) 1.13(1.12) 44.66 0.62 0.61
9 1.1(1.099) 2.6(2.61) 1.24(1.24) 50.78 0.83 0.76
10 1.1(1.099) 10(10.00) 1.24(1.24) 50.54 0.66 0.65

γ2 = −2, and sample size n = 200, the Kullback-Leibler divergence and
sample correlation increase with increased frailty variance.

6 Discussion

The developments above allow us to have PH and non-PH models for bi-
variate processes and to conduct a number of different types of theoretical
and applied comparisons analytically and by simulation. One important
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TABLE 2. Simulation of bivariate GTDL frailty
model, (with simulation results in brackets),
exact Kullback-Leibler divergence and sample
Pearson correlation coefficient, r∗ with n = 200,
across ten scenarios.

Scenario α(α̂) σ2(σ̂2) KL r∗

1 0.01(0.011) 0.05(0.052) 0.27 0.054
2 0.02(0.020) 0.05(0.045) 0.21 0.047
3 0.01(0.012) 0.37(0.375) 8.81 0.339
4 0.02(0.021) 0.37(0.369) 8.83 0.339
5 0.01(0.009) 1.00(0.965) 38.09 0.675
6 0.02(0.017) 1.00(0.935) 39.10 0.680
7 0.01(0.009) 1.13(1.104) 46.34 0.715
8 0.02(0.016) 1.13(1.045) 47.08 0.709
9 0.01(0.009) 1.24(1.190) 51.92 0.727
10 0.02(0.015) 1.24(1.133) 53.23 0.722

area is the nature of the correlation structure supported by the two mod-
els. This is relatively easily deduced analytically in the Weibull case, as per
equation(1), but simulation is required in the GTDL case.
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Abstract: We discuss a graphical model for studying the dependence of fertility
intentions on several intermediate and background variables. The model, based on
a new class of regression chain graphs, suggests a possible generating process and
provides simplifications via conditional independencies. With binary responses
the models can be parametrized by a sequence of multivariate logistic regression
models.
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1 Introduction

Fertility is a major concern for governments in all Western countries. Along
with standard determinants of low fertility such as education and labour
market situation (cf. Salvini, 2004), housing emerges as a potentially influ-
encing factor. Indeed, some evidence about this relation has been collected
in recent years; see Mulder (2006). The Italian situation is an interest-
ing new case of study, being characterized both by a ‘lowest low’ level of
fertility, and by high level of home-ownership; see Vignoli et al. (2010).
In this paper we describe a statistical analysis of fertility intentions and
housing using regression graph models. These are a new class of chain
graph models based on recursive sequences of multivariate regressions that
are helpful to understand the development in cohort studies and multi-
wave panel data or in cross-sectional data with an assumed ordering of the
variables. Regression graph models were introduced by Cox and Wermuth
(1993), Wermuth and Cox (2004) and later developed for discrete variables
by Drton (2009) and by Marchetti and Lupparelli (2011).

2 Data and variable ordering

The data come from the 2003 Multipurpose Survey “Family and Social
Subjects” and concern 710 couples without children. Each partner has
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been asked about the fertility intentions and the perceived control over
housing conditions, together with several other demographic and socio-
economic factors. The main objective is to understand if and how fertility
and housing conditions are related using as joint responses the intentions
and perceptions of the man and the woman.
As the data are not specifically collected to answer the main question of
interest here, but are a subset of a large multipurpose survey, the results
obtained are expected to be affected by possible biases. Thus, a certain
level of simplification has been used to allow a first understanding of a
complex phenomenon, with a model that could be useful to design possible
appropriate follow-up studies. The variables selected for the analysis are

FIGURE 1. Ordering of the variables in a block of joint responses, three blocks
of intermediate variables and one block of context variables.

shown in Figure 1 arranged in a series of subsets, called blocks and drawn
as boxes. In regression graphs the ordering is an essential part of the model
that should agree with time and subject-matter considerations. All the vari-
ables within a block are considered to be on an equal standing, while the
variables to the right of the block are considered as potential explanatory
variables. The first three blocks, a, b and c to the left in Figure 1, contain
the main and intermediate responses related to fertility intentions, percep-
tion of housing security and economic security, respectively. The original
ordinal variables measured for both the woman and the man were trans-
formed in our first analysis into derived variables (see Cox, 1972, p. 117)
measuring the opinion of the woman and the agreement with the partner,
after dichotomization obtained by aggregating the levels. Thus in block a,
A is fertility intention of the woman (1 = surely or probably yes) and B
is the partner’s agreement (1 = yes). In the last box to the right there are
some context variables that have been usually suggested in the literature,
like U , the duration of the union, Z the age of the partners, classified as
< 30, 30− 40,≥ 40 years, and T the area of residence in Italy (1 = South).
The middle box d contains important intermediate variables that capture
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the research hypotheses and permit to trace paths of development. Most of
the variables are binary, except age, duration of couple’s relationship and
number of siblings.

3 Regression graph models

A regression graph is a chain graph defined by a set of nodes V = {1, . . . , d},
partitioned into a set of blocks, and by a set of edges E coupling pairs of
nodes. The edges within a block are undirected (dashed lines) and between
blocks are directed, but always in the same direction, avoiding semi-directed
cycles; see Drton (2009). The regression chain graph model is a family of
joint distributions of the variables Y1, . . . , Yd associated with the nodes
satisfying a set of independencies associated with the missing edges of the
graph. Specifically, a missing line uv between two responses in a block
means that Yu ⊥⊥ Yv conditional on all variables in preceding blocks, but
not on the remaining responses. A missing arrow u← v means instead that
Yu ⊥⊥ Yv given all other variables in the previous blocks except Yv. Moreover
the joint density of the variables is required to factorize according to the
chain graph; see Lauritzen (1996).

FIGURE 2. A regression graph with three blocks.

For instance the regression graph in Figure 2 defines a model for 7 variables
partitioned in 3 blocks a = {1, 2, 3}, b = {4, 5} and c = {6, 7} with a
factorization

fV = fa|bfb|cfc (1)

thus implying the independence (denoted in a simplified way): 123 ⊥⊥ 67|45.
Moreover, the structure of the missing edges specifies the independencies
1 ⊥⊥ 3|45, 2 ⊥⊥ 45, 1 ⊥⊥ 5|4, 3 ⊥⊥ 4|5, 4 ⊥⊥ 7|6 and 5 ⊥⊥ 6|7. Notice that
this interpretation is unlike that of the classical chain graphs; see Cox and
Wermuth (1993) and Drton (2009).
For categorical variables, Marchetti and Lupparelli (2011) have shown that
regression graph models can be parametrized by a sequence of multivariate
logistic models. In this paper we discuss an extension that can incorporate
individual discrete and continuous covariates.
For each box of responses we define a linear predictor ηi = Xiβ for the
multivariate logistic contrasts ηi = C log(Mpi) where pi is the vector of
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probabilities for the individual i = 1, . . . , n and the model matrices Xi are
functions of the covariates in the boxes directly influencing the responses.
This multivariate link function transforms the vector pi of probabilities
into a set ηi of logits and higher-order log-odds ratios; see Glonek and Mc-
Cullagh (1995). For instance, with two responses the multivariate logistic
contrasts are

η(1) = log
p2+

p1+
, η(2) = log

p+2

p+1
, η(12) = log

p11p22

p21p12
(2)

where prs, r, s = 1, 2 are the joint probabilities of the responses conditional
on the explanatory variables. The independencies specified by the graphical
model are obtained by defined appropriate models with special constraints
on the βs. Thus, the multivariate logistic model for factor fa|b of (1) is
defined by

Y1 : Y4, Y2 : 1, Y3 : Y5

Y1Y2 : Y4, Y1Y3 : 0, Y2Y3 : Y5,

Y1Y2Y3 : Y4 ∗ Y5,

by using an extended model formula notation; see Nelder and McCullagh
(1989, section 6.5.5). Therefore, the marginal logits of Y1 and Y3 depend
on Y4 and Y5 respectively, while the logit of Y2 is constant. On the other
hand, the missing edge (1, 3) with associated independence 1 ⊥⊥ 3|5, implies
that the conditional bivariate logit between X1 and X3 is zero. The above
equations reflect exactly the independence structure encoded by the multi-
variate regression Markov property and do not include further simplifying
assumptions. Thus, for instance, there is a totally free model for the three
variable logistic parameter η(123). Usually, however, reduced model are fit-
ted by assuming constant higher order parameters having a more complex
interpretation, or omitting the nonsignificant ones.
The full model results by the union of the logistic models defined for each
factor of the decomposition (1). These, having variation independent pa-
rameters, can be fitted separately by maximum likelihood using appropri-
ate methods. We suggest the efficient algorithm developed by Colombi and
Forcina (2001) that can fit general marginal models for mixed ordinal and
binary responses, with equality and inequality constraints. In the following
section we describe part of the analysis of fertility intentions data, omitting
the details concerning the treatment of ordinal data, that will be discussed
elsewhere.

4 The analysis

The analysis of data was carried out by recursively fitting multivariate
regression models, using individual data, to the responses Ya given Ybcde,
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TABLE 1. Maximum likelihood estimates (β̂) of the bivariate logistic models (3)
and (4). The rows labeled with z are the studentized estimates. ZF2 and ZF3

are the effects of two categories of age, in baseline coding.

A const C U ZF2 ZF3 Q TU G T G× T
β̂ −0.19 0.68 −0.14 −0.41 −1.46 0.66 1.12 0.10 1.46 −1.44
z 2.68 −5.74 −1.46 −3.81 2.11 4.16 −2.30
B const TH AB const

β̂ 2.58 −0.66 β̂ 1.51
z −2.26 z 4.56

C const E T H LM U

β̂ −1.74 3.28 −0.84 1.55 −2.83 −0.05
z 6.43 −3.88 5.58 −2.35 −2.42
D const F H F ×H
β̂ −0.40 3.00 0.56 −1.77
z −2.23

Yb given Ycde, and so on, a, b, c, d, e denoting the blocks in Figure 1. For each
regression we used a careful strategy by checking for nonlinear or interactive
terms and by retaining significant effects. The fitted models obtained for
the first two blocks are:

A : C + U + ZF +Q+ TU +G ∗ T ; B : TH; AB : 1 (3)

C : E + T +H + LM + U ; D : F ∗H; CD : 0 (4)

with maximum likelihood estimates and standard errors reported in Ta-
ble 1. Each term in the formula is associated with an arrow in the graph,
i.e., with a substantive effect. One of the research hypotheses of the study,
stating that housing, C, has a direct influence on fertility intentions A, after
adjusting for duration, age, and area, is confirmed. The marginal model for
A includes an interactive effect of area T and presence of heavy workload
G: in the regions of southern Italy women’s fertility intentions are higher
but the effect vanishes if G = 1. The complementary part of the model
(3) concerning agreement with the partner has a different interpretation,
and is related only with home type TH. There is a significant association
between the two responses A and B, meaning that the agreement tends to
grow with fertility intention.
The bivariate logistic model (4) implies the conditional independence of
responses C and D given the explanatory variables, representable by a
missing edge between C and D, and is therefore equivalent to two in-
dependent logistic models. The likelihood ratio test of the hypothesis of
independence is w = 1.19 on 1 degree of freedom. Women’s perception of
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housing security is positively associated with perception of economic secu-
rity E and with home ownership H and decreases in southern Italy, in the
presence of partner’s unemployment LM and with a larger duration U of
the union. Less clear is the interpretation of the estimates of the logistic
model for the agreement about perception of housing security, where there
is an interaction implying an inversion of the effect of home ownership H.
One interesting consequence of the above discussion is that the regression
chain graph model is precisely described by the sequence of multivariate
regression model formulae, and that they improve the usual pictorial repre-
sentation that, with many variables, tends to become rapidly unreadable.
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Abstract: In this work we are interested to model the spatio-temporal incidence
pattern of Influenza-Like Illness a usual surrogate of Influenza. The main interest
of this model has been its application to the information provided by the sen-
tinel surveillance networks integrating the Spanish Influenza Sureveillance System
(SISS), which comprises 17 out of 19 Spanish regions. A multi-resolution spatio-
temporal kernel process will be used to describe this spatio-temporal pattern.
Issues about optimal geographical placement of the nodes of the kernel process
will also be discussed at this work. Finally results of the real application of the
model to the 2010/2011 Influenza-Like Illness season in Spain will also be shown.

Keywords: Influenza; Spatio-temporal modelling; Kernel smoothing.

1 Introduction

Several proposals have been made for the spatial monitorization of Influenza-
Like Illness (ILI) based on sentinel surveillance networks (Carrat & Valeron,
1992; Abellan et al, 2002). The main epidemiological interest on ILI surveil-
lance is motivated because any influenza diagnosis requires a clinical con-
firmation of the presence of the Influenza virus for all suspected cases.
Therefore ILI is a cheap, fast and much less demanding surrogate of in-
fluenza incidence surveillance.
Sentinel networks are usually made up of a collection of physicians reporting
the number of ILI cases they weekly see at their practices. These physicians
submitted reports of all medical visits in their reference populations in
accordance with a case definition. Sentinel physicians are geographically
spread throughout the whole region of study at some specific locations,
therefore we only have information available at several fixed places of the
region of study, while we are interested in knowing influenza incidence for
every location of that region. For everyone of those locations we have a time
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series available with the number of weekly ILI cases reported by everyone
of the former physicians.
Spatial monitorization proposals of these kind of data are usually based on
geostatistical modelling (Cressie, 1993; Diggle et al., 1998). Nevertheless
these approaches show, at least, two important drawbacks. The first of them
is that temporal dependence is usually ignored in the modelling process,
providing as a consequence highly volatile weekly spatial estimates. That
is, spatial estimates varies wildly between consecutive weeks, surely more
than would be reasonable to expect. The second one comes from subjective
differences among notifiers when classifying a patient either as ILI case or
not. These differences make some notifiers systematically to report higher
(respectively lower) rates than their colleagues, regardless of the quantity of
viruses circulating at every week. This differences can easily distort or mask
the spatial pattern of ILI incidence that we are interested to know, indeed
this problem has made to question the utility and reliability of previous
approaches to the spatial estimation of incidence (Uphoff et al., 2004).
A proposal has been already made in this context circumventing these two
problems (Mart́ınez-Beneito et al., 2011). A spatio-temporal model has
been proposed for this task where spatial dependence is introduced as a
spatial kernel smoothing process and temporal dependence is defined as
a first order autoregressive time series on the nodes of the former kernel
process. A particular term was also included in the model accounting for
the existence of heterogeneity among physicians’ notification criteria. This
proposal was initially applied to the Valencian Region’s Sentinel Network
during the winter surveillance seasons corresponding to the 2008/09 and
2009/10 periods. The Valencian Sentinel Network was made up of 48 noti-
fiers during these periods.
The goal of this work is to apply the proposed model, an enhanced version
of the Mart́ınez-Beneito et al.’s (2011) model, to the information provided
by the surveillance sentinel networks integrated in the SISS during the
2010/2011 season in Spain. The larger number of notifiers at this new
context will make it possible to use richer kernel structures than those used
for the Valencian surveillance network. Moreover, information provided by
the sentinel network of every region will also improve the estimation of the
geographic patterns in surrounding regions, therefore this joint study will
yield much better estimates than those obtained by separate studies that
could be made at everyone of these regions.

2 Methods

A multiresolution spatial kernel process (Higdon, 2002) has been used to
induce spatial dependence in our data. This multiresolution kernel process
considers smoothing kernels of different spatial ranges therefore this pro-
cess is able to simultaneously reproduce spatial dependences responding to
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very different causations. This multiresolution process has been possible to
be implemented due to the amount of data arising from the union of the 17
sentinel networks in the study. All these data make possible to assess the
variability corresponding to the different ranges of dependence considered.
Temporal dependence will be induced by means of a first order autoregres-
sive process at every one of the nodes of the spatial kernel process. Optimal
geographical placement of these nodes will be determined in order to make
it the most homogeneous as possible the spatial distribution of the variance
of the geographical predictions of the incidence pattern.

3 Results

Results for the ILI surveillance season 2010/2011 will be shown. These
results show a high temporal agreement between consecutive weeks, more-
over the multiresolution feature of the kernel process used in our model
will highlight the presence of different sources of variability in the data
of different spatial range. Nevertheless the spatial process of shorter range
will be proved to be the spatial component with larger contribution to the
whole spatial variability.

4 Conclusions

As described, the Bayesian approach has made possible to implement such
a complex model taking into account both spatial and temporal data’s
dependence and heterogeneity criteria among notifiers. Moreover the pro-
posed kernel approach has made possible to overcome the computational
problems that geostatistical Bayesian methods usually show when work-
ing with big datasets allowing to make weekly inference (considering all
the information for the whole season) in a reasonable amount of time.
The multiresolution feature of the proposed kernel structure also makes it
possible to define a rich class of spatial processes avoiding to define prior
distributions on the parameters of spatial correlation functions. This priors
distributions have been stated to be really influential on final results and
they are not trivial at all to define, even less in such a complex models as
the one introduced at this work.
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2 Universitat Jaume I
3 Instituto Valenciano de Investigaciones Económicas

Abstract: Stochastic metafrontier models are useful models to investigate the
technical efficiencies of firms in different groups that may not have the same
technology. In this context, efficiencies measured relative to the metafrontier can
be decomposed into two components, one measuring the common technical ef-
ficiency and another one representing the restrictive nature of the production
environment. In this work we propose the use of a Bayesian hierarchical mod-
elling for analyzing these efficiencies. As usual in these models, the estimation of
the parameters and hyperparameters is not easy and so techniques such as Monte
Carlo Markov Chain (MCMC) methods are needed. We apply these models in a
particular banking setting. More precisely, we analyze differences between banks
in different countries of the European Union.

Keywords: Hierarchical modelling; Metafrontier; Stochastic frontier analysis.

1 Introduction

Since the mid eighties a great deal of research has been devoted to the study
of both the efficiency and productivity of financial institutions all over the
world. Despite intense research efforts, though, there is no consensus as to
the best method for measuring efficiency in banking. These methods can be
broadly classified into parametric and nonparametric methods. Among the
former, the most popular is Stochastic Frontier Analysis (SFA); among the
latter, the most widely used has been Data Envelopment Analysis (DEA).
None of them dominates the other, since both have advantages and disad-
vantages. They differ in the assumptions they make regarding the shape
of the efficient frontier, the existence of random error, and (if random er-
ror is allowed) the distributional assumptions imposed on the inefficiencies
and random error in order to disentangle one from the other. None of these
steams of the literature has stayed still and, in the last few years, there have
been appearing new proposals both in the parametric and nonparametric
fields.
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The basic idea underlying the parametric analyses of efficiency are based on
the estimation of a frontier function. In the context of technical efficiency,
it is about a production function that indicates the maximum attainable
output given some particular inputs. Any lower performances can be traced
back to random error -beyond the managers’ control- as well as inefficiency.
Tipically, after using data on a group of firms to estimate a production
frontier, it is common and straightforward to measure the relative perfor-
mance of firms within the group, but there is often considerable interest in
measuring the performance of firms across groups.
O’Donell et al. (2008) developed a formal theoretical framework for making
efficiency comparisons across groups of firms using the concept of metafron-
tier. In this case, efficiencies measured relative to the metafrontier can be
decomposed into two components: a component that measures the distance
from an input-output point to the group frontier (the common measure of
technical efficiency); and a component that measures the distance between
the group frontier and the metafrontier (representing the restrictive nature
of the production environment). Estimates of technical efficiency are often
used to design programs for performance improvement. These programs
involve changes to the management and structure of the firm. Estimates of
the gap between group frontiers and the metafrontier can also be used to
design programs for performance improvement, but these programs involve
changes to the production environment. O’Donell et al. (2008) also showed
how metafrontiers and group frontiers can be estimated using DEA and
SFA techniques.

2 Bayesian modelling of the efficiencies

The Bayesian reasoning is not new in the Stochastic Frontier Analysis liter-
ature. Starting with the work of van den Broeck et al. (1994) and continuing
with a series of papers from their research group, there has been an increas-
ing interest in this approach (see, for instance, Kim and Smith (2000) for a
good review up to that date). The main advantages of its use (easy infer-
ence on efficiencies, easy incorporation of prior ideas and restrictions such
as regularity conditions and optimal treatment of parameter and model
uncertainty) also apply in the context of metafrontier models, specially
Bayesian hierarchical modelling.
In particular, the general stochastic production frontier model when there
are J different groups can be expressed as:

lnYij = µj + xTij βj + Vij − Uij (1)

where:

• Yij : output for the firm i, i = 1, 2, . . . , Ij in group j, j = 1, 2, . . . , J .

• µj : constant term in the regression model.
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• xTij = (x
(1)
ij , . . . , x

(N)
ij ): vector of inputs of firm i in group j.

• βj = (β
(1)
j , . . . , β

(N)
j )T : vector of coefficients of regression.

• Vij : random error effect for firm i in group j, Vij ∼ N(0, σ2
Vj

).

• Uij : nonnegative technical inefficiency component of the error for firm
i in group j, Uij ∼ Exp(λj).

This general modelling can describe different scenarios, depending on the
particular characteristics of the different production frontiers. For instance,
if we think that all countries have a similar performance, we could consider
a pooled model in which µj = µ; βj = β; Vij ∼ N(0, σ2

V ),∀i, j and Uij ∼
Exp(λ),∀i, j. But, if we think that there could be a different behaviour in
all them, but that all of them will produce the same output using the same
inputs, we could consider then a model in which βj = β.
As usual in Bayesian statistics, the next step is to assess our prior knowledge
about the parameters via their corresponding prior distributions. A good
choice when we want to express vague prior knowledge but still use a proper
prior is to choose normal distributions for the µ’s and β’s and Gamma
distributions for all the σ2’s and λ’s. Combining the likelihood and prior
information, we obtain the posterior probability distribution of parameters
and hyperparameters, which contains all our knowledge about them.
Nevertheless, the resulting expression has not a close form and so numerical
simulation from the posterior is needed to perform inference. Among others,
the most popular possibility is to use Markov chain Monte Carlo (MCMC)
methods, that draw samples from any intractable posterior by running
a cleverly constructed Markov chain over a long period, the stationary
distribution of which, being the one we want to simulate from. Among
the different ways of building these chains, the most popular are Gibbs
sampling and Metropolis-Hastings algorithm.
In our case, and taking into account that the conditional distribution of
each parameter given the remaining has a close form, the best choice is using
Gibb sampling. This algorithm generates an instance from the distribution
of each parameter in turn, conditional on the current values of the other
parameters. The sequence of samples constitutes a Markov chain, and the
stationary distribution of that Markov chain is just the sought-after joint
posterior distribution.

3 Bank efficiencies

We apply these models in a particular banking setting. More precisely
we analyze differences between banks of the fifteen former countries of
the European Union. We analyze the behaviour of the banking system in
two particular moments separated by the beginning of the international
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financial crisis. Although other options could have been used, our choice
for the inputs has been the personnel expenses, the fixed assets and the
loanable funds, while for the output the choice has been the loans performed
by the banks.
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Abstract:
We take a novel approach the signal regression (multivariate calibration) problem,
in particular where the signal (spectra) regressors have two dimensional struc-
ture. In general linearity is assumed to hold, but this may not be true. Through
simultaneous estimation, we parse out and estimate two separate modeling com-
ponents: (1) a single smooth regression coefficient surface associated with the
two-dimensional signal, and (2) an unknown, possibly nonlinear, link function.
Using (tensor product) P-splines for each component, we will see that their com-
bination can lead to a systematic and tractable statistical modeling approach,
while having improved external prediction performance when compared to stan-
dard signal regression approaches and partial least squares. Optimal tuning will
be discussed.

Keywords: Multivariate calibration; P-splines; spectra.

1 Introduction

Our application considers rich and indexed two-dimensional regressor infor-
mation of UV-VIS spectra taken over several temperatures that are used
to predict scalar components of a ternary mixture. We will see that the
basic appeal of our particular modelling approach is its explicit estimation
of meaningful components: (1) a smooth regression coefficient surface as-
sociated with the two-dimensional signal (Marx and Eilers, 2005), and (2)
an unknown, possibly nonlinear, link function. Although the first is linear,
the second component explicitly models the nonlinearity, while enhancing
insight into the measurement process. Linking the response to the linear
predictor is in the spirit of single-index models (Eilers, Li and Marx, 2009).

1.1 First modeling component MPSR

The multidimensional signal regression’s (MPSR) goal is to provide a prac-
tical solution for functional linear models using the entire two-dimensional
signal as regressors. Associated with the regressors is a single overarching
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coefficient surface which serves to smoothly weigh each two-dimensional
signal digitization. Regularization is needed, and we choose a P-spline ap-
proach. Specifically, we take two steps towards smoothness: (a) The coeffi-
cient surface (not the signal) is intentionally overfit using two-dimensional
tensor product B-splines, making the surface more flexible than needed. (b)
Tensor product coefficient estimates are penalized using difference penalties
on each of the rows and columns. Given the ith regressor matrix Xi = [xijk]
of dimension p× p̆, signal regressor support on (v, v̆), and coefficient surface
α(v, v̆), express the mean

µi =

p∑
j=1

p̆∑
k=1

xijkαjk =

p∑
j=1

p̆∑
k=1

xijk

n∑
r=1

n̆∑
s=1

BrjB̆skγrs = x′iT
?γ, (1)

where i = 1, . . . , m; j = 1, . . . , p; k = 1, . . . , p̆, with tensor product
B-splines T?, where x′i = vec(Xi). We can further express (1) in matrix
form as µ = XT?γ = Mγ, where X is the m × pp̆ matrix of vectorized
signals, M = XT?.
In the P-spline spirit, the objective function is to minimize

QP (γ) =

m∑
i=1

(yi − x′iT
?γ)2 + λ

n∑
r=1

γr•D
′
dDdγ

′
r• + λ̆

n̆∑
s=1

γ′•sD
′
d̆
Dd̆γ•s

= ||y −Mγ||2 + λ||Pγ||2 + λ̆||P̆ γ||2,

where γr• (γ•s) denotes the rth row (the sth column) of Γ. The explicit
P-spline solution is

γ̂ = (M′M + λP ′P + λ̆P̆ ′P̆ )−1M′y.

Two tuning parameters, associated with the row and column penalties,
respectively, allowing continuous control over the surface. The predicted
values are ŷ = Mγ̂.

1.2 Second modeling component SISR

The second modeling component is single-index signal regression (SISR),
which was presented in Eilers, Li, and Marx (2009) for one-dimensional
signals, and is a method that can provide additional insight through the
explicit modeling of any nonlinear behavior that may exist with the re-
sponse. In fact, one could view the standard multivariate calibration prob-
lem as using an identity link function, which in actuality may be (slightly)
misspecified.In effect, there may exist a true, but “missing link” function
(that is nonlinear and monotone) (Cox, 1984), and this approach serves
the purpose of estimating this link while improving external prediction.
SISR introduces a modification: µi = f(

∑
jk xijkαjk). The function f(·)
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is assumed to be smooth and is estimated from the data using univari-
ate P-splines, having its own additional tuning parameter. This model is
generally related to projection pursuit (Friedman and Stuetzle, 1981), with
additional smoothness demands on α.

Algorithm MSISR

1. Initializations:

• Choose the tuning parameter values (λ, λ̆, λf ) for Steps 1 and 2

• Choose number of knots (n, n̆, nf )

• Choose penalty order (d, d̆, df )

• Set all tuning parameters to λ0 for the initial Step 1 (default 106)

• Create M = XT?

• Calculate γ̂ = MPSR(M, y, (λ0, λ0), (d, d̆), (n, d̆))

2. Cycle until convergence of γ̂’s

• Estimate f̂ and the estimate of the derivative ḟ from S(Mγ̂, y, λf , df , nf )

• Obtain y? and M?

• Update γ̂ = MPSR(M?, y?, (λ, λ̆), (d, d̆), (n, n̆))

• Constrain γ̂/||γ̂||

3. Prediction: ŷnew = f̂(xnewT?γ̂)

end algorithm

1.3 The combined MSISR Methodology

The MSISR model has the form µ = f(Mγ), where the function f and the
smooth coefficient surface are unspecified and approximated with P-spline
coefficients α and γ. Consequently, the modified MPSR objective can be
rewritten as

Q?P = ||y − f(Mγ)||2 + λ||Pγ||2 + λ̆||P̆ γ||2 + λf ||Ddα||2. (2)

Given the tensor B-spline coefficient vector γ, the estimation of function
f becomes a one-dimensional smoothing problem, and we can apply any
scatter-plot smoother to obtain its estimate, which driven by the basis coef-
ficient estimates α̂. We estimate f using a (cubic) P-spline scatter smoother
(Eilers and Marx, 1996). The penalty on α ensures a smooth f ; recall that α
is the vector of B-spline coefficients with equally-spaced knots placed along
η. Due to the virtue of using B-splines, the first derivative of f (denoted
as ḟ), which is needed in our algorithm, can be easily computed (using a
basis with one degree less and first differenced basis coefficients).
Once given an estimate of f , the coefficient vector γ can be estimated
using a (first-order) Taylor series approximation of the function f (about
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the current estimate, γ0). Specifically, if γ0 is the current estimate for γ,
then the current estimate of µ = f(Mγ) can be approximated by

f(Mγ) ≈ f(Mγ0) + ḟ(Mγ0)M(γ − γ0). (3)

Using (3), with fixed f , we have an approximation of Q?P

Q?P ≈ ||y − f(Mγ0)− ḟ(Mγ0)M(γ − γ0)||2 + λ||Pγ||2 + λ̆||P̆ γ||2

= ||y? −M?γ||2 + λ||Pγ||2 + λ̆||P̆ γ||2, (4)

where y? = y − f(Mγ0) + ḟ(Mγ0)Mγ0 and M? = diag{ḟ(Mγ0)}M. Note
that (4) implies that given f , the optimal α that minimizes the right-hand

side of (4) can be obtained through a MPSR(M?, y?, (λ, λ̆), (Dd, Dd̆), (n, n̆)).
Hence, in our algorithm, we first carry out a MPSR with the response y on
M (Step 1). Then, given γ, an estimate of f is obtained (Step 2). The two
steps, estimation of f and γ, are iterated until convergence of γ̂.

1.4 Aims and benefits of the combined MSISR approach

The estimation between f and α is iterative and tractable, essentially boil-
ing down to repeated alternate applications of MPSR and P-spline smooth-
ing on “working” responses and regressors. Some additional features of
MSISR that are worthy of note include: (a) Although smooth, f can be as-
sumed to be very general, an explicit function can be estimated. (b) Heavy
penalization associated with f typically produces low degree polynomial
estimates for f . (c) The entire signal can be used as regressors. (d) The
number of highly spatially correlated regressors can far exceed the number
of observations. (e) The parameterization yields a very manageable sys-
tem of equations. (f) The candidate coefficient surface can be non-additive.
(g) Since the two-dimensional signals and single estimated coefficient sur-
face have a common indexing plane, potentially important regions can be
visually identified.

2 Illustration and Optimization

We apply our MSISR to ternary mixture data. The responses are the
mole fraction of a mixture, consisting of three components: water, 1,2-
ethanediol, and 3-amino-1-propanol. There are 3 pure, 12 edge, and 19
interior (1 center) mixtures. The two-dimensional signal is constructed us-
ing the p × p̆ = 4800 digitized regressors, Xi, arranged using the (first)
differenced UV-spectra, across the temperature levels. The indexing axes
that define the support coordinates of Xi are specified as wavelength with
p = 400 wavelength channels (701 to 1100nm, by 1 nm) and with p̆ = 12
temperature levels (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5, 65, 70o C).
The data were not preprocessed in any other way.
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We divided the m = 34 observation into three subsets as follows. The
training set consisted of mtrain = 16 observations using the 3 pure, 12
edge, and 1 center mixtures. The remaining 18 interior observations were
divided into a validation set (to optimize tuning parameters) and a test
set (to quantify quality of external prediction). Optimal tuning parameters
were determined by minimizing RMSEV in the trained model. Given these
optimal tuning parameters, external prediction was evaluated on the test
data using RMSEP using the newly trained model that combined both
the training and validation data. Table 1 presents the root mean square
error of prediction (RMSEP) for the external prediction set, using optimal
MSISR, MPSR, and PLS models. For responses water and 1,2-ethanediol,
we find an improvement in external prediction for MSISR over both MPSR
and PLS, leading to RMSEP reductions that range from 30% to 55%.
For MSISR, the external RMSEP values are between 0.0214 and 0.0241,
which when multiplied by 100 gives units of percent mixture. Figure 1
displays the optimal MSISR model using the response mixture component
1,2-ethanediol.

Table 1. MSISR, MPSR, PLS external prediction RMSEP, optimal models.

Response MSISR MPSR PLS

Water 0.0214 0.0365 0.0465
1,2-ethanediol 0.0241 0.0338 0.0382
3-amino-1-propanol 0.0306 0.0251 0.0359

3 Discussion

We have shown how to estimate nonlinear relationships in multivariate
calibration, by combining the single index model with multidimensional
penalized signal regression. We found that the explicit estimation of the
nonlinearity can provide some insights into the physical and chemical pro-
cess underlying the measurements, which we view as a contribution over
some of the other more “black box” approaches, while modestly improving
external prediction. In the present case the response is assumed to have a
normal distribution. Our other current research generalizes SISR, e.g., for
binary classification, e.g. a Bernoulli response with probability πi could be
modeled with log(π/(1 − π)) = f(Xβ). Additionally we are investigating
two-dimensional surfaces for f , over another indexing variable, that allows
for f to interact with, e.g., temperature.
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1 Introduction

World Health Organization (WHO) statistics indicate that roughly 3.3 bil-
lion people are at risk of malaria, with 250 million cases and nearly one
million deaths annually, most of which are in Sub-Saharan Africa, (6).
Current recommendations for the prevention of Malaria infection include
vector control (through the use of insecticide treated nets and indoor resid-
ual spraying) and in pregnant women, intermittent preventative treatment
(IPTp) using Sulfadoxine-Pyrimethamine (SP), (2, 6)
Despite this recommendation and widespread use of IPTp treatment with
SP, there is limited information regarding the pharmacokinetics of the drugs
in pregnancy, information which is necessary to better inform/justify the
dosage regimes currently employed.
The objectives of this particular study were thus to characterize the be-
haviour and disposition of the individual (parent) drug compounds, and
because of the simultaneous administration of the drugs, to determine the
extent and mechanism of their interaction and inter-dependence on one
another. The main purpose in the collection of the data was to character-
ize the impact of pregnancy induced physiological changes, and pregnancy
related factors.

2 Study Design and Data

The analyses described in this paper were conducted using data from
a prospective multi-center study comprised of 98 self-matched pregnant
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women from four different sites.
Data was initially collected for 31 pregnant women in Mozambique, with
the same women returning postpartum to act as their own controls. Us-
ing a similar protocol, a study was undertaken in Sudan, with 25 self-
matched pregnant women, and again in Mali and Zambia with 18 and 25
self-matched pregnant women respectively. Of the original 98 subjects, 77
returned to complete the postpartum phase of the study, and hence the
data is unbalanced.
All subjects were healthy volunteers, undergoing IPTp with SP as part of
routine pre-natal care, with maternal age 18-45, and gestational age 15-36
weeks.
There are differing measurement occasions for different sites and pregnancy
phases, with sparse sampling for the first 24 hours post dose in pregnant
subjects from Mozambique and Sudan, and at most two measurements in
the same women postpartum, as concentrations were measured on days 0
and 7 only.
The two drugs under evaluation are simultaneously administered, and we
thus have multiple inter-dependent responses. The relationship between
the two drugs needs to be correctly quantified in order to accommodate the
simultaneous modeling of PK and PD data, which is necessary to determine
the concentration-effect relationship (although this is not undertaken here).
Most pertinently, because for each randomly sampled individual we have
serial measurements for two observation phases, we have multiple levels of
grouping, nested within each other. The correlation structure of the data
is thus inherently more complicated. This leads to the following levels of
random effects:

• Inter-individual variation (IIV), (level 1)

• Intra-individual, inter-occasion (IOV), (level 2)

• Intra-individual, intra-occasion (WIV)- residual measurement error,
(level 3: innermost level)

3 Methodology

The technique referred to in this paper is that of non-linear mixed effect
(NLME) multi-level models, which are extended to the multivariate plat-
form through the use of sequential and simultaneous modeling procedures
using the nlme package in R software.
The structural model forms usually seen in population pharmacokinetic
modeling are based on compartmental assumptions: the body is assumed
to be made up of a system of compartments, between which the drug is
transferred, (5). An alternative approach to this “semi-mechanistic” model
(1) is to use an additive series of exponential functions, almost analogous
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to the compartmental models, but free of any clinical or pharmacological
presuppositions.
The empirical model form describes the concentration-time profiles of spe-
cific drug substances reasonably well; assigning an exponential term to
each differential phase of the curve as determined by the incline, decline or
multiple slopes of decline, (1).
In the individual case, in addition to the quantification of the impact of
pregnancy, results from multi-level (nested) random effects were contrasted
to those achieved with single level models using an explicitly specified cor-
relation structure for the random effects. Various structures were explored
for the modeling of heterogeneous residual variance and we looked at the
impact of different parameterizations on the convergence and stability of
the models.

3.1 Sequential Model Formulation

The sequential model formulation involves the incorporation of the pre-
dicted concentrations of one response in the covariate model of the other as
a time-varying covariate. Thus, modeling the impact of predicted Pyrimethamine
concentrations on the concentration of Sulfadoxine, (the hypothesized re-
lationship), we could specify, for example:

yikj = β0ikj × [−exp(β1ikj × timeikj) + exp(β2ikj × timeikj)] + eikj ,

where

β0ikj = β0 + β3 × pyrikj + b0i + b0ik,

β1ikj = β1 + β4 × pyrikj + b1i + b1ik,

β2ikj = β2 + β5 × pregik. + b2ik,

and yikj is the Sulfadoxine concentration at the jth time for the kth ob-
servation phase on the ith individual. The variance covariance matrices for
the random effects could then be given by:

bi ∼ N(

[
0
0

]
,

[
τ2
0 0
0 τ2

1

]
), bik ∼ N(

0
0
0

 ,
τ2

0k 0 0
0 τ2

1k 0
0 0 τ2

2k

)

and:
eikj ∼ N(0,Rik), var(eikj) = σ2 × ((θ1 + µj

θ2)2).

3.2 Simultaneous Model Formulation

The simultaneous model formulation which allows for different structural
model forms accommodates the association among factors corresponding
to the two responses, and allows for greater precision in the estimation of
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common elements, (3, 4). The variance-covariance matrices for the random
effects and the residuals allow for correlations among group-specific re-
gression parameters for the different response types and within-individual
within-phase correlations respectively, (3, 4). Bi- and triple-exponential
models were specified for Sulfadoxine and Pyrimethamine respectively, where
the response type was indicated by a binary variable.
Additionally, an alternative approach was followed whereby the same struc-
tural form was applied to both responses, and the binary response type was
included as a covariate. The model formulation presented below is an ex-
ample for the latter case.

yikj = β2ikj × [−exp(−β1ikj × timeikj) + exp(−β3ikj × timeikj)]
+ β4ikj × [−exp(−β1ikj × timeikj) + exp(−β5ikj × timeikj)],

where:

β1ikj = β1 + β6 × δikj ,
β2ikj = β2 + β7 × δikj + β8 × pregik. + b2i + b2ik,

β3ikj = β3 + β9 × δikj + b3i,

β4ikj = β4 + β10 × δikj ,
β5ikj = β5 + β11 × δikj ,

and yikj is the concentration at the jth time for the kth observation
phase on the ith individual, and δ is an indicator variable coded as 0 for
Pyrimethamine and 1 for Sulfadoxine. The variance-covariance matrices
for the random effects bi and bik for this case would be positive-definite
block-diagonal matrices, for subject-specific random effects bi = [b2i, b3i]

′

and occasion-specific random effects bik = b2ik.

4 Results

Preliminary results for the particular parameterization employed indicate
that physiological changes during pregnancy play a differing role in de-
termining both the range of concentrations reached with the same dosing
regimen, and in the elimination of the drug from the system for the different
compounds.
For the separately fitted models, bi- and triple-exponential models were
deemed appropriate for Sulfadoxine and Pyrimethamine respectively. Both
single level correlated random effects and multi-level nested models achieved
the same results, and the parameterization of the random effects (fit in a
linear/non-linear context, the latter using logged parameters) appeared to
play a significant role in the ease of convergence.
Results from a model adjusted for pregnancy only indicate that pregnant
subjects have a higher range of Sulfadoxine concentrations and a faster rate
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of decline. The overall effect of this is a reduction in the total exposure to
the drug, as measured by the area under the concentration-time curve. This
is illustrated in Figure 1.
The impact of pregnancy on Pyrimethamine concentrations is to similarly
increase the range, although no effect could be determined for the various
rate constants in this model. Pregnancy was modeled in terms of trimester
(postpartum vs. trimesters 2 and 3) for Pyrimethamine.

0 10 20 30 40

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Time(Days)

M
e
a
n
 S

u
lfa

d
o
x
in

e
 C

o
n
c
e
n
tr

a
ti
o
n
 (

u
g
/m

l)

Pregnant

Postpartum

0 10 20 30 40

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Time(Days)

M
e
a
n
 P

y
ri

m
e
th

a
m

in
e
 C

o
n
c
e
n
tr

a
ti
o
n
 (

n
g
/m

l)

2nd Trimester

3rd Trimester

PostPartum

FIGURE 1. Mean Predicted Concentrations over Time Stratified by Preg-
nancy/Trimester

In the sequential modeling Pyrimethamine appears to influence the absorp-
tion properties of Sulfadoxine (predominantly increasing the overall range
of concentration reached), rather than any effect vice versa.
In the simultaneous model in which the same structural formulation was
applied to both responses, a triple-exponential model was successfully fit-
ted to both Sulfadoxine and Pyrimethamine, where before the data for
Sulfadoxine alone did not support the fitting of the additional exponential
term.
In this model specification, the parameter estimates of the indicator vari-
able δ are interpreted as effect modifications specifying the change to the
Pyrimethamine model, which is the reference category. The model looking
at the effect of pregnancy alone indicates significant differences between
the Sulfadoxine and Pyrimethamine curves, and we note particularly that
the parameters defining the final exponential term are much reduced for
Sulfadoxine. Pregnancy again appears to impact the range of concentra-
tions achieved, for both drugs, with no significant difference in the size of
the effect for the two drugs. The impact of pregnancy on the rate of decline
observed in the individual Sulfadoxine model is no longer indicated.
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5 Discussion

We have demonstrated that the use of non linear mixed effect modeling
techniques provides a flexible framework for the estimation of separate,
sequential and simultaneous drug concentration-time models. We have been
able to draw conclusions regarding both the impact of pregnancy on the
concentration-time profiles of the individual compounds, as well as examine
the interaction between the two drugs.
We chose to fit these nonlinear relationships using a general formulation
based on sums of exponentials, rather than the traditional PK parame-
terization. Relevant PK parameters were retrospectively determined via
back-transformation, and their respective standard errors calculated using
the Delta method. These clinical parameters were compared with those
obtained from a traditional PK analysis on the same data set (where pop-
ulation parameters are obtained from the averaging of parameters from
individual-specific models). The mean parameters from the different anal-
yses were similar, and the standard errors resulting from the nlme models
significantly reduced. The models were found to be very sensitive to starting
values: stable results were obtained using estimates from a curve-stripping
procedure. Model building was largely hypothesis driven, since concerns
arose regarding the calculation of the degrees of freedom, and an all-subsets
procedure was considered computationally intensive and infeasible.

Acknowledgments: Special thanks to the SEACAT project and Profes-
sor Karen Barnes (UCT) for the provision of the data and clinical input.
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Abstract: Generalized additive models for location, scale and shape (GAMLSS)
are a popular semi-parametric modelling approach that, in contrast to conven-
tional GAMs, regress not only the mean but every parameter of a conditional
response distribution (e.g. location, scale and shape) to a set of covariates. Cur-
rent fitting procedures for GAMLSS are infeasible for high-dimensional data set-
ups and require variable selection based on (potentially problematic) information
criteria. The present work describes a boosting algorithm for high-dimensional
GAMLSS that was developed to overcome these limitations. The proposed algo-
rithm was applied to data of the Munich Rental Guide. The net-rent predictions
that resulted from high-dimensional GAMLSS were found to be highly compet-
itive while covariate-specific prediction intervals showed a major improvement
compared to classical GAMs.

Keywords: GAMLSS, high-dimensional data, gradient boosting.

1 GAMLSS

Generalized additive models for location, scale and shape (GAMLSS) were
introduced by Rigby and Stasinopoulos (2005) as a class of statistical mod-
els for regression problems with univariate response. GAMLSS can be seen
as a flexible alternative to generalized additive models (GAMs) as they
extend the traditional GAM framework through a variety of modelling op-
tions. Every parameter of the conditional response distribution is modelled
by its own predictor and an associated link function. While traditional
GAMs are typically restricted to modelling the conditional mean of the
response variable (treating other distributional parameters as fixed), the
GAMLSS approach allows for the regression of each distribution parame-
ter on the covariates.
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A GAMLSS is given by the set of equations

gk(θk) = ηθk = β0θk +

pk∑
j=1

fjθk(xkj), k = 1, . . . , 4, (1)

where β0θk , k = 1, . . . , 4 are the intercept values of the four submodels.
The function fjθk for j = 1, ..., pk represents the effect of covariate j on the
distribution parameter θk. Examples include non-parametric terms based
on penalized splines, varying coefficient terms, spatial and subject-specific
terms for repeated measurements. The estimation of GAMLSS is usually
based on penalized likelihood maximization available with the R add-on
package gamlss (Rigby and Stasinopoulos, 2005). For variable selection,
the authors propose the Generalized Akaike Information Criterion (GAIC).
This approach, however, has several shortcomings that are partially inher-
ited from problems associated with the traditional AIC. Additionally, the
conventional fitting algorithm cannot include spatial effects and it is not
feasible in high-dimensional data settings.

2 The gamboostLSS algorithm

To address these issues, we developed and subsequently applied a boosting
technique (gamboostLSS ) for estimating and selecting the predictor effects
in GAMLSS. We propose a component-wise gradient descent algorithm
(Bühlmann and Hothorn, 2007) that circles between the different predic-
tion functions of the distribution parameters for GAMLSS. Analogously
to the classical gradient descent algorithm, gamboostLSS can handle high-
dimensional data settings (p >> n) and includes intrinsic variable selection.
To extend the classical boosting approach to the GAMLSS framework,
we adopted a strategy recently proposed by Schmid et al. (2010): In each
iteration, gamboostLSS calculates the negative partial derivatives of the
negative log-likelihood function of a GAMLSS with respect to each of the
four predictors ηθk . These four predictors are updated successively in each
iteration, in which the current estimates of the other distribution parame-
ters are used as offset values. A schematic overview of the updating process
of gamboostLSS in iteration m+ 1 is as follows:

(µ̂[m], σ̂[m], ν̂[m], τ̂ [m])
update−→ η̂[m+1]

µ =⇒ µ̂[m+1] ,

(µ̂[m+1], σ̂[m], ν̂[m], τ̂ [m])
update−→ η̂[m+1]

σ =⇒ σ̂[m+1] ,

(µ̂[m+1], σ̂[m+1], ν̂[m], τ̂ [m])
update−→ η̂[m+1]

ν =⇒ ν̂[m+1] ,

(µ̂[m+1], σ̂[m+1], ν̂[m+1], τ̂ [m])
update−→ η̂[m+1]

τ =⇒ τ̂ [m+1] .

In every step the negative gradient of the loss from every distribution pa-
rameter is fitted to pre-defined base-learners, one for each covariate. The
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GAMLSS: µ

−0.4648 0.46160

GAMLSS: σ

−0.1665 0.0245

FIGURE 1. Estimated spatial effects obtained for the high-dimensional GAMLSS
for distribution parameters µ and σ. For the third parameter df, the correspond-
ing spatial variable for the neighbourhoods was not selected by the algorithm.

best performing base-learner is added to the current predictor. Due to addi-
tive updates in each iteration, every resulting predictor follows an additive
structure (1). The type of the predictor functions fjθk corresponds to the
base-learner used for this covariate. Typical examples of base-learners are
classification and regression trees, linear models or penalized regression
splines.

3 Munich Rental Guide

Most larger German cities publish rental guides as a reference to ‘average
rents’ for both landlords and tenants. We analyse data collected for the 2007
rental guide for the German city of Munich. Earlier modelling approaches
identified variance heteroscedasticity, motivating the use of GAMLSS. The
main objective of the analysis is to obtain point predictions for the net
rent per square metre and to construct prediction intervals holding a pre-
specified coverage probability for the net-rent. Our sample comprises data
obtained from n = 3016 flats within Munich, with detailed information on
these flats in terms of 238 categorical covariates, two continuous covari-
ates (the size of the flat and the year of the building’s construction) and
spatial information regarding in which of the 411 neighbourhoods the flat
is located. As a response distribution for the net rent per square metre,
we consider the three-parametric t-distribution with location parameter
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FIGURE 2. Parallel coordinate plot containing the average mean squared pre-
diction errors obtained from the four models (high-dimensional GAMLSS/expert
GAMLSS/ high-dimensional GAM/expert GAM) by cross-validation.

θ1 = ηµ =: µ, scale parameter θ2 = exp(ησ) =: σ and degrees of freedom
θ3 = exp(ηdf) =: df. The probability density function of the net rent per
square metre conditional on a set of predictor variables is thus given by

f(yi|µi, σi,dfi) =
Γ(dfi+1

2 )

σiΓ( 1
2 )Γ(dfi

2 )
√

dfi

(
1 +

(yi − µi)2

(σ2
i · dfi)

)(−(dfi+1)/2)

.

For each of the parameters µ, σ2, and df, we consider the predictors

ηµi = β0µ + x>i βµ + f1µ(sizei) + f2µ(yeari) + fspatµ(si) ,

ησi = β0σ + x>i βσ + f1σ(sizei) + f2σ(yeari) + fspatσ(si) ,

ηdfi = β0df + x>i βdf + f1df(sizei) + f2df(yeari) + fspatdf(si) ,

i = 1, . . . , n, where β0θk and βθk correspond to the intercept and para-
metric effects of the categorical covariates (denoted by x>i ), f1θk(size) and
f2θk(year) are non-linear effects for the continuous variables and fspatθk(s)
is a spatial effect based on the neighbourhood within Munich. Figure 1
presents the effect estimates for the spatial variable, revealing a high spa-
tial variability with respect to µ and σ.
To evaluate the results of the GAMLSS approach, we compared it to a
conventional GAM, which models only the conditional mean of a gaus-
sian distribution. Additionally, we fitted both methods once including the
whole set of available covariates and once for a reduced set of categorical
covariates, including only an expert selection of 28 effects (see Kneib et al.,
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FIGURE 3. 95% prediction intervals based on the quantiles of the modelled con-
ditional distribution from GAMLSS (left) and GAM (right). The solid white line
represents point predictions; intervals are shaded grey. The dark points corre-
spond to the observed net rents per square metre.

2011). All models were compared regarding their predictive accuracy using
10-fold cross validation. While Figure 2 clearly suggests that the accuracy
of point predictions obtained from classical GAMs carries over to those
obtained from GAMLSS, the inclusion of covariate effects on parameters
such as σ2 and df additionally allows for an improved accuracy of the pre-
diction intervals (Figure 3), resulting from the conditional quantiles of the
respective distributions. As GAMLSS not only regress the expected mean
but all parameters of a distribution, also the size of the intervals – and
not only their centre – explicitly depends on the characteristics of a flat,
resulting in more accurate intervals with higher coverage.

4 Conclusion

As a natural extension of the well-established GAM framework, GAMLSS
have gained increasing popularity in recent years and their use has ex-
panded to include many different fields of application (see for example the
information provided at http://gamlss.org). For the analysis of the Mu-
nich Rental Guide data, we developed the gamboostLSS algorithm, thereby
extending the GAMLSS methodology to the analysis of high-dimensional
data with potentially large numbers of covariates. Since estimation and se-
lection of predictor effects are carried out simultaneously in gamboostLSS,
the new algorithm addresses one of the remaining problems of the classical
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fitting methods currently available. Conversely, gamboostLSS can be con-
sidered as a natural extension of the boosting framework to include regres-
sion models with multiple predictors. Consequently, the classical features
of boosting, such as shrinkage, variable selection and additive prediction
functions (and thus the interpretability of estimates) carry over to each of
the distribution parameters of a GAMLSS.
A limitation of gamboostLSS is its computationally expensive tuning proce-
dure based on multi-dimensional cross-validation. Further research is war-
ranted on the topic of stopping procedures for this class of models.
In summary, the advantages offered by gamboostLSS are the following: (i)
Variable selection is accomplished automatically. (ii) The algorithm can
be applied to high-dimensional data sets in which the number of predictor
variables exceeds the number of observations. (iii) Stopping the algorithm
before convergence yields a built-in mechanism for the shrinkage of effect
estimates, thereby decreasing the variability of predictor effects and im-
proving the prediction accuracy of the obtained GAMLSS solution.
The algorithm presented here is implemented in the R add-on package
gamboostLSS, available currently at R-Forge (Hofner et al., 2010).
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Abstract: We present a mixture model for the estimation of the incidence of
Leishmania infection from repeated serosurveys without the need to use explicit
thresholds for seropositivity. The data is analyzed through the joint estimation of
a response model of the observed outcomes given the unobserved infection status
and a Hidden Markov Model for the latent infection status.
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1 Introduction

Serological tests based on the detection of antibodies to infectious agents
through the ELISA technique can be used to estimate the prevalence or
incidence of infection. These tests are often measured as an optical density
(OD) on a continuous scale but reported as binary data (above/below a cer-
tain threshold value). An alternative approach is to use mixture modelling
of the quantitative OD results (Gay 1996). We expand on this approach by
jointly estimating a response model for the observed OD values over time
given the infection status and a Hidden Markov Model for the unobserved
infection status over time. This model avoids the need to choose a cut-off
for the OD values to separate seropositive versus seronegative individu-
als. Using this model, we estimated infection incidences and the effects of
distributing impregnated bednets in a cluster randomized study.

2 Motivating Example

The motivating data were collected during a pair-matched intervention
study in 16 villages in India on the use of impregnated bednets for the
prevention of leishmaniasis infection (Picado et al., 2010). In each village,
all consenting individuals were assessed for leishmaniasis using the RK39
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FIGURE 1. Evolution of RK39 Elisa results before and after kala-azar diagnosis.
Points are actual observations. Bold line is a lowess scatterplot smoother.

ELISA test, a secondary endpoint of the study. In addition, information on
prior or incident Kala-azar (KA), the clinical manifestation of Leishmania
donovani infection, was collected. Subjects with prior or incident KA are
known to be infected with Leishmania, for the remainder of subjects the in-
fection status is unknown. Three annual surveys were performed during the
study. The first survey consisted of a baseline survey during which bednets
were distributed in the intervention villages. The effect of the intervention
was then assessed by the two subsequent serosurveys. The log-transformed
ELISA data are distributed asymmetrically which may indicate a mixture
of two populations: low ELISA (-3 to -1) results for non-infected individu-
als, and high ELISA results for infected individuals. In patients diagnosed
and treated for KA, the average RK39 ELISA results reach a peak (of ap-
proximately -0.5) around the time of diagnosis to quickly decrease to -1.2
after 3 years and decrease more slowly afterwards. The average decrease
over time appears linear as a function of log time from diagnosis (Figure 1).

3 Statistical Modelling

Let yti be the observed result for the ELISA test on the ith subject at
time t, where i = 1, ..., N and ti,I is the time of infection for subject i.
Estimating the infection rates, requires the joint estimation of yti and ti,I ,
i.e. estimating the model

P (yti, ti,I |xti, zti,bi, ei) = P (yti|ti,I ,xti,bi)× P (ti,I |zti, ei), (1)

with xti, zti covariate vectors and bi, ei independent subject random ef-
fects. Consequently, we need to jointly estimate a response model for the
observed data, conditional on the latent infection status and a structural
model for the underlying infection status over time.
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3.1 Response Model

The true infection status of subject i at time t is defined as dti = I(ti,I ≤ t).
A subject is presumed to show a sudden increase in the outcome measure-
ment yti immediately after infection, after which yti decreases over time,
as described by the following regression model:

yti = α+ I(ti,I ≤ t)× β1i + ∆ti × β2i + εti, (2)

with α the average ELISA test result for not-infected subjects, β1i and
β2i random intercept and slope terms, respectively, for infected subjects
with βi = (β1i, β2i) ∼ MVN (µβ ,Ωβ) and representing the bi terms in
Equation 1, ∆ti = ln (max (1, (t− ti,I))) the log time since infection, and
εti ∼ N

(
0, σ2

)
the test measurement error. Given βi, the yit are assumed

to be independently distributed.

3.2 Structural Model

The underlying infection status at the 3 discrete observation time points
j (j = 1, 2, 3) is modelled using an inhomogeneous, first-order Hidden
Markov Model (Cook, 2000). At each time point j, the infection status dji
of subject i in village v(i) and village-pair pair(i) is Bernoulli distributed:
dji ∼ Bernoulli (pji) with at the first time point:

logit(p1i) = πv(i) + γv(i) × log(agei), (3)

with agei the age of subject i at the first serosurvey and πv(i) and γv(i)

village specific intercept and slope terms, respectively. At subsequent time
points:

pji = dj−1 i + (1− dj−1,i)× κj−1,i,

with:
logit (κ1i) = δ1,pair(i) + δ3,pair(i) × Intv(i),

logit (κ2i) = δ1,pair(i) + δ2,pair(i) + δ3,pair(i) × Intv(i),

with δ1,pair(i) the log-odds infection probability in the control village from
pair(i) between serosurveys 1 and 2 and δ2,pair(i) a period effect (log odds-
ratio) and δ3,pair(i) the effect (log odds-ratio) of intervention in pair(i)
with Intv(i) an indicator variable for inclusion of the village v(i) in the
intervention group. The π, γ and δ terms are modelled as random effects
and correspond to the ei terms in Equation 1.

3.3 Model Estimation and Priors

The model is estimated using Markov-Chain Monte-Carlo methods in Open-
BUGS called from within R. We use informative priors on the measurement
model parameters to ensure an identifiable model. These priors are based
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on the log RK39 results for the observed KA cases. In addition, to avoid a
non-identifiable model, we constrain the random intercepts β1i to be strictly
positive and slopes β2i to be strictly negative. In the structural model, we
use weakly informative default prior distributions (Gelman et al., 2008).

4 Application to the Kalanet data

Based on this model, the average log RK39 result in non-infected individu-
als is estimated at -1.99. Immediately after infection, the RK39 increases by
1.78 and decreases subsequently by 0.28/log-month. The analysis shows no
significant reduction in infection incidences with intervention: OR = 0.77
(95%CI: 0.45 to 1.55). The estimated intervention effects vary strongly
across matched pairs. Comparing the model-based estimates with other es-
timates of the intervention effect (KA OR, relative risk based on another
marker of infection [DAT, primary study analysis], and OR based on Elisa
with a fixed cut-off), the model-based estimates are generally in line with
the other estimates.

5 Conclusion

We estimated, through joint modelling of a response and a structural model,
infection incidences from a continuous measure of infection without using
explicit cut-offs for seropositivity. Given the event of interest is not ob-
served for the majority of subjects, substantial subject matter knowledge
is needed to ensure an estimable model which is clinically appropriate. In
our analysis, both the functional form and the priors and constraints for
the parameters of the measurement model were based on subject matter
knowledge and data from the subset of subjects who showed clinical disease.
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Abstract: The flow of natural gas within a gas transmission network is studied
with the aim to predict gas loads for very low temperatures. Two models for
describing dependence between the maximal daily gas flow and the temperature
on network exits are presented. A Brain-Cousens regression model is chosen from
the class of parametric models. As an alternative, a semi-parametric logistic re-
gression based on penalized splines is considered. The comparison of prediction
based on both models is included.
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1 Introduction and Model Motivation

We study historical data of the flow of gas transported in networks in or-
der to support a reliable and realistic prediction of the future gas flow. The
forecast of gas loads at the so-called design temperature is of particular
interest. The design temperature is the lowest temperature at which the
gas operator is still obliged to supply gas without failure, and lies between
−12◦C and −16◦C. Such low mean daily temperatures are very uncommon
in Germany, and there is no gas flow data available at the design tempera-
ture. For this reason gas operators are forced to use the predicted gas loads
at the design temperature, and we present here two models useful for the
forecast.
Data is obtained from measuring stations within the German pipeline net-
work operated by Open Grid Europe GmbH, one of the largest German gas
transporters. It contains hourly gas flow for the period between January
2004 and June 2009, and the corresponding mean daily temperatures. We
study the dependence of gas loads and air temperature on all exits along
the pipelines. Typical exits in such networks are public utilities, industrial
consumers and storages, as well as exits on border and regional crossings.
Since we want to maximize the transportation capacity through the pipelines,
we concentrate on the daily maximum flows ymaxi , i = 1, . . . , n (n = 2005),
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at each exit, for every exit in the network. We consider the standardized
daily maximum flows yi = ymaxi /ȳ, where ȳ denotes the empirical mean of
all maximal daily gas flows at one specific measuring station.
The following model to describe the dependence of the standardized max-
imal daily gas loads yi on temperature ti is studied:

yi = S(ti) + εi, (1)

where ti stands for the weighted four-day-mean temperature with the weights

(0.53, 0.27, 0.13, 0.07), and εi
iid∼ N (0, σ2) are error terms, for i = 1, . . . , n,

as suggested in Cerbe (2008).
Friedl et al. (2011) explore different modeling possibilities for this problem,
and suggest several appropriate variants for the function S(ti). They also
compare advantages and disadvantages of both approaches.

2 Nonlinear and P-Splines Regression Models

We fit a parametric as well as a semi-parametric nonlinear logistic regres-
sion model and analyze the properties of the gas flow through the pipelines
in dependence of the temperature and the forecast based on these mod-
els. The so-called Brain-Cousens model (BC-model) is proposed by Ritz
and Streibig (2008) for this kind of problems, while many authors propose
some variant of spline regression, see e.g. Jones et al. (2009), Jarrow et al.
(2004), Eilers and Marx (1996). A comparison of both approaches for a
duck growth problem is presented in Vitezica et al. (2010).
In the class of parametric models, we consider the BC-model, which is
defined by

S(ti) = θ4 +
θ1 + θ6

(
θ2

ti−40◦C + diθ5

)
− θ4

1 +

(
θ2

ti − 40◦C
+ diθ5

)θ3 , (2)

where

di =

{
1 if day i is a working day,
0 if day i is a holiday or at weekends,

indicates whether the gas loads occurred on working days or on weekends
and holidays.
The parameters in model (2) are used as follows: θ1, θ6 and θ4 define the
upper and lower asymptotes, θ5 indicates the type of the day, while θ2 and
θ3 describe the shape of the decrease of the curve. We use initial values
provided in Friedl et al. (2011). The results of the evaluation are given in
Table 1. Parameters θ5 and θ6 in the model are significant, implying that
the that the expected gas loads differ during the week (W) and on weekends
and holidays (H), and the upper asymptote is a line with slope θ6. For low
temperatures, the modified upper asymptote in the BC-model implies the
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FIGURE 1. Fitted BC-model with indicator day (left) and penalized splines
regression with indicator day (right) based on cubic B-splines on the mesh with
10 segments and the second order penalty λ = 2.51.

day-specific increase of the mean gas flow for approximately 2 times scaled
ȳ when the temperature decreases for 1◦C. The graphical representation of
model (2) is shown in Figure 1 (left).

TABLE 1. MLEs (std. errors) of the BC-model.

θ1 θ2 θ3 θ4 θ5 θ6

3.1805 −28.0417 6.5713 0.5229 −0.0447 −2.0807
(0.1062) (0.7960) (0.3431) (0.0197) (0.0031) (0.2269)

Alternatively, Friedl et al. (2011) suggest the penalized splines (P-splines)
approach, and assume that the function S(ti) is the linear combination of
basis functions Bj , j = 1, . . . ,m, on the mesh ∆, given by

S(ti) =

m∑
j=1

ajBj(ti) + am+1di, (3)

and Bj are basis functions of the B-spline of degree q, and the mesh ∆ is
an equidistant grid over m − q segments, i.e. with m − q + 1 inner knots.
The regression coefficients are obtained taking into account the smoothing
penalty λ. We refer to Figure 1 (right) for a graphical representation of the
fitted P-splines model and the position of the inner knots based on cubic
B-splines on the mesh with 10 segments and the second order penalty
λ = 100.4 = 2.51.
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3 Prediction

The models presented in Section 2 are now utilized for the prediction of
gas loads at the design temperature. Recall, the design temperature lies
outside of the domain of the predictor variable ti, i = 1, . . . , 2005. To this
end, we replace the existing temperature ti by a new predictor variable
t̃k, k = 1, . . . , ñ, generated as an equidistant grid of temperatures, which
includes low temperatures of interest. In particular, we generate t̃k starting
from the lowest possible design temperature, i.e. −16◦C, and go up to 35◦C
with step size 1. Based on the new data and the fitted models (2), and (3),
the predictions

ỹk = S(t̃k) + εk, εk
iid∼ N (0, σ2), k = 1, . . . , 52,

are calculated.
The predicted values based on the BC-model are obtained using the predict
method in R, as described in Ritz and Streibig (2008). P-splines allow
straightforward smooth extrapolation, and we exploit this property to fore-
cast gas loads at the design temperature. The second order penalty implies
the extrapolation by a linear sequence, cf. Eilers and Marx (2010).
Figure 2 illustrates the prediction based on the BC-model and P-splines
regression. At the design temperature of −12◦C the predicted gas loads on
working days based on models (2), and (3), are 38817, and 43048 KWh/h,
respectively.

FIGURE 2. Prediction for working days based on the BC and P-splines model.

In the case of nonlinear regression models, the standard error estimates
do not change substantially when we leave the domain of the predictor
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variable. Figure 3 (left) represents the predicted values for working days
based on the BC-model (2), and the corresponding standard error bands.
The näıve method based on the assumptions of the normality of error terms
and the variance homogeneity is employed to determine standard errors of
parameters. Some other methods for constructing prediction intervals for
nonlinear regression can be found in Gauchi et al. (2010), and Ritz and
Streibig (2008).
It is well known that extrapolation in the case of splines can be unsafe for
the prediction, although the model provides a good fit for gas loads. This
fact is reflected in the shape of the error bands for the P-splines model (3).
Due to the local smoothing, the fit is very good with a small error band
width within the domain of the predictor variable, while the increase in
the width of error bands is large as soon as we extrapolate. The Bayesian
estimate of the standard error bands for the fitted P-splines model for
working days are shown in Figure 3 (right).

FIGURE 3. Prediction for working days based on the BC model (left) and P-
splines (right) with the corresponding standard error bands.

4 Conclusions

We investigate prediction based on the nonlinear BC-model and on the
semi-parametric P-splines regression. Both the BC-model and the P-splines
reflect the behavior of gas flow for low temperatures in a realistic way. We
note that the nonlinear regression models are generally more difficult to
handle than the local smoothers like the P-splines, because of their nu-
merical properties. Contrary to them, the P-splines methodology is a very
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flexible simpler alternative, but it does not support the multiple regression
techniques, and one cannot exploit the desirable flexible temperature ef-
fects. The forecast of gas loads based on the BC-model is safer than the
one relying on the P-splines, due to the numerical construction of models.
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1 Introduction

Joint modeling is a statistical technique to estimate common parameters
of two or more models jointly. Here joint modeling is applied to extract
random effects from longitudinal profiles to predict a rheumatoid arthritis
activity score in a linear regression modeling taking into account that the
random effects are not observed. This approach has several advantages, e.g
Guo et al.(2004) stated that joint modeling deals better with the missing
longitudinal covariates than the standard multiple regression approaches.
The longitudinal responses are bounded on an interval and have a discrete
nature. For this reason we made use of the approach of Lesaffre et al.
(2007) for bounded outcome score. We look at a likelihood and a Bayesian
approach and make use of SAS PROC NLMIXED and WinBUGS.

1.1 Motivating data set

The Rheumatoid Arthritis Patients rePort Onset Reactivation sTudy (Rap-
port study) is a longitudinal study that aims to identify an increase in dis-
ease activity by self-reported questionnaires in the 3 months preceding the
clinical assessment. Between September and December 2008, 159 patients
of aged 18 years and older with RA or polyarthritis using Disease Mod-
ifying Drugs(DMARDs) for at least 3 months were recruited. Patients’
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disease activities were evaluated using the Disease Activity Score of 28
joint counts (DAS28) at every three months during one year follow-up.
In this study, four disease-related self reported instruments also called pa-
tient’s reported outcomes (PROs), i.e. Health Assessment Questionnaires
(HAQ), the Rheumatoid Arthritis Disease Activity Index (RADAI), Visual
Analogue Scale (VAS global) of the patient’s global assessment of disease
activity and VAS fatigue were measured at months 0, 1 and 2 and were
used to predict DAS28 at month 3. In addition, we included age, gender
and the arthritis self efficacy and coping with rheumatic stressors (CORS)
as covariates.

2 Statistical Approaches

In order to bypass problems with classical approaches such as classical and
ridge regression, we applied a two-stage and a joint modeling approach to
build the prediction model.

2.1 Two stage approach

• First stage model

In the first stage, the evolutions of the four measurements are summa-
rized by latent variables, i.e. a random intercept and a random slope.
There is, however, a complication in that the PROs are bounded
on an interval and are therefore examples of a bounded outcome
score (BOS). Typically BOSs have a peculiar distribution that ranges
from unimodal symmetric to J- or U-shaped distributions. In addition
many BOSs have a discrete nature. Lesaffre et al. (2007) assumed that
the observed BOS is obtained from rounding procedure of a latent
score measured on a continuous scale.

For K markers followed up in time, let Ũijk denote the true latent
score for patient i = 1, . . . , N at time tj = 1, . . . , ni with marker k =

1, . . . ,K of the observed BOS Ỹijk. The latent score Ũijk is assumed

to lie in the interval Ỹ Lijk and Ỹ Uijk. Then let Uijk = log(Ũijk/(1−Ũijk))
be modeled longitudinally as a linear mixed effects model:

Uijk = xTijkβk + b0ik + b1iktj + εijk, (1)

with xijk a vector of covariates, b0ik, b1ik are the random intercept
and slope, respectively assumed to have a bivariate normal distri-
bution with mean zero and covariance matrix Σk,b, εijk measure-
ment error independent of the random effect with a normal distri-
bution N(0, σ2

k,ε). The vector of latent transformed scores Uik =
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(Ui1k, . . . , Uinik) follows marginally a multivariate normal distribu-
tion. The likelihood for the ith individual is:

Lik(θk|Xik) =

{∫ Y Ui1k
Y Li1k

. . .
∫ Y Uinik
Y Linik

MVN (Uik|xTijkβk,Σik)dUik

}
,

with θk the stacked vector of mean parameters βk and variance pa-
rameters Σk,b, σ

2
k,ε and bik = (b0ik, b1ik). In our application the bik

are of interest. These random effects can be estimated using empirical
Bayes methodology resulting in b̂ik.

• Second stage model

In the second stage a classical multiple regression is used where the
response is regressed on the estimated random effects of the first
stage, i.e. the predicted random intercept and slope b̂0ik and b̂1ik, and
possibly some extra covariates z. In our case, there were 8 random
effects included in the regression model to predict DAS28 at month
3.

However, the two stage approach ignores the fact that the random effects
are estimated and hence prone to measurement error which causes the
regression coefficients of these random effects in the second regression model
to be distorted.

2.2 Joint modeling approach

In the joint approach the likelihoods of the first and second stage are han-
dled simultaneously. We have applied two joint modeling approaches. The
first approach is based on maximizing the joint marginal likelihood which
is the marginal likelihood combining the first and second stage models into
one encompassing integrated likelihood. This is an integrated likelihood
whereby the random effects appearing in both likelihoods are integrated
out. For this a Laplace approximation has been used. In the second ap-
proach the posterior is sampled with Bayesian Markov Chain Monte Carlo
(MCMC) techniques to arrive at the parameter estimates. In both ways the
uncertainty about the true values of the random effects is naturally taken
into account.

3 Application to motivating data set

For the two stage approach, we used the SAS procedures PROC NLMIXED
and PROC REG in the first and the second stage, respectively. In the joint
modeling approach, we use the SAS procedure PROC NLMIXED of SAS for
the likelihood approach and WinBUGS software for the Bayesian approach.
Weakly informative priors were chosen for all parameters in the Bayesian
approach. Table 1 shows the results of applying the two stage and the joint
modeling approaches on the motivating data set.
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TABLE 1. Results of the two stage and joint model approach on the Rapport
data set

2 stage model Joint model
Parameter Model 1(BOS?-NLM†+MLR∗) Model 2 (BOS?-Bayesian) Model 3(BOS?-NLM†)

Estimate S.E. p-Value Posterior S.E. 95% CI Estimate S.E. p-Value
Mean

Intercept β0 3.74 0.65 <0.01 3.17 0.58 (2.04,4.30) 3.79 0.65 <0.01
HAQ
Intercept β1 0.34 0.11 <0.01 0.20 0.09 (0.04,0.38) 0.32 0.11 <0.01
Slope β2 -0.01 0.74 0.99 0.07 0.94 (-1.86,2.07) -0.05 0.76 0.95
RADAI
Intercept β3 0.36 0.17 0.03 0.41 0.13 (0.16,0.66) 0.36 0.15 0.02
Slope β4 0.72 0.43 0.10 0.77 0.62 (-0.23, 2.20) 0.67 0.40 0.10
VAS global
Intercept β5 -0.21 0.22 0.35 -0.16 0.17 (-0.49,0.18) -0.19 0.21 0.38
Slope β6 0.56 0.79 0.48 0.98 1.16 (-0.81,3.94) 0.59 0.92 0.52
VAS fatigue
Intercept β7 -0.29 0.29 0.32 0.08 0.12 (-0.17,0.32) -0.15 0.54 0.79
Slope β8 -4.25 2.77 0.13 -1.54 1.45 (-4.93,0.81) -2.60 5.10 0.61
Age β9 0.01 0.01 0.12 0.01 0.01 (-0.01,0.03) 0.01 0.01 0.17
Sex (Male) β10 -0.86 0.22 <0.01 -0.84 0.28 (-1.37,-0.29) -0.78 0.24 <0.01
Self efficacy β11 -0.01 0.01 0.34 -0.01 0.01 (-0.03,0.01) -0.01 0.01 0.27
Coping pain β12 -0.12 0.08 0.13 -0.08 0.08 (-0.25,0.08) -0.13 0.08 0.11
Coping limitation β13 0.02 0.09 0.85 0.03 0.09 (-0.14,0.20) 0.01 0.08 0.86
Coping dependence β14 -0.05 0.05 0.32 -0.03 0.05 (-0.12,0.07) -0.04 0.05 0.35
S.E.:estimated standard error
? BOS: Bounded outcome score for HAQ, RADAI, VAS global and VAS fatigue
† NLM: Non linear mixed model
∗ MLR: Multiple linear regression

4 Conclusion

We have used a two stage and joint modeling approach to predict DAS28
for the rheumatoid arthritis patients. However, the two stage approach is
not recommended as it results in biased inference due to the unaccounted
error in the estimation of the random coefficients (Wang et al. (2000)). We
applied both ways of estimation: likelihood based and Bayesian MCMC
sampling to obtain the final model results. The Bayesian approach is simple
to program and offers more flexibility in distributional assumptions than
the likelihood approach (because of the WinBUGS implementation).
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1 Introduction

In medical studies, a continuous diagnostic test, Y , is commonly used for
classifying subjects into diseased and healthy populations. Without loss of
generality, it is usually assumed that for a given threshold, c, a subject with
Y ≥ c is classified as diseased and as healthy otherwise. This kind of classi-
fication procedure will lead to some classification errors, which are usually
calibrated on the basis of two indicators depending on c: sensitivity (proba-
bility of diagnosing a diseased person as diseased or ‘true positive fraction’,
denoted by q(c)) and specificity (probability of diagnosing a healthy person
as healthy or ‘true negative fraction’, denoted by p(c)).
The accuracy of a continuous classifier is usually described graphically by
using the ‘Receiver Operating Characteristic’ (ROC) curve, which is ob-
tained by plotting the pairs (1−p(c), q(c)), with −∞ < c <∞. In practice,
a crucial point in this context is to find the optimal threshold value to
classify the individuals. Depending on the definition of optimality, different
methods have been proposed in the literature to identify that threshold
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value. In this paper, we will focus on the Youden index,

J = max{J(c);−∞ < c <∞} , where J(c) = q(c) + p(c)− 1,

and its associated threshold value, cJ , studied recently by Le (2006), Schis-
terman and Perkins (2007) and Letón and Molanes-López (2009), among
others.
In many studies, a covariate (or vector of covariates), X, is available and
can be used in order to increase the classification performance of Y . In this
work, we propose a new nonparametric approach for estimating the Youden
index and the corresponding optimal threshold value in the biomarker scale,
taking into account the effect of the covariates. The proposed method is
described in Section 2. In Section 3, we study its practical performance in
a small simulation study. Finally, the new method is illustrated in Section
4 using a real example.

2 New method

The information of a covariate along with the classifier can be incorporated
in a general framework given by the location-scale regression models studied
by Pepe (1997, 1998, 2003), Faraggi (2003) and more recently by González-
Manteiga et al. (2011).
In this article we work with fully nonparametric location-scale regression
models. This means that the relationship between the covariate and the
classifier in each population (healthy, denoted by 0, or diseased, denoted
by 1) is given by the following models:

Y0 = µ0(X0) + σ0(X0)ε0,

Y1 = µ1(X1) + σ1(X1)ε1,

where, for j = 0, 1, µj(·) = E(Yj | Xj = ·) and σ2
j (·) = V ar(Yj | Xj = ·) are

nonparametric functions representing, respectively, the conditional mean
and the conditional variance of the response Yj given the covariate Xj in
each population, and εj is the regression error, which we assume indepen-
dent of Xj .
For a fixed value of the covariate, x, the covariate-adjusted ROC curve is
defined by

ROCx(p) = 1− F1(F−1
0 (1− p | x) | x),

where Fj(y | x) = Pr(Yj ≤ y | Xj = x) is the conditional cumulative
distribution function of Yj given that Xj = x, and F−1

j (p | x) is the corre-
sponding conditional quantile function. Under the location-scale regression
models given above, it is easy to check that, for j = 0, 1, the conditional
distribution function and the conditional quantile function of the variable
Yj given Xj = x can be written as

Fj(y | x) = Gj

(
y − µj(x)

σj(x)

)
and F−1

j (p | x) = µj(x)+σj(x)G−1
j (p),
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where Gj(y) = Pr(εj ≤ y) is the error distribution, and G−1
j (p) is the

corresponding quantile function. Hence the covariate-adjusted ROC curve
becomes

ROCx(p) = 1−G1(G−1
0 (1− p)b(x)− a(x)),

where a(x) = (µ1(x)− µ0(x))/σ1(x) and b(x) = σ0(x)/σ1(x).
Under this model, for a given value of the covariate, x, we define the
covariate-adjusted Youden index by Jx = maxp |ROCx(p) − p|. For this
index, let pJx = arg maxp |ROCx(p) − p|. Then, the associated covariate-
adjusted threshold, denoted by cJx , can be seen as both the conditional
(1− pJx)-quantile of Y0 given X0 = x or the conditional (1−ROCx(pJx))-
quantile of Y1 given X1 = x.
In practice, we assume that two samples of sizes n0 and n1 of i.i.d. data
are observed from populations (X0, Y0) and (X1, Y1). Given a value of the
covariate, x, we propose to estimate the covariate-adjusted Youden index

by Ĵx = maxp |R̂OCx(p)−p|, where R̂OCx(p) denotes the estimator of the
covariate-adjusted ROC curve proposed and studied in González-Manteiga
et al. (2011). The associated conditional optimal threshold, cJx , is estimated
by any of the following two quantities

ĉJx0 = Q̂x0(1− p̂Jx),

ĉJx1 = Q̂x1(1− R̂OCx(p̂Jx)),

or by the weighted average of the previous two estimators

ĉJx =
n0

n0 + n1
ĉJx0 +

n1

n0 + n1
ĉJx1,

where p̂Jx = arg max |R̂OCx(p) − p|, Q̂xj(p) = µ̂j(x) + σ̂j(x)Ĝ−1
j (p), for

j = 0, 1, and µ̂j , σ̂j and Ĝj denote the estimates given in González-Manteiga
et al. (2011).

3 Simulation study

In this section, we study the practical behaviour of the estimators of the
covariate-specific Youden index and the corresponding threshold. We have
simulated data from two scenarios (S1 and S2) as detailed below:
S1. µ0(x) = 0, µ1(x) = x, σ2

0(x) = σ2
1(x) = 0.52.

S2. µ0(x) = 0.5, sin(2πx), µ1(x) = sin(πx), σ2
0(x) = σ2

1(x) = (0.25+0.5x)2.
In both scenarios, the covariates X0 and X1 are uniformly distributed in
[0, 1], and the regression errors ε0 and ε1 have standard normal distribution.
We will focus on three values of the covariate: x = 0.25, 0.50, 0.75.
The estimators of the regression curves, µ0(·) and µ1(·), and variance
curves, σ2

0(·) and σ2
1(·), which are needed in the construction of the es-

timator of the conditional ROC curve, are Nadaraya-Watson estimators
based on cross-validation bandwidths.
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The estimator of the ROC curve proposed and studied in González-Man-
teiga et al. (2011) depends on a smoothing parameter, h. When h = 0, the
estimator of the ROC curve is based on the empirical distribution func-
tion and the empirical quantile function of the regression errors, and so the
obtained estimator is a stepwise function. In order to obtain a continuous
estimator of the ROC curve, some smoothing can be added to the empir-
ical estimator by means of the parameter h. In these simulations, we will
show results for h = 0 (empirical estimator) and h = 0.05, 0.10 (smooth
estimators).
Table 1 shows the mean square error (MSE) of the estimator of the Youden
index and the estimators of the associated threshold (times 100) averaged
over 1000 data sets simulated according to scenarios S1 or S2. The sample
sizes are (n0, n1) = (100, 100), (100, 200) and (200, 200).

TABLE 1. Estimated MSE (×100) under S1 and S2.

S1 S2

x (n0, n1) h Ĵx ĉJx0 ĉJx1 ĉJx Ĵx ĉ0Jx ĉ1Jx ĉJx
0.25 (100,100) 0.00 1.41 5.75 5.62 5.52 2.33 3.47 3.61 3.53

0.05 1.15 5.91 5.56 5.71 1.97 3.58 3.38 3.47
0.10 1.04 5.98 5.24 5.57 1.81 3.65 3.37 3.49

(100,200) 0.00 0.94 4.73 4.79 4.77 1.87 2.77 2.81 2.79
0.05 0.77 4.65 4.57 4.59 1.56 3.09 3.00 3.03
0.10 0.70 4.80 4.53 4.61 1.43 3.10 2.87 2.94

(200,200) 0.00 0.60 3.33 3.37 3.35 1.08 2.18 2.20 2.19
0.05 0.49 3.19 3.17 3.17 0.92 2.13 2.09 2.11
0.10 0.45 2.99 2.95 2.96 0.85 2.00 1.94 1.97

0.50 (100,100) 0.00 0.97 2.52 2.67 2.59 0.87 1.62 1.70 1.64
0.05 0.84 2.58 2.47 2.51 0.83 1.71 1.57 1.62
0.10 0.79 2.24 2.11 2.15 0.81 1.65 1.35 1.46

(100,200) 0.00 0.77 2.04 2.09 2.07 0.65 1.37 1.42 1.40
0.05 0.65 1.99 1.96 1.97 0.59 1.32 1.19 1.22
0.10 0.61 1.74 1.66 1.68 0.57 1.25 0.99 1.05

(200,200) 0.00 0.52 1.46 1.49 1.47 0.49 0.95 1.01 0.98
0.05 0.46 1.36 1.35 1.35 0.46 0.92 0.87 0.89
0.10 0.44 1.17 1.14 1.15 0.45 0.90 0.70 0.78

0.75 (100,100) 0.00 0.75 1.69 1.82 1.74 0.88 2.59 2.71 2.63
0.05 0.66 1.57 1.51 1.53 0.90 2.26 2.18 2.20
0.10 0.63 1.30 1.21 1.23 0.91 2.05 1.84 1.89

(100,200) 0.00 0.59 1.38 1.41 1.40 0.72 2.16 2.22 2.20
0.05 0.51 1.24 1.18 1.20 0.75 1.96 1.86 1.88
0.10 0.48 1.12 0.96 1.00 0.77 1.76 1.52 1.57

(200,200) 0.00 0.38 1.08 1.10 1.09 0.48 1.71 1.77 1.74
0.05 0.34 0.96 0.94 0.94 0.50 1.44 1.43 1.42
0.10 0.32 0.76 0.71 0.73 0.52 1.20 1.09 1.12

The table shows that the MSE decreases as the sample sizes increase for
both the estimator of the covariate-specific Youden index and the estima-
tors of the associated threshold value in both scenarios and for the three
chosen values of the covariate.
In general, the estimator of the Youden index behaves better when some
smoothing is applied to the ROC curve, that is, when h > 0. Note that
in most cases, the values of the MSE are very similar for the two positive
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values considered for h.
Concerning the estimators of the associated threshold, the observed MSE
suggests that smoothing in the ROC curve produces better results. Among
the three estimators of cJx , the estimator ĉJx1 gives better results when
smoothing is applied to the ROC curve.

4 Example

An example of 286 individuals, analyzed in Smith and Thompson (1996), is
used here to illustrate the new approach. The study is related to detection
of diabetes, and how the glucose concentration in blood can be used as a
classifier. Besides, the age of the patient is also available and used as a co-
variate. Due to medical reasons, it is known that glucose levels are expected
to be higher for older persons even when they are not diabetic. Therefore,
in order to check the ability of this classifier, it is necessary to take into
account the age of the subject. This dataset has 88 individuals diagnosed
as diabetic and 198 as not diabetic. It has been previously analyzed in
Faraggi (2003) and González-Manteiga et al. (2011), among others.
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FIGURE 1. Left panel: estimated covariate-specific Youden index. Right panel:
estimated covariate-specific threshold associated to the Youden index (solid line:
ĉJx ; dotted line: ĉJx0; dashed line: ĉJx1).

The purpose of the study is twofold: firstly, we want to know if the glucose
concentration is a good biomarker to detect diabetes; and secondly, we want
to give threshold values associated to the Youden index for each value of
the covariate.
The left panel of Figure 1 shows the covariate-specific Youden index es-
timated for the values of the covariate ranging from 20 to 90. The plot
shows that the capability of the glucose concentration to discriminate be-
tween the healthy and the diseased populations decreases with the age of
the subject. The right panel of the figure shows the estimated thresholds
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for each value of the age. The three proposed estimators produce almost
the same results. The threshold changes along with the age of the patient.
All shown estimators are based on smooth estimators of the ROC curves,
with h = 0.10.

References

Faraggi, D. (2003). Adjusting receiver operating characteristic curves and
related indices for covariates. The Statistician, 52, 179-192.
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Abstract: In many medical studies, patients can experience several events. The
times between consecutive events (gap times) are often of interest and lead to
problems that have received much attention recently. In this work we consider
the estimation of the bivariate distribution function for censored gap times, us-
ing survivalBIV a software application for R. Some related problems such as the
estimation of the marginal distribution of the second gap time is also discussed.
It describes the capabilities of the program for estimating these quantities us-
ing four different approaches, all using the Kaplan-Meier estimator of survival.
One of these estimators is based on Bayes’ theorem and Kaplan-Meier survival
function. Two estimators were recently proposed using the Kaplan-Meier estima-
tor pertaining to the distribution of the total time to weight the bivariate data
(de Uña-Álvarez and Meira-Machado (2008) and de Uña-Álvarez and Amorim
(2011)). The software can also be used to implement the estimator proposed in
Lin, Sun, and Ying (1999), which is based on inverse probability of censoring
weighted. The software is illustrated using data from a bladder cancer study.

Keywords: censoring;Kaplan-Meier;multi-state model;gap times;inverse censor-
ing.

1 Introduction

Let (T1, T2) be a pair of gap times of successive events, which are observed
subjected to random right-censoring. Let C be the right-censoring variable,
assumed to be independent of (T1, T2) and let Y = T1 + T2 be the total

time. Because of this, we only observe (T̃1i, T̃2i,∆1i,∆2i), 1 ≤ i ≤ n, which

are n independent replications of (T̃1, T̃2,∆1,∆2), where T̃1 = T1∧C, ∆1 =

I(T1 ≤ C), and T̃2 = T2 ∧C2, ∆2 = I(T2 ≤ C2) with C2 = (C − T1)I(T1 ≤
C) the censoring variable of the second gap time. Define Ỹ = Y ∧ C and
let F1 and G denote the distribution functions of T1 and C, respectively.
This paper describes the R-based survivalBIV package’s capabilities for
implementing nonparametric and semiparametric estimators for the bivari-
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ate distribution function for censored gap times. In this work we present
four methods (estimators) for the bivariate distribution function of the gap
times. One simple estimator is based on Bayes’ theorem and Kaplan-Meier
survival function. This estimator is related to that proposed in Lin, Sun
and Ying (1999) and with estimators proposed by de Uña-Álvarez since
all use (in different ways) the Kaplan-Meier estimator (Kaplan and Meier
(1958)). The estimator proposed by Lin in 1999 uses Inverse Probability of
Censoring Weighted (IPCW) based on the Kaplan-Meier estimator. On the
other hand, the idea behind both estimators proposed by de Uña-Álvarez is
using the Kaplan-Meier estimator pertaining to the distribution of the total
time to weight the bivariate data. Difference between these two methods is
that the more recent paper uses a presmoothed version of the Kaplan-Meier
estimator.

2 Methodological background

A simple estimator for the bivariate distribution function of the gap times is
based on Bayes’ theorem and Kaplan-Meier survival function (conditional
Kaplan-Meier, CKM). One simple estimator for the bivariate distribution
is given by

F̂12(x, y) = F̂1(x)F̂KM (y|T1 ≤ x,∆1 = 1) (1)

where F̂1(x) is the Kaplan-Meier product-limit estimator based on the pairs

(T̃1i,∆1i)’s and F̂KM (y) is the Kaplan-Meier estimator based on the pairs

(T̃2i,∆2i)’s. The F̂KM (y|T1 ≤ x,∆1 = 1) is the conditional distribution
function for the subset of T1 ≤ x and ∆1 = 1 (the Kaplan-Meier estimator

based on the pairs (T̃2i,∆2i)’s such that T̃1i ≤ x and ∆1i = 1). Another
simple estimator was recently proposed by de Uña-Álvarez (2008). The idea
behind the estimator is using the Kaplan-Meier estimator pertaining to the
distribution of the total time to weight the bivariate data. The proposed
estimator (Kaplan-Meier Weighted Estimator, KMW) is given by

F̃12(x, y) =

n∑
i=1

WiI(T̃1i ≤ x, T̃2i ≤ y) (2)

where Wi = ∆2i

n−Ri+1

∏i−1
j=1

[
1− ∆2j

n−Rj+1

]
is the Kaplan-Meier weight at-

tached to Ỹi when estimating the marginal distribution of Y from (Ỹi,∆2i)’s,

and for which the ranks of the censored Ỹi’s, Ri, are higher than those for
uncensored values in the case of ties. Recently, de Uña-Álvarez propose a
modification of estimator (2) based on presmoothing, which allows for a
variance reduction in the presence of censoring. By “presmoothing” it is
meant that each censoring indicator is replaced by a smooth fit of a binary
regression of the indicator on observables. This estimator (Kaplan-Meier
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Presmooth Weighted Estimator, KMPW) is expressed as

F̃ ?12(x, y) =

n∑
i=1

W ?
i I(T̃1i ≤ x, T̃2i ≤ y) (3)

where W ?
i = m(T̃1i,Ỹi)

n−Ri+1

∏i−1
j=1

[
1− m(T̃1j ,Ỹj)

n−Rj+1

]
are the presmoothed Kaplan-

Meier weights. Here, m(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y,∆1 = 1), belongs
to a parametric (smooth) family of binary regression curves, e.g. logistic.
Our package provide the results assuming that m: (a) denotes a logistic
regression model (KMPW glm); (b) denotes an additive logistic regres-
sion model (KMPW gam). Another estimator for the bivariate distribution
function was proposed by Lin, Sun and Ying (1999). This estimator is based
on inverse probability of censoring weighted (IPCW) and is expressed as

F 12(x, y) = H(x, 0)−H(x, y) (4)

where H(x, y) = 1
n

∑n
i=1

I(T̃1i≤x,T̃2i>y)

1−Ĝ((T̃1i+y)−)
. From (1), (2), (3) and (4) we may

obtain an estimator for the marginal distribution of the second gap time.

3 Package Description and Application

The survivalBIV software contains functions that calculate estimates for
the bivariate distribution function. This software is intended to be used with
the R statistical program (R Development Core Team 2010). Our package
is composed of 9 functions that allow users to obtain numerical and graph-
ical output for all four methods (CKM, KMW, KMPW and IPCW). In
addition, users may generate bivariate survival data from two of the most
known copula functions: Gumbel’s bivariate exponential distribution, also
known as the Farlie-Gumbel-Morgenstern distribution and the bivariate
Weibull distribution.

The methods described in Section 2 are illustrated using data from a blad-
der cancer study (Byar (1980))conducted by the Veterans Administration
Cooperative Urological Research Group. In this study, many patients had
multiple recurrences (up to a maximum of 9) of tumors during the study.
These data are available as part of the R survival package. Here, only the
first two recurrence times (in months) and the corresponding gap times,
T1 and T2, are considered. In the following, we will demonstrate the pack-
age capabilities using data from the bladder cancer study (called blad-
der2). Details about the input data and the functions in the package are
reported elsewhere. For illustration purposes we report the estimated val-
ues of F12(29, 17.5) for all methods.
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R>library("survivalBIV")

R>data("bladder2")

R>bladderBIV <- adapt(data = bladder2)

R>summary(bladderBIV,t1=29,t2=17.5,method="all")

CKM IPCW KMW KMPW glm KMPW gam

F(29,17.5)= 0.368028 0.3829919 0.3671296 0.3607358 0.3607358

In this case it is clearly seen that the four methods can provide quite dif-
ferent results. The outputs for the bivariate distribution function and for
the marginal distribution of the second gap time are useful displays that
greatly helps to understand the patients course over time. Plots for these
quantities can easily be obtained. The following input command provides
the graphical output for all methods.

R>plot(bladderBIV, plot.marginal = TRUE,

plot.bivariate = TRUE, method = "KMPW")

4 Conclusion

This paper discusses implementation in R of some newly developed meth-
ods for the bivariate distribution function for censored gap times. The
survivalBIV package uses four nonparametric and semiparametric esti-
mators. One of these estimators is the conditional Kaplan-Meier, based on
Bayes’ theorem and Kaplan-Meier estimator; also, two recent estimators
based on the Kaplan-Meier weights pertaining to the distribution of the
total time (time to the second or final event of interest). It also implements
the inverse probability of censoring weighted estimator proposed by Lin
(1999). Numerical results as well as graphics are easily obtained. We men-
tion two important topics that we shall consider in future versions of the
package. First, covariates have not been included in our methods. Another
topic of much practical interest is that of providing pointwise confidence
bands for these quantities.
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Abstract: To overcome the well known oddities in testing for the existence
of a breakpoint in segmented regression models, we discuss a novel approach
based on the generalized Pearson X2 statistic, which can be considered as an
approximation of the Score statistic. We describe the method and present results
from some simulations.
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1 Introduction

The segmented regression model for a response variable Y and a covariate
X postulates that the relationship between X and the conditional mean
E[Y |x] = µ is piecewise linear, i.e. two straight lines connected at an un-
known point to be estimated. More broadly we can assume the response
belongs to the exponential family with link function g(·) leading to the
regression equation

g(µi) = zTi γ + β(xi − ψ)+ i = 1, 2, . . . , n (1)

where (xi − ψ)+ = (xi − ψ)I(xi > ψ) and zTi γ may include additional
linear terms, such as other covariates, the model intercept, and the lin-
ear term for the segmented variable that represents the ‘left slope’ of the
piecewise relationship. The choice of a variance function V [Y |xi] = φv(µi)
completes the specification of the GLM. This paper deals with testing for
the existence of ψ in model (1). When ψ does not exist, model (1) reduces
to a ‘simple’ GLM with linear effects. Roughly speaking, estimation and
inference in the segmented regression model are difficult and challenging
for several reasons. In particular, testing for the existence of a breakpoint
is a non-regular problem which makes the usual statistical tests invalid and
involves a lot of theoretical issues, see Feder (1975) for an early work on
the topic. The traditional tests are far from being helpful in this context:
for instance, the null distribution of the likelihood ratio statistic is bimodal
with a zero mean, but its analytical density is unknown. At the best of our
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knowledge two approaches have been suggested in the literature. Davies
(1987) proposed an approach based on the theory of stochastic processes;
the test is currently implemented by the davies.test() function in the
R package segmented (Muggeo, 2008). The other approach by Kim et al.
(2000) uses permutations to obtain the null distribution and to compute
the p-value accordingly. However, both approaches provide sub-optimal so-
lutions in some contexts: the permutation test has been discussed only for
continuous responses using permutations of the residuals of the null fit and
therefore generalizations to other responses, e.g. binary, are not immedi-
ate; moreover this approach may become computationally cumbersome for
large samples. The Davies test may also be hard to use with large datasets,
as several fits (about ten) are needed; furthermore it does not generalize
to multiple breakpoints. We discuss a simple and very intuitive approach
based on a Pearson-type statistic which performs reasonably well under
different models and is simple to implement.

2 Methods

We are interested in testing for the existence of the breakpoint in model
(1). Without loss of generality, let µ̂0i be the fitted values for the ‘null’
(i.e. no breakpoints) model and µ̂i the fitted values under the alternative,
namely for the segmented regression fit. The link function g(·) and possible
presence of additional covariates do not matter. A generalized form of the
Pearson statistic which can be used to compare the two models is

X2
1|0 =

n∑
i=1

(µ̂i − µ̂0i)
2

φv(µ̂0i)
, (2)

where the dispersion parameter, if unknown, is usually replaced by a cor-
responding consistent estimate. Notice that, when the alternative model is
the saturated model, i.e. yi = µ̂i, X

2
1|0 is the usual Pearson goodness of

fit statistic which is equivalent to the score statistic for any GLM. Lovison
(2005) showed that for canonical GLM X2

1|0 is greater than the equivalent

score statistic and he also gave an X2-like formula for the score statistic.
Motivated by these connections, the Pearson-type statistic (2) is referred
to as pseudo-score statistic, and Agresti and Ryu (2010) used it to build
confidence intervals in discrete statistical models. Here we use it for testing
for a breakpoint in segmented GLMs, where the usual asymptotic tests fail
and current proposals do not appear to be fully satisfactory.
To perform hypothesis testing we need to known the null distribution of
X2

1|0. With respect to the null linear model, the segmented ‘alternative’
model has two additional parameters, the difference in slope parameter and

the breakpoint, therefore it seems reasonable that under H0 X
2
1|0

d→ χ2
2.

Like for interval estimation problems in Agresti and Ryu (2010), we do not
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yet have formal arguments to show that the chi-squared distribution holds
under H0, but we show its performance via simulations.
Table 1 reports the actual sizes of the pseudo score statistic X2

1|0 to test
for the existence of the breakpoint. We consider different scenarios, with
four sample sizes and three densities for the responses: Gaussian, Yi ∼
N (µi = 0.15xi, 0.012); Poisson, Yi ∼ P(µi = e2+0.5xi); Negative Bino-
mial, Yi ∼ NB(µi = e2+0.5xi , µi + µ2

i /2), where xi = i/n in every sce-
nario. The Negative Binomial family has been selected to assess the per-
formance of the pseudo-score statistic when the model is estimated via a
quasi-likelihood approach; for this and the Gaussian example, the disper-
sion parameter is assumed unknown and it is replaced by a corresponding
method-of-moments estimate under the null hypothesis (i.e. from the linear
model).

TABLE 1. Empirical sizes (based on 2,000 replicates) of the pseudo score test
testing for a breakpoint in different scenarios.

Gaussian Poisson Negative Binomial
n 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
50 0.007 0.045 0.099 0.015 0.058 0.104 0.009 0.050 0.106
100 0.012 0.055 0.112 0.013 0.059 0.109 0.016 0.061 0.111
500 0.011 0.056 0.105 0.014 0.057 0.118 0.013 0.050 0.110
1000 0.010 0.047 0.093 0.010 0.057 0.112 0.012 0.061 0.117

We observe that the pseudo score test for a breakpoint in segmented re-
gression performs reasonably well by providing empirical sizes close enough
to the corresponding nominal values.
Table 2 shows the power of the proposed X2-type test and the Davies test
in detecting a changepoint: we consider two sample sizes (n = 50, 100),
µi = 0.05(xi−ψ)+ for Gaussian responses and µi = e2+(xi−ψ)+ for Poisson
and Negative Binomial responses; we also assess the effect of the location
of the breakpoint by considering ψ = 0.50 and ψ = 0.75.

TABLE 2. Empirical power at level 0.05 (based on 1,000 replicates) of the pseudo
score test and the Davies test in different scenarios.

Family
ψ n Gaussian Poisson Neg Binom

0.50 50 X2 0.593 0.269 0.099
Davies 0.555 0.227 0.096

100 X2 0.910 0.457 0.135
Davies 0.879 0.374 0.119

0.75 50 X2 0.303 0.125 0.070
Davies 0.282 0.100 0.091

100 X2 0.568 0.227 0.098
Davies 0.482 0.170 0.088

As expected both tests perform better when ψ is in the middle of the
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range of the segmented variable and with larger sample sizes. Although the
differences are moderate, generally X2

1|0 outperforms the Davies test, and
moreover it is actually much simpler to compute, since it requires only two
fits.

3 Conclusions

The estimation problem for GLMs involving segmented relationships ap-
pears to have received much attention by several authors in the literature,
and different solutions are available; see for instance Muggeo (2003). On
the other hand, hypothesis testing problems currently present open re-
search questions. In this paper, we have illustrated a very simple, intuitive,
and general approach to the problem of testing for a breakpoint in GLMs.
Results from some simulation studies show that the Pearson-type statistic
provides satisfactory results, at least in the simple case of testing ‘1 vs.
0’ breakpoints. Possible further uses of the Pearson-type statistic concern
testing with multiple breakpoints, e.g. 2 vs. 1 or 0 breakpoints, and test-
ing under model misspecification, e.g. in the presence of heteroscedasticity
and autocorrelation with continuous responses. These topics need further
investigation.
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1 Motivation

Geostatistics provides a set of statistical tools specifically designed for spa-
tial problems, in which prediction is required over a region of interest where
some observations have been taken. Predictions are based on an underly-
ing statistical model that can take additional information into account as
explanatory variables. In addition, the prediction error can be derived.
Specifically, let Z(si), i = 1, . . . , n be a set of measurements at locations
s1, . . . , sn in a (typically) 2-dimensional region D. These measurements are
often assumed to be one realisation of a random process Z(·) such that:

• E(Z(·)) = µ,

• C(si−sj) = cov(Z(si), Z(sj)), ∀si, sj ∈ D, exists and only depends
on the vector si − sj .

These assumptions form the second order (or weak or wide-sense) stationar-
ity hypothesis (Cressie 1993, p.53). Additionally, isotropy is often assumed,
where C(si − sj) = C(|si − sj |); that is, the covariogram depends only on
the length of the vector si − sj and not on its direction.
The stationarity and isotropy assumptions make no sense when the region
of interest is very heterogeneous, or has irregularities affecting the struc-
ture of correlations. The covariogram depends not only on the distance
between locations, but also on the geographical configuration of the envi-
ronment. These are clearly non-stationary situations. One extreme case is
the presence of barriers in the region of interest.
One way of dealing with this is using Cost-based distances (Krivoruchko
and Gribov 2002, López-Qúılez and Muñoz 2009). With this approach,
a cost-surface must be defined, representing how difficult is the flow of
information at every location. For instance, a barrier gets an infinite cost,
while regular medium gets cost 1. The Cost-based distance between two
locations is defined as the length of the minimum-cost path between them.
In this way, we have incorporated the geographical information into the
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distances between locations, and once again, we are able to talk about
stationarity and isotropy with respect to the Cost-based distances.
However, a fundamental problem arises. Note that for every set of locations
s1, . . . , sn ∈ D, the corresponding covariance matrix (cov(Z(si), Z(sj)))
must be positive definite. This sets up a condition over the covariance
function called positive definiteness. When the distances are Euclidean,
the family of (isotropic) positive definite functions is fully characterised by
Schoenberg’s (1938) theorem. This led to a number of parametric families
of valid functions with varying properties that are available to the user
of geostatistical methods. However, when the distances are not Euclidean
there is no guarantee of positive-definiteness, and there are no general re-
sults characterising the family of positive definite functions.
It is our goal to investigate the properties of the family of positive definite
functions with respect to Cost-based distances.

2 Approaches

2.1 Riemannian manifolds

Mathematically, we can think of the region D as a Riemannian manifold.
Let c(s) be the cost surface. We can define the Riemannian metric as

gs(u,v) = c(s)2〈u,v〉, (1)

for all u,v in the tangent space TsD, where 〈·, ·〉 represent the Euclidean
scalar product. With this setting, a metric is naturally induced as

τg(s, t) = inf
{
L(c) : c ∈ D1([0, 1];D)(s,t)

}
, (2)

where

L(c) =

∫ 1

0

√
gcx(c′x, c

′
x) dx =

∫ 1

0

c(cx)|c′x| dx, (3)

is the length of the curve c, and D1([0, 1];D)(s,t) is the set of all piecewise
continuously differentiable maps c : [0, 1]→ D with c(0) = s and c(1) = t.
In other words, the distance between points s and t is the infimum of the
lengths of the (continuous) paths connecting s and t.
Characterising the positive definite functions over D in the spirit of Shoen-
berg’s theorem involves developing Fourier and spectral analysis in this
(much) more general context. This is an open line of work.

2.2 Pseudo-Euclidean spaces

One approach that has been considered is the use of Multidimensional Scal-
ing (MDS) for representing the set of locations s1, . . . , sn and their Cost-
based distances in a Euclidean space, where standard covariance functions
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can be used. This is an unsatisfying approximation, though. However, the
locations can be exactly represented in a pseudo-Euclidean space.
A pseudo-Euclidean space is a vector space of dimension d, say Rd, with a
non-degenerate symmetric bilinear form

(·, ·) : Rd × Rd → R
(x,y) = (x1y1 + · · ·+ xkyk)− (xk+1yk+1 + · · ·+ xdyd),

(4)

where k is called the index, while the pair (k, d− k) is called the signature
of the space. The space is denoted E(k,d−k).
This was promising, since a pseudo-Euclidean space provides enough struc-
ture to try to characterise the family of positive definite functions follow-
ing the ideas of Schoenberg. The procedure involves assuming that a given
isotropic and stationary correlation function is positive definite, and inte-
grating it out over a sphere of radius r.
In the pseudo-Euclidean space, the sphere (as a surface of constant radius)
becomes a hyperboloid. In contrast to the sphere, a hyperboloid has an
infinite area, and this fact causes divergence in most integrals. This leaves
little hope of characterising its positive definite functions.
Possibly, this space is much bigger than needed. The pseudo-Euclidean
space is actually able to represent any set of points with prescribed dis-
similarities; i.e., not necessarily satisfying the triangle inequality. However,
the Cost-based distance is a (full) metric. This means that the family of
positive definite functions in the pseudo-Euclidean space (which includes
the trivial constant function 1) is a subset of those in the space D,

1 ∈ P(E(k,d−k)) ⊂ P(D). (5)

Here we have more open questions. Are there more functions (apart from
the trivial) in P(E(k,d−k))? Is there a way of characterising them all?
Are there functions in P(D) not positive definite in the pseudo-Euclidean
space? We believe there are. Specifically, we have shown that the expo-
nential correlation function is not positive definite in the pseudo-Euclidean
space, while it has produced positive definite covariance matrices in all the
examples we have run.

2.3 Bayesian simulation

While we don’t know any family of positive-definite functions, we can use
some sort of an accept-reject method in a Bayesian hierarchical spatial
model like the following.
In model 1, the locations s1, . . . , sn determine the matrix Dcb of Cost-based
distances. This matrix is non-negative, symmetric and has zeroes in its
diagonal. The corresponding measurements y1, . . . , yn are (say) Gaussian
and a spatial effect ω is introduced in their mean. This effect is given a
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s1, . . . , sn ; Dcb = (rij); rii = 0, rij ≥ 0, rij = rji

y1, . . . , yn ; y ∼ N (µ, τ2I); µ = Xβ + ω

ω ∼ N (0, σ2P)

P = f(Dcb)

f ∼ · · · ; f(0) = 1, |f(r)| ≤ 1, f(Dcb)p.d.

(6)

correlation matrix which is a (unknown) transformation f of the Cost-based
distances, with some constraints, including the positive-definite condition.
We could simulate f from a family of functions (maybe a combination
of a base of functions), rejecting those giving rise to non positive-definite
matrices, and perform inference on the parameters of the model.
This procedure still lacks theoretical foundation. Although this specific
matrix is positive-definite, if any other location s was added, the extended
transformed matrix might not be. Hence, the theoretical stochastic process
is not necessarily valid.

3 Conclusions

This is pure ongoing work. Although it started as a very applied project,
it turned quickly into deep mathematics. There are various lines of work,
involving diverse areas of mathematics, such as Topology, Measure Theory,
Geometry, Fourier analysis, Algebra, etc. It has been difficult to cover all
these fields at once and combine them coherently to achieve results.
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Abstract: In multi-state models the interest is typically in modeling the transi-
tion probabilities using baseline covariates. The Aalen-Johansen (A-J) estimator
is the standard nonparametric estimator to estimate transition probabilities of a
time-inhomogeneous Markov multi-state model. However when the Markov as-
sumption is violated, A-J estimators may be systematically biased. One can still
estimate stage occupation probabilities and the A-J method provides consistent
estimators in this case. In this paper we use the pseudo-values approach for direct
modeling of the state probabilities using covariates. The approach is exemplified
in a study on heart transplant data.
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1 Introduction

In transplantation studies often categorical longitudinal measurements are
collected for patients waiting for an organ transplant. It is of primary in-
terest to assess whether available history of the patient can be used for
predicting patient survival as well as further performance on the waiting
list.
In this work we suggest to use a multi-state models approach to handle
this aim. Typically in the multi-state models framework Markov models
are used, mainly due to the availability of software. However sometimes the
model assumptions are not supported by the data (as for our data set), and
alternative approaches are required. Here we propose to use the pseudo-
value approach introduced by Andersen et al (2003) in the context of a
competing risks problem. We apply this approach for the A-J estimator for
state occupation probabilities. This approach can be used for any general
multi-state model and with some additional programming it can be applied
using standard software.

1.1 Motivating Data Set

The data come from the Eurotransplant heart recipients list, which contains
2921 recipients who entered the waiting list from 01.01.2006 to 31.12.2008.
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Each recipient was classified to one of the following states: Transplantable
(T), Non-Transplantable (NT), Urgent (U) and High Urgent (HU). The
first evaluation took place at entry and additional evaluations were per-
formed while the patient remained on the waiting list. The follow-up was
censored at 31.03.2010. By that date 528 patients had died (D) without
receiving a transplant, 1565 patients received a transplant (TT) and 239
patients had been removed (R) because of other reasons. Additionally at
entry the list the following baseline information was recorded, namely:
age, height, weight, country (7 countries), blood group, panel reactive an-
tibodies level (PRA) (in percentages), cardiovascular disease (categorized
into Dilated Cardiomyopathy (DCM), Coronary Artery Disease (CAP) and
others). Additionally information about having Ventricular Assist Device
(VAD), a mechanical pump that supports heart (Y/N), was collected.
The purpose of the study was to predict the state of the patient based
on the history on the waiting list and to examine the effect of baseline
covariates on this prediction.

2 Background Methodology

A multi-state process is defined as a stochastic process {X(t), t ∈ T } with
a finite space state S = {1, . . . , N} and time interval T = [0, τ ], with
τ < ∞. For a particular time t, X(t) is the state occupied at that time.
The process is characterized by the transition probabilities between states
h and r, defined as:

phr(s, t) = P (X(t) = r | X(s) = h,Hs−), h, r ∈ S, s, t ∈ T , s ≤ t, (1)

where Hs− denotes the history of the process up to time s. The process
could be alternatively characterized by its transition intensities:

qhr(s) = lim
∆s→0

phr(s, s+ ∆s)

∆s
, (2)

which are the instantaneous hazard of progression from state h to state r,
conditionally on being at state h. Both phr(s, t) and qhr(s) may in principle
depend on the history Hs−. For Markov models the transition intensities
depend only on the current state. Moreover we can additionally assume
that the intensities are constant over time (Time Homogenous Models) or
depend on time (Non-Homogenous Models).
For the Heart Data we have the four possible states (T, NT, U and HU)
while remaining on the waiting list, and three states corresponding to a
removal of a patient from the list (D, R, TT). Therefore, there are 3 ab-
sorbing states h ∈ {D,R, TT}, for which phh = 1 and 4 transient states
r ∈ {T,NT,U,HU}, for which prr < 1.
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3 Proposed Methodology

Initial analyses of the heart transplant data with a Markov model revealed
(even after adjusting for covariates) considerable discrepancies between the
fitted and observed probabilities. There might be two main causes for these
discrepancies. First, the transition rates may vary within time or another
omitted covariate (non homogenous model). Secondly, the Markov assump-
tion may be violated. In particular, the transition intensities may depend
on time spent in current state (semi-Markov process) or the history of the
process in general. To investigate this we relaxed the homogeneity assump-
tion by allowing the intensities to be piecewise constant (PCI model) and
changing only at arbitrary chosen times. Nevertheless the PCI model did
not lead to a substantial improvement of the model fit, and therefore in
the next step we estimated each of the transition probabilities as a func-
tion of time using the nonparametric Aalen-Johanson estimator (Aalen and
Johansen 1978), defined as:

P̂ (s, t) =
∏

s<tj≤t

(I + Q̂j), (3)

where tj is assumed to be an exact time of transition from state h to r, I

is the N × N identity matrix and Q̂j is the N × N intensity matrix with

(h, r) element Q̂hrj = dhrj/rhrj , where dhrj is the number of individuals
who experience a transition from state h to r at time tj and rhrj is the
number of individuals in state h just prior to time tj .
The A-J estimates were examined with respect to different baseline covari-
ates. Also dependence of the A-J estimates on the history of the process
was considered. A-J estimates for transition probabilities are consistent if
the Markov assumption is fulfilled. However, since the previous analysis re-
vealed dependence on the previous state, in the final analysis we use the A-J
estimates for the state occupation probability ph(t), that is the probability
of occupying state h at time t :

ph(t) =

N∑
k=1

pk(0) · pkh(0, t), (4)

which is consistent regardless of the Markov assumption being satisfied. To
measure the effect of covariates in these occupation probabilities we em-
ployed the pseudo-values approach proposed by Andersen et al (2003). To
introduce this approach, let F̂h(t) be the A-J estimator for ph(t) calculated
for all n individuals. Denote F̂h−i(t) the A-J estimate excluding individual
i. Then the pseudo-value for subject i at time t is defined as:

θ̂i(t) = nF̂h(t)− (n− 1)F̂h−i(t). (5)

The pseudo-values are calculated for arbitrary chosen time points t1, t2, . . . , tk
for each individual, obtaining thus k pseudo-values per subject. Next we
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fit a regression model on the pseudo-values using a GEE (Generalized Es-
timating Equations) model:

g(θ̂i(t)) = βTZi, (6)

with g(·) denoting a link function and Zi - the design matrix of the covari-
ates of interest. Estimates of β are based on unbiased estimating equations
and a sandwich estimator is used to estimate the variance of β̂.

4 Results and Conclusions

We applied the pseudo-values approach to the Heart Data Set. We chose
7 time points, the logit link and an unstructured correlation matrix. As
covariates we included time and the baseline characteristics. Results from
the regression on pseudo-values revealed that AB blood group increased the
probability of getting a transplant. Patients from countries with informed
consent (permission for organ donation required) had lower transplanta-
tions rate compared to patients from countries with presumed consent law.
Current state HU increased the probability of getting a transplant. When
previous state was T, patients with blood group 0 as well as patients with
CAD or DCM disease were less likely to have a transplant from HU. From
the current states other than HU patients were most likely to go back to
the previous state. The exception was the current state NT and previous
HU, when the risk of death was the highest. Longer history as well as the
length of time spent in the previous state were not found to be important.
The theoretical justification for the pseudo-values approach was given for
the simple multi-state models (Graw and Gerds 2009) and the impact of
the number of time grid points in GEE model was confirmed based on
simulation studies. Further research is needed to investigate the approach
for more complicated models under different scenarios.
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Abstract: The relationship between covariates and a binary outcome can be
distorted in the presence of misclassification errors in the response. To correct for
misclassification an internal validation data set is needed, i.e. a random sample of
the main data. However, it may be challenging to obtain internal validation data
in practice. Rather, external validation data sets are often obtained. External
validation data may differ in many ways from internal validation data. Therefore
different approaches may be necessary in order to make use of the obtained exter-
nal validation sample to correct for misclassification in the main data. We focus
here on the approach which resembles best what happened in our motivating
data set obtained from the Signal Tandmobielr (ST) study. The approach is to
correct for differential misclassification in the main data by conditioning the mis-
classification probabilities on a rich structure of covariates such that the external
validation data come closer to the internal one. We explore the relationship of var-
ious factors and caries experience on children of age twelve by a multilevel model.
Keywords: Misclassified binary data; Differential; Non-differential; Validation.
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1 Introduction

Many epidemiologic studies attempt to characterize associations between
risk factors and disease occurrence based on data from the main study.
However, they often rely on disease exposure assessments by diagnostic
tests that are subject to misclassification error and this may introduce
bias into the study results. Research on misclassification revealed that,
under non-differential misclassification (misclassification not depending on
covariates), the regression coefficients are attenuated towards the null, see
e.g. Bross (1954). The effect of differential misclassification is, however, less
clear.
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Caries experience (CE) studies suffer from misclassification errors, see e.g.
Lesaffre et al. (2004). In order to correct for misclassification an internal val-
idation data set is needed, i.e. a random sample of the main data. However,
internal validation data may be challenging to obtain in practice due to sev-
eral constraints. Instead, external validation data are often obtained under
different scenarios. External validation data differ from internal validation
data by (i) being a sample but not a random sample from the population
of interest, taken under identical conditions as in the main data, (ii) being
a sample but not a random sample from the population of interest but
now taken under different conditions than in the main data and (iii) being
a sample taken from a different population. In the absence of an internal
validation data, one can assume informative priors of the misclassification
parameters and proceed with Bayesian approach in estimating the model
parameters. Yet another approach is to make use of the available external
validation data of type (i), (ii) or (iii) by using survey random sampling
techniques. We focus here on the external validation sample of the first
scenario. In order to correct for differential misclassification, we propose to
condition misclassification probabilities on a rich set of covariates, thereby
coming close (hopefully) to internal validation data.
The proposed approach is applied to investigate the factors affecting CE
in the Signal Tandmobielr (ST) study, which is a longitudinal oral health
study conducted in Flanders (Belgium). For this project, 16 trained den-
tists (examiners) conducted annual examinations of children. In the ST
study, children that participated in the calibration exercises provided the
validation data. However, it was not possible to take the validation data
set at random from the main data. Rather a school was selected with a
presumed high prevalence. The outcome of interest is the binary score CE
(CE=1 if the surface shows CE and 0 if not) subject to misclassification.
We will also account for the multilevel structure of CE data.

2 Statistical modeling approach

Multilevel model for cross-sectional true CE data

Let Ystme be the true CE score of surface s, (s = 1, . . . , nt) nested in tooth
t = 1, . . . , nm, which is nested in child/mouth m = 1, . . . , N according to
examiner e, (e = 1, . . . , ne) in the main study. The model uses πstme =
Pr(Ystme = 1|β,xstme,um), which is the true conditional probability for
CE on surface s nested in tooth t in mouth m from the main data set. The
multilevel logistic model for the true main data is given by:

logit(πstme) = xTstmeβ + um + utm + ue, (1)

where um = (um, utm, ue) is a set of random effects assumed to be inde-
pendently distributed with mean zero and variances σ2

m, σ
2
tm, σ

2
e at mouth,
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tooth (nested in mouth) and examiner level respectively. xstme is a vector
of covariates associated to the regression coefficients β.

Models for the validation data

Let τ11 = Pr(Y ∗stme = 1|Ystm = 1,α, zstme) and τ00 = Pr(Y ∗stme =
0|Ystm = 0,η, zstme) be the differential sensitivity (SE) and specificity (SP)
with α and η as the regression coefficients respectively. zstme is a set of
covariates for both SE and SP. The logistic models (which can be extended
to contain random effects) for SE and SP are given by:

logit(τ11) = zTstmeα, (2)

logit(τ00) = zTstmeη. (3)

Multilevel model for cross-sectional observed CE data

Let Y ∗M,stme be the observed CE score in the main data. Using models for
τ11 and τ00 above, the corrected multilevel logistic model for the observed
main data based on the approach of Neuhaus (2002) with link function g
is given by:

Pr(Y ∗M,stme = 1|utme,α,η,xstme) = (1−τ00)+[τ11+τ00−1][g−1(xTstmeβ+um+utm+ue)],

3 Results

The variables gender, dentition type, tooth type and surface type were
considered as risk factors in the model for validation data. Similar risk
factors were considered for the main data in addition to age and the ge-
ographical location (represented by the standardized (x,y) coordinate of
the municipality of the school to which the child belongs). The results of
the validation data model (SE and SP) are not shown here. Table 1 shows
the results of the three multilevel models (no correction, non-differential
correction and differential correction) for the main data. The parameter
estimates for the differential correction are generally higher than those of
non-differential correction. Also, the 95% credible intervals for differential
correction are wider than for the non-differential one. We note a significant
effect of the x-coordinate under differential correction which was not the
case in the non-differential one. This change was also reported in previous
research by our group, see e.g. Lesaffre et al. (2004). The positive effect of
tooth type (canine versus incisor) changed to a negative one under differ-
ential correction. Larger estimates of random effects were observed for the
differential correction compared to the non-differential.
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TABLE 1. Parameter estimates of the main model for cross-sectional data with
no-correction, non-differential and differential correction

No Correction (NC) Non-Differential (ND) Differential (D)

Parameter Estimate[2.5% , 97.5%] Estimate[2.5% , 97.5%] Estimate[2.5% , 97.5%]

FIXED EFFECTS:
Intercept -8.86[-9.79 ; -8.12] -10.86[-12.31 ; -9.53] -10.73[-12.78 ;-9.23]
Gender
Girls -0.07[-0.63 ; 0.48] -0.18[-0.85 ; 0.57] -0.07[-1.00 ; 0.87]
Boys ... ... ...

Age 1.27[0.56 ; 2.04] 1.67[0.61 ; 2.68] 2.12[0.95 ; 3.29]
Geographical location
x-coordinate 0.27[-0.05 ; 0.59] 0.37[-0.01 ; 0.77] 0.50[0.02 ; 1.00]
y-coordinate -0.18[-0.46 ; 0.10] -0.30[-0.71 ; 0.14] -0.35[-0.84 ; 0.14]

Type
Permanent -2.12[-2.38 ; -1.86] -2.79[-3.20 ; -2.42] -3.26[-3.81 ; -2.76]
Deciduous ... ... ...

Tooth-type
Canine -0.14[-0.83 ; 0.56] 0.32[-0.65 ; 1.31] -0.69[-2.05 ; 0.54]
Molar 3.98[3.51 ; 4.60] 5.46[4.54 ; 6.43] 3.99[2.88 ; 5.09]
Premolar -1.95[-2.70 ; -1.18] -2.14[-2.80 ; -1.48] -4.17[-5.71 ; -2.84]
Incisor ... ... ...

Surface-type
Distal 0.86[0.58 ; 1.12] 1.17[0.81 ; 1.55] 1.42[0.89 ; 2.05]
Mesial 1.55[1.29 ; 1.80] 2.13[1.74 ; 2.55] 2.96[2.35 ; 3.82]
Lingual 0.13[-0.16 ; 0.40] 0.19[-0.20 ; 0.56] 0.47[-0.05 ; 0.99]
Occlusal 3.64[3.37 ; 3.90] 4.65[4.15 ; 5.20] 5.17[4.60 ; 5.91]
Buccal ... ... ...

RANDOM EFFECTS:

σ2
mouth 6.50[5.20 ; 8.18] 10.82[8.12 ; 14.44] 15.92[11.97 ; 21.90]

σ2
tooth 3.35[2.86 ; 3.96] 4.75[3.42; 6.45] 6.50[4.97 ; 9.36]

σ2
examiner 0.13[0.0004 ; 0.72] 0.27[0.0001 ; 1.44] 0.30[0.002 ; 1.69]

4 Discussion

Misclassification of a disease outcome is common in studies that involve
multiple examiners since different examiners exhibit different scoring be-
haviors. In order to correct for misclassification in the main data, informa-
tion about the misclassification probabilities is needed. The most common
being the use of validation data or via a double sampling procedure. An-
other approach is to elicit prior information of misclassification from experts
and proceed with Bayesian methods for estimating the model parameters.
However informative prior information can be subjective. Generally, ex-
ternal validation data are often gathered rather than internal. However,
the consequence of using external validation to correct for misclassification
has not been widely discussed. Several approaches such as survey sam-
pling techniques are useful tools to remedy this problem. Here we opted to
condition misclassification probabilities on a rich set of covariates, thereby
coming close (hopefully) to internal validation data.
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Abstract: Kitchen et al. (2009) analyze a data set of lexical trait data for twenty
five Semitic languages, including ancient languages Hebrew, Aramaic and Akka-
dian, modern South Arabian and Arabic languages and fifteen ethiosemitic lan-
guages. They estimate a phylogenetic tree for the diversification of lexical traits
using tree and trait models and methods set up for genetic sequence data. We
reanalyze the data in a homplasy-free model for lexical trait data. We use a prior
on phylogenies which is non-informative with respect to some of the key scien-
tific hypotheses (concerning topology and root time). Our results are in broad
agreement with those of Kitchen et al. (2009), though our 95% HPD for the root
of the Semitic tree (the branching of Akkadian) is [4400, 5100]BP and we place
Moroccan and Ogaden Arabic in the Modern South Arabian Group.
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1 Data and problem statement

Kitchen et al. (2009) give a Bayesian phylogenetic analysis of lexical trait
data for L = 25 Semitic languages: Ugaritic, Ge’ez, and the languages
shown in Figure 2. The data are homology classes of words from the core
vocabulary, allowing just a small variation in meaning within a class. Thus
the English ‘all’ and Dutch ‘alle’ meaning all are homologous, but in a dis-
tinct class from Spanish ‘todas’ and Italian ‘tutte’. They gathered words in
K = 96 meaning categories and grouped these words in N = 673 homology
classes. They find evidence that Akkadian is an outgroup. This supports
an independent hypothesis that these languages diversified from a ‘home-
land’ in the north west of modern Syria. Our analysis is consistent with
this result. However, the uncertainty is substantial.
Bayesian phylogenetic studies of this data type (Gray et al. (2003)) use
models and software from genetics. Model assumptions, including the tree
itself, are rejected by historical linguists (McMahon et al. (2005)). Cri-
teria related to parsimony are applied in tree and network visualisation
tools (Ringe et al. (2002), Bowern (2010)). These tools support the com-
parative method, allowing the user to intervene in the analysis, and are
assumed to be free from modeling assumptions. There are few attempts
to quantify uncertainty numerically. They work with heterogeneous data
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types, including traits for word phonology and morphology. Most Bayesian
analyses (including our own) model just the lexical traits.
Kitchen et al. (2009) register the data as a 25× 673 binary matrix D, with
Di,j = 1(0) if language i possesses (lacks) a word in homology class j, and
Di,j =? if this is not known. Obvious loan words have been removed from
the data. The published data fill empty meaning categories with a missing
value. Ringe et al. (2002) register loan words as isolated cognates, while
Bowern (2010) leaves identified loan words in the data. This is preferred.
The reconstructed phylogeny is constrained to fit historically known dates
(calibration data). The Akkadian vocabulary data come from Assyrian
texts from 2700-2900 years Before Present. The biblical Aramaic is 1700-
1900BP, Ge’ez is 1600-1800BP, ancient Hebrew 2500-2700BP and Ugaritic
3300-3500BP. The times at which some vocabularies branched from their
parent is fixed: the origin of ancient Hebrew is 3200-4200BP, the origin
of Ugaritic 3400-4400BP, Aramaic 2850-3850BP and Amharic 700-1700BP.
Kitchen et al. (2009) cite sources. Modern languages have age zero.
The substitution model which Kitchen et al. (2009) fit allows a single word
to come into existence with the same meaning independently in several
locations, and ancient words to be revived, at relative rates which are not
controlled by the data. It is a finite sites model for character substitution
developed as a model for character substitution in DNA base character
sequences, adapted for generic traits by Lewis (2001). We check their results
using a homoplasy-free model for trait evolution and check goodness of fit.

2 Models and Methods

We model the core vocabularies as sets, and the tree as a branching process
of sets, with set elements (words) undergoing a birth and death process. The
stochastic Dollo model of Nicholls et al (2008) has word birth according to
a Poisson process of constant rate λ. Words are copied into child languages
when a language branches. Each word in each language dies at constant
rate µ. Ryder et al (2011) add rate heterogeneity via a catastrophe process.
Point-like catastrophes are realized on the tree in a Poisson process with
rate ρ. When a vocabulary enters a catastrophe, each word in the set dies
with probability κ. A Poisson number of words with mean ν are born. If
ν = κλ/µ, then one catastrophe equals − log(1 − κ)/µ years in the birth
death process. Ryder et al (2011) show how to sum over missing data. In
this model, the probability that we cannot determine whether language
i = 1, 2, ..., L contains a word in homology class j = 1, 2, ..., N is ξi. This
parameter varies from one language to another.
The parameters are the tree g = (E, t, k) (edge set E, node ages t =
(t1, ..., t2L−1), and k = (k1, ..., k2L−2) the number of catastrophes on each
edge), the rates λ, µ and ρ, and the probabilities ξi, i = 1, 2, ..., L and
κ. The prior age tR of the tree root node (label R say) is approximately
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uniformly distributed up to U a fixed maximum (our U = 16000BP is very
conservative). The distribution over topologies is approximately uniform.
This weighting is available in MrBayes (Huelsenbeck et al. (2001)) also.
Let Γ be the set of all trees g consistent with the calibration data. Fix
a tree g = (E, t, k), and let Tg = {t′; (E′, t′) ∈ Γ, E′ = E} be the set of
admissible node age vectors. For ancestral node i, s+

i (g) = sup{ti; t ∈ Tg}
and s−i (g) = inf{ti; t ∈ Tg} give the greatest and least ages node i can take
given g. Let F (g) = {i ∈ 1, 2, ..., 2L − 1; s+

i (g) = U, i 6= R}. These are the
‘free’ nodes in g with ages in g bounded only by U . Let Z(g) be the number
of distinct complete orderings ti1 < ti2 < ... < ti2L−1

achievable for t ∈ Tg.
The probability density on trees g ∈ Γ given by

fG(g) ∝

Z(g)
∏

i∈F (g)

tR − s−i (g)

U − s−i (g)

−1

has marginal distributions on topologies and root age that are approxi-
mately marginally uniform. Topology is conditionally approximately uni-
form given root age and vis versa. These results are exact if all leaves have
equal fixed time and there are no calibration constraints. Probability pa-
rameters have U(0, 1) priors. The catastrophe rate ρ has a Gamma prior.
It varies from 1/1000 (the scale of edge length), and 1/25000 years (the
scale of tree length), in the prior 90% interval. The λ- and µ-priors are
proportional to 1/µλ. The unknown birth and death times of words on the
tree, and λ, are integrated analytically, and the remainder using MCMC.
We check for model misspecification. First, we simulate posterior predic-
tive distributions for ’singleton’ columns of the data. These are cognates
displayed in just a single language. We remove singletons and correct the
likelihood, fit the remaining data and then predict singletons and com-
pare predictions with the reserved data. Secondly, we remove historically
attested constraints and check that we can recover them, using the Bayes
factor to compare models with and without the constraint. Ryder et al
(2011) give a stable estimator related to the Savage-Dickey ratio. Thirdly,
we check that results are insensitive to omitting leaves. The model error
arising where language i has loan words from language j is removed if lan-
guage j is removed. We fit data simulated out of model (including loan
words). We found date estimation to be fairly robust, tree topology less so.

3 Results and Conclusions

A Bayesian cross validation analysis of the ten calibration constraints on
the full data (KEAM-25) showed problems with the fit. The historically
attested constraints on the branching of Biblical Aramaic and the leaf ages
for Ugaritic and Ge’ez were rejected. There was strong support for catas-
trophe events on the branches above Ugaritic. There was very little rate
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heterogeneity elsewhere on the tree (except above Ge’ez). These catastro-
phes are artifacts of model misfit. We treat the Ugaritic and Ge’ez data
as outliers and remove them (KEAM-23). This improves the fit. We found
little evidence for rate heterogeneity in these data. The posterior probabil-
ity for zero catastrophes is 0.33 against 0.01 in the prior. As part of our
goodness of fit we drop eight more languages from the tree (KEAM-15,
with Tigre, Tigrinya, Amharic, Argobba, Geto, Chaha, Zway, Walani, He-
brew, Aramaic, Akkadian, Moroccan Arabic, Ogaden Arabic, Jibbali and
Soqotri) and check results are robust.
Cross-validation of the KEAM-23 data gave Bayes factors in favor of the
constraint as follows: ’All’ 3.9, ’Akkadian’ 0.5, ’Amharic branching’ 2, ’Ara-
maic’ 0.3, ’Aramaic branching’ 6, ’Hebrew’ 1.8, ’Hebrew branching’ 1.8. See
Figure 1. The least Bayes factor is 0.3 so we reject no historically attested
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FIGURE 1. (Left) Bayesian cross-validation check on the model for KEAM-23
data. (top thin bars) Calibration constraint. (bottom thick bars) 95% HPD in-
terval for constrained age estimated in an analysis with the single constraint
removed. (centre long bars) 95% highest prior density interval estimated in a
prior simulation with the single constraint removed. (Right) Posterior predictive
distributions (predicted-observed, with 95% envelope) for the number of traits
displayed at two, three up to twenty three leaves.

constraint. The bottom bar for ’All’ gives the posterior HPD interval for
the age of the root. The 95% HPD for the root age in Semitic (KEAM-23)
is [3800, 5100]BP. Kitchen et al. (2009) report [4400, 7400]BP. There is an
extra bound of [4350, 8000]BP. With this we have [4400, 5100].
Posterior predictive 95% HPD intervals for the data for traits at single
leaves show that 11 of the 23 reserved singleton counts fall below the 95%
HPD predictive interval. The conflation of loan words with unidentified
missing data depletes the number of singletons. We remove the singleton
data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
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frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree
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FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.
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Abstract: Our data are lists of bishops signed in the 12th Century, in an order
which respects the relative importance of the individual bishops. We model the
underlying social order as a partial order, and the list data as a random complete
order which respects this underlying partial order. We give static and dynami-
cal models for the partial order. We summarize the posterior distribution using
MCMC samples and a particle filter. We fit the models and find evidence for
significant order, and for significant change in the order, over time.
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1 Data and Questions

Witness lists are ordered lists of the signatories to historical legal docu-
ments called acta. We have a large collection of “Royal Acta” from twelfth
century England (these were provided by Dr David Johnson of St Peter’s
College, University of Oxford and Dr Nicholas E Karn, History, School of
Humanities, University of Southampton). Witnesses generally signed in or-
der of importance. The different social classes signed in groups in an order
which is very obvious. What order relations existed between the bishops
who appear in the lists? How did they change? Changes in this hierarchy
reflect political events of the time. In the period 1070AD to 1150AD there
are m = 511 lists with two or more bishops. The time at which a list was
signed is known to within an interval (mean interval length 4 years, 90%
less than 11 years). Approximately one half of the lists have length just
two bishops, and the mean length is 3.5. Each bishop is given a numerical
index. For i = 1, 2, ...,m, let yi = (yi,1, yi,2, ..., yi,ni), i = 1, 2, ...,m give the
ordered set of indices of the ni bishops who witnessed the ith list.

2 Models and Inference

We represent the unknown true order relation in the data as a partial order,
that is, as a transitively closed directed acyclic graph h = h[1 : n] with n
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nodes, one node for each bishop in the analysis. We can think of h as a
binary matrix with ha,b = 1 (or 0) if bishop a ranks above b (or not).
The model reflects a rigid social hierarchy, which is respected by all, but
subject to occasional upheaval. Any particular witness list yi is modeled
as a random total order (a linear extension) respecting the suborder h[oi]
for the bishops who attended that signing. This observation model arises
if the signing order is a snapshot of a rapidly evolving total order on the
individuals present. However, individuals may jump the queue. Before the
j’th person signs in the ith list, there are ni − j + 1 individuals remaining.
With probability p the next to sign is chosen at random, ignoring any
order constraints, and otherwise, the next person is the first person in a
random linear extension of the suborder for the remaining individuals. Let
C(h) be the number of total orders consistent with partial order h, and let
Ci(h) = C(h[−i]) be the number of linear extensions headed by bishop i.
The likelihood L(h, p; yi) = Pr(Yi = yi|H = h,O = oi, P = p) for partial
order h is

L(h, p; yi) =

ni−1∏
j=1

(
p

ni − j + 1
+ (1− p)Cyj (h[yj:ni ])

C(h[yj:ni ])

)
so that L(h, p; yi) = 1/C(h[yi]) at p = 0. We can compute the count C[h]
quickly for partial orders on up to about n = 15 bishops. There were in the
period of interest just over twenty bishops at any given time, just a subset
of whom are active, so our algorithms are just adequate. There is recent
work in Beerenwinkel et al. (2007) on maximum likelihood partial orders
for conjunctive Bayesian networks, applications of Bayesian inference for
‘bucket’ orders can be found in Mannila (2008), and on Bayesian inference
for generalized Bradley-Terry models in Caron et al. (2010). However, we
know of no well-developed Bayesian framework for partial orders.
We describe a family of prior distributions for partial orders. These prior
models for partial orders are derived from k-dimensional random orders,
reviewed in Brightwell (1993). They are marginally consistent for sub-
orders. The prior probability for a suborder is the marginal probability
for that order in the prior for any superset of its nodes. Latent vari-
ables Z = (Z1, Z2, ...Zn) determine the partial order h on n bishops.
The i’th bishop has K real-valued traits Zi = (Zi,1, ..., Zi,K). These traits
are not physical, but act as measures of status. Bishop a beats Bishop b
(ha,b = 1 = 1 − hb,a if Za,j > Zb,j for all j = 1, 2, ...,K so that h = h(Z).
If the variables overlap then ha,b = hb,a = 0. Prior elicitation informed the
partial order depth, so we have parameterized the prior to control depth by
correlating the latent variables for a given Bishop. Let Zi ∼ MVN(0,Σ)
with Σi,j = ρ for i 6= j and Σi,i = 1. The hyperprior for R = ρ is
R ∼ Beta(1, 1/6). The joint latent variable prior, f(z, ρ) say, gives a prior
on partial orders (through h = h(Z)) which is roughly uniform on depth.
We have extended h(Z), R to a process h(Z(τ)), R(τ) in time. At the event
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times φ = (φ1, φ2, ...) of a Poisson process (the catastrophe process) of
rate λC , there is a change point where (Z(φj), R(φj)) ∼ f independent
of all history. At the event times ψ = (ψ1, ψ2, ...) of a Poisson process
(the singleton process) of rate λS the latent variables of a single Bishop
i ∼ U{1, 2, ..., n} are (independently) renewed Zi(ψj) ∼ MVN(0,Σ) at
fixed R. This process has equilibrium f(z, ρ).
We fit the static model to m witness lists from short intervals of time (it
does not allow for evolution in the order). This analysis treats the un-
certain list-dates as fixed (some are dated, and the uncertainty is often
small). We use MCMC to simulate the posterior distribution π(z, p, ρ|y) ∝
L(h(z), p; y)f(z, r). The prior for p is uniform in [0, 1]. We use a hybrid
MCMC/particle filtering approach as in Andrieu et al. (2010) to simulate
the posterior distribution for the dynamical model. Let t = (t1, t2, ..., tm)
parameterize the unknown true dates associated with the m lists, and let
t[i] be the i’th date in an ordered list of the dates. We carry out MCMC for
t, λS , λC . We estimate p(y|t, λS , λC) using paths from a particle filter. The
filter integrates the Z(τ), R(τ) process using a discrete time HMM with
hidden states (Z(t[i]), R(t[i]), p) and emitted states y[i] (index ordered on
t), so the HMM states are maintained at the m list times only.

3 Results and Conclusions

We present results for both the static and dynamical models. We illustrate
the static model using lists taken from two windows of time. The lists are
given below. What partial orders on status constrain the lists at each time?
Do the orders differ from one window to the next?

Witness lists 1119-1121 Witness lists 1127-1129

[1119] 5 6 4 7 [1127] 9 10

[1120] 3 4 [1127] 2 9 10

[1121] 1 2 [1127] 2 1 6 5 8 10

[1121] 10 1 2 5 6 8 [1127] 2 6

[1121] 1 10 2 5 6 9 [1127] 2 9 6 10

[1121] 1 2 [1127] 2 9 6 10

[1121] 10 1 2 [1129] 7 10

[1129] 6 7 4 10

[1129] 3 4 2

We make a separate static Bayesian analysis for each window. Figure 1
displays a graphical summary of the posterior distribution on partial orders
in each time window. The posterior probability for each edge is estimated
via MCMC, and thresholded at one half. We illustrate the dynamical model
on the 1119-21 data, conditioning on λS = 1 and λC = 0.1, just to show
consistency. The consensus order for the year 1120 is show in Figure 1. It
agrees well with the adjacent result for the corresponding static analysis.
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FIGURE 1. Consensus partial orders show marginal posterior support for each
directed edge. Edge labels are marginal posterior probabilities. (Left) Dynamical
model/MCMC-Particle filter, 1120. (Mid) Static model/MCMC 1119-21 (Right)
1127-29

We see from Figure 1 that there is evidence for significant order (edges
supported with high marginal posterior probability). There is evidence for
change. The postholder of the position of Bishop of London changes from
the left to right graph, and node 10 (Bishop of London) correspondingly
moves from the top to the bottom of the figure with some strongly sup-
ported edges changing direction. The probability for a catastrophe in the
short interval 1119-21 was low (10%). The linear extensions in 1119-21 are
well explained by the higher rate singleton change process.

Acknowledgments: Thanks to Prof Bernard Silverman, Dr David John-
son and Dr Nicholas E Karn for their help.
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Abstract: A goodness-of-fit test for left-, right- and interval-censored data,
assuming random censorship is proposed and studied. In the first step of the test,
the null model is extended to a series of nested alternative models for censored
data as in Zhang and Davidian (2008). Then a modified AIC model selection
is used to select the best model to describe the data. If a model with one or
more extra parameters is selected, then the null hypothesis is rejected. This new
goodness-of-fit test procedure is based on the order selection test as described in
Aerts, Claeskens and Hart (1999). The applicability of the test is illustrated in the
context of microbial agents, and its performance characteristics are demonstrated
through simulation studies.
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1 Introduction

Censored data are often encountered in medical and public health studies.
In survival studies, time to death can be right censored due to end-of-study
or loss to follow-up. In infectious diseases, seroconversion time might only
be known to fall in some interval, leading to interval-censored data. Within
the framework of chemical risk assessment, the handling of concentration
data reported to be below the limit of detection (left-censored) or between
the limit of detection and the limit of quantification (interval-censored)
present challenges to the statistical analysis of chemical occurrence data.
When using parametric models, the choice of the distribution for such cen-
sored data is an important step in the analysis.
Goodness-of-fit tests for censored data have not been studied extensively.
Hollander and Proschan (1979) present a test for a simple null hypothesis
for right-censored data. This test can be applied for left-censored data by
reversing the order of the observations. A test for interval censored data,
based on the Cramér-von Mises statistic and a leveraged bootstrap, was
introduced by Ren (2003). Bayesian tests were proposed by Yin (2009),
Cao et al. (2010) and Calle and Gómez (2008, Chap. 21).
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In this paper we propose and study a new goodness-of-fit test for left-,
right- and interval-censored data, assuming random censorship. The test is
based on the order selection test as described by Aerts, Claeskens and Hart
(1999), which requires a series of nested alternative models in which the
null model is nested. For censored data, such a family of densities can be
described by the SNP (SemiNonParametric) representation of Zhang and
Davidian (2008). The combination of the order selection test and the SNP
representation results in a goodness-of-fit test for censored data.

2 Methodology

The test is based on the order selection test as described by Aerts, Claeskens
and Hart (1999). They use a modified AIC criterion (MAIC) and accept
the null hypothesis if and only if the prescribed distribution is chosen by
the criterion

MAIC(r;Cn) = 2(Lr − L0)− Cnr, r = 0, 1, . . . ,

where Cn is some constant larger than 1. By appropriate choice of Cn, the
asymptotic type I error probability of the test can be any number between
0 and 1. To determine Cn, a statistic Tn is defined as

Tn = max
1≤r≤Rn

{2(Lr − L0)/r} ,

for which the asymptotic distribution is known. The rejection of the null
hypothesis is equivalent to Tn > Cn. For example, a test of asymptotic level
.05 is obtained by Cn = 4.18. The P-value corresponding to an observed
Tn can also be approximated by a bootstrap.
The procedure of Aerts, Claeskens and Hart (1999) requires that the null
model is nested within the family of alternative models, which in turn
form a sequence of nested models having more and more parameters. For
censored data, such a broad class of densities can be described by the
SNP (SemiNonParametric) representation of Zhang and Davidian (2008).
In this representation, the density function under the null hypothesis is
extended by multiplying with a polynomial of fixed degree r, introducing
r new parameters in the model:

γr(z) = P 2
r (z)ψ(z),

where Pr(z) = a0 + a1z + · · · + arz
r and

∫
γr(z)dz = 1. In case the null

hypothesis states that data come from a lognormal distribution, the loga-
rithm of the data can be written as log(T0) = θ1 + θ2Z, where Z follows
the standard normal distribution. The density ψ(x) of the standard normal
distribution is then multiplied with the square of a polynomial of degree r,
such that r parameters are added to the model. The proposed goodness-of-
fit test will reject the null hypothesis if the MAIC criterion selects a model
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with r > 0. However, it is not guaranteed that the limiting distribution of
Tn still holds when using censored data. Therefore the bootstrap offers an
alternative.
The test can be used for different types of censoring. However, in the data
analysis and the simulation study we focus on left- and interval-censored
data.

3 Data analysis

The applicability of the test is illustrated through the analysis of some
real data. The data under consideration consist of measurements of the
cadmium level in some food category. 99 observations are available of which
42 are censored by the Limit of Detection (LOD). These limits of detection
are in the range [0.001, 0.01]. The truly observed values are in between
0.0015 and 4.14. Some of the truly observed values are smaller than some of
the LOD, because the data come from different laboratories, where different
LOD’s are applied.
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FIGURE 1. Cadmium data: Kernel density estimate and estimated survival func-
tions of log(concentration).

A visual representation of the data is given in Figure 1. The left panel
shows a kernel density of the logarithm of the concentrations. The right
panel shows the Kaplan-Meier estimate, a frequently used estimator of the
survival function in censored data. The LOD’s are concentrated to the left
and these values are denoted by a plus-sign (+) in the KM estimate. The
fit for the normal distribution is represented by the dashed line.
In this situation we are interested in testing whether the concentrations are
lognormally distribution. The proposed test was applied and the maximum
MAIC was reached for r = 3, meaning that the null hypothesis of the
lognormal distribution is rejected at significance level 5%.
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4 Simulation Study and Discussion

The simulation study shows good performance of the test. Data are drawn
from different distributions, with different sample sizes and different per-
centages of censoring. Focus is on left- and interval-censored data, where
the null hypothesis states that the data come from the lognormal distribu-
tion.
Under the null hypothesis, the achieved percentage of rejected null hypothe-
ses approximates the significance level. For example, a data set of size 100
is simulated with 12% left censoring, induced by five limits of detection.
At 5% (respectively 10%) significance level, in 3% (respectively 8%) of the
simulations, the hypothesis is rejected. The power of the test is high, espe-
cially for large sample sizes. For example, data are drawn from a mixture
of two lognormal distributions. At 5% (10%) significance level, 55% (85%)
of the tests are rejected.
A bootstrap is used to further investigate the distribution of the test statis-
tic when data are censored. The bootstrapped sample is simulated under
the null hypothesis and censoring is imposed by two different principles.
Both principles try to resemble the censoring as good as possible. The
p-values from both methods are close to the theoretical p-value.
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Cao, J., Moosman, A. and Johnson, V. E. (2010). A Bayesian Chi-Squared
Goodness-of-Fit Test for Censored Data Models. Biometrics, 66, 426-
434.

Hollander, M. and Proschan, F. (1979). Testing to determine the under-
lying distribution using randomly censored data. Biometrics, 35(2),
393-401.

Ren, J. (2003). Goodness of fit tests with interval censored data, Scandina-
vian Journal of Statistics. Theory and Applications, 30(1), 211-226.

Yin, G. (2009). Bayesian goodness-of-fit test for censored data. Journal of
Statistical Planning and Inference, 139(4), 1474-1483.

Zhang, M., Davidian, M. (2008). Smooth semiparametric regression anal-
ysis for arbitrarily censored time-to-event data. Biometrics, 64, 567-
669.



Testing against ordered alternatives with
interval-censored data

Ramon Oller1, Guadalupe Gómez2
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Abstract: In many K sample problems is common to test against ordered al-
ternatives. Although many statistical methods have been proposed for uncen-
sored and right-censored data, there is a small number of methods for interval-
censored data. Abel (1986) gives one of the few generalizations of the well-known
Jonckheere-Terpstra test to interval censored data. In this paper we propose some
extensions of the Jonckheere-Terpstra test. We use permutational and Monte
Carlo approaches for making inferences. This work is motivated by the analysis
of a dataset from a study of the benefits of zidovudine in patients in the early
stages of the HIV infection (Volberding et al., 1995).
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1 Introduction

An important issue that arises in survival studies is to establish an ordering
alternative in the k-sample problem. For instance, the effect of increasing
dose levels of a drug either can involve increasing survival times (simple
increasing ordering) or increasing up to a certain optimal point and then
decreasing (umbrella ordering). In studies of new treatments with no neg-
ative effects, the survival times of the control group can be expected to be
lower than those of the treatments (simple tree ordering).
Jonckheere (1954) and Terpstra (1952) were among the first to develop a
nonparametric statistic to test for ordered alternatives. The Jonckheere-
Terpstra (JT ) test for trend has received much attention and discussion in
the literature (Terpstra and Magel, 2003; Alonzo et al., 2010; Davidov and
Herman, 2010). Abel (1986) generalizes the JT test for interval censored
data. In this paper we propose some extensions of the JT test.
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2 Notation

Interval-censoring mechanisms arise when the event E cannot be directly
observed and it is only known to have occurred during a random inter-
val of time. We denote by T the lifetime variable. Based on a sample
of N individuals with potential times (responses) T1, . . . , TN , we observe
(l1, r1], . . . , (lN , rN ] censoring intervals.
We assume that we have K groups, G1, . . . , GK , with respective sample
sizes N1, . . . , Nk . We define S1, . . . , SK and F1, . . . , FK , respectively, as
the survival and the distribution functions of T under each group. We
denote by F̂ the Turnbull’s NPMLE of F from the pooled sample. Then,
F̂i(t) = PF̂ ([0, t)|(li, ri]) is an estimate of the distribution function of the

i-th individual (Fay and Shih, 1998) which holds that F̂ (t) = 1
N

∑N
i=1 F̂i(t).

In this paper we focus on the simple increasing ordering. Our goal is to
determine whether H0 : S1 = · · · = Sk = S or H1 : S1 ≤ · · · ≤ Sk.

3 A class of Kendall-type tests

As extension of the JT test for interval censored data we consider a class of
test statistics which are based on a weighted sum of two-sample statistics:

WJT =

K∑
r, s = 1
r < s

N∑
i,j=1

wr,s α
s
i α

r
j Φ(F̂i, F̂j)

where αri is an indicator function that is equal to 1 if the i-th individual
belongs to group Gr and 0 otherwise, Φ is one of the functionals defined in
Fay and Shih (1998) and wr,s is a weighting function.

The WJT test is a Kendall’s correlation coefficient 1
2

∑N
i,j=1 aij bij with

aij = Φ(F̂i, F̂j) and bij =

K∑
r, s = 1
r < s

wr,s α
s
i α

r
j−

L∑
r, s = 1
r > s

wr,s α
s
i α

r
j . Under the null

hypothesis, the permutational distribution of WJT is asymptotically nor-

mal with zero mean and variance given by V = 1
2N(N−1)

 N∑
i,j=1

a2
ij

 n∑
i,j=1

b2ij


+ 1

N(N−1)(N−2)

 N∑
i,j1,j2=1

aij1aij2 −
N∑

i,j=1

a2
ij

 N∑
i,j1,j2=1

bij1bij2 −
N∑

i,j=1

b2ij

 .
When wr,s = 1 and Φ(F̂i, F̂j) =

∫
F̂j(s)dF̂i(s) −

∫
F̂i(s)dF̂j(s), the WJT

test is a natural extension for interval-censored data of the JT test. When
wr,s = s−r, wr,s = s or wr,s = K−r the statisticWJT is specially adequate
for linear, convex or concave trends respectively. In the case wr,s = s − r,
WJT is equivalent to the linear tests studied in Gómez and Oller (2008).
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4 An extension of the Terpstra and Magel test

Terpstra and Magel (2003) propose a test based on comparing measure-
ments from all the groups at the same time, rather than performing pair-
wise comparisons as the JT test does. As extension of this test we propose
the following test statistic:

TM =

n∑
i1,...,iK=1

α1
i1 · · · αKiK

∫
1l{t1≤···≤tK} dF̂i1(t1) . . . dF̂iK (tK)

The permutational distribution of the TM test statistic under the null
hypothesis is obtained by a Monte Carlo approach. The main virtue of
the TM test is that we expect poor power whenever the configuration in
the alternative does not hold. This is an important property which is not
usually satisfied by most trend tests.

5 Data analysis

We analyze the data in an AIDS Clinical Trial designed to study the ben-
efits of zidovudine therapy in patients in the early stages of the HIV infec-
tion, see Volberding et al. (1995). The lifetime variable is the number of
months from randomization until the CD4 count first reaches 400 cells per
cubic millimeter. The design compares three groups. The first group, G1,
corresponds to those patients who started zidovudine monotherapy after
their CD4 cell count fell below 500 per cubic millimeter. In the second and
third groups, G2 and G3, two different dosages of zidovudine were given
immediately after randomization. Among the 1607 subjects who could be
evaluated, 541 were in the deferred-therapy group, 538 in the 500–mg group
and 528 in the 1500–mg group. Figure 2 shows the probabilities of keeping
CD4 values larger than a certain number of months. The three groups show
an increasing ordering between survival functions. The resulting p-values
for the TM test and different configurations of the WJT test are highly
significant (p-value < 10−4).

6 Concluding remarks

In this paper we propose the WJT and TM tests as extensions of the
Jonckheere-Terpstra test for interval-censored data. We expect the WJT
test to have higher power than the TM test but it needs prior evidence
to know which Φ and wr,s to choose. On the other hand, we expect poor
power for the TM test when the configuration in the alternative does not
hold. This good property is not necessarily true for the WJT test.
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FIGURE 1. Probabilities of keeping CD4 values larger than 400 for group G1
(dashed curve), G2 (thick dotted curve) and G3 (solid curve).
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Abstract: Most fuzzy clustering techniques aim at minimizing an objective func-
tion which measures the overall dissimilarity within clusters. Then, a measure of
dissimilarity coherent with the geometrical particularities of the sample space
is required. Here we focus on the simplex, whose elements are characterised by
non-negativity and constant-sum constraints. The fuzzy c-means (FCM) is not
well-behaved on the simplex. Drawbacks are pointed out and simulation results
are used to comparing with an FCM approach based on log-ratios.
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1 Introduction

Fuzzy clustering techniques allows gradual memberships of objects to clus-
ters. Applying any procedure of clustering, the underlying geometrical
structure of the sample space must be considered. Otherwise, misleading
or inconsistent conclusions may be drawn. Here we focus on the simplex
sample space SD = {x = [x1, . . . , xD] : x1 > 0, . . . , xD > 0;

∑D
i=1 xi = t},

whose elements x represent parts of a whole. Typically, chemical composi-
tions; household or time budgets, election vote shares, and so on. Aitchison
(1986) introduced the log-ratio methodology for their statistical analysis.
Nowadays, the simplex has been well characterised as an Euclidean space
(e.g. Pawlowsky-Glahn and Egozcue, 2001). Then elements of the simplex
can be expressed on real coordinates with respect to an orthonormal basis.
This fact was exploited by Egozcue et al. (2003) by defining the isometric
log-ratio (ilr) transformations

yi =
1√

i(i+ 1)
log

∏i
j=1 xj

xii+1

, i = 1, . . . , D − 1. (1)

As a result, a distance d(x,x∗) in SD can be analogously worked out in the
real space RD−1 as de(y,y

∗), where de refers to the Euclidean distance.
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2 The probabilistic fuzzy c-means algorithm on ilr
coordinates

The probabilistic FCM algorithm (Bezdek, 1980) distributes the total mem-
bership of the objects among all the clusters. It recognises a number of c
hyper-spherical clouds of points in a data set, each one of them represented
by its centre νk ∈ Rd, k = 1, . . . , c. The problem to be solved is

min
U,ν

{
Jm =

c∑
k=1

n∑
i=1

umkid
2
e(yi, νi)

}
, (2)

where the elements of U satisfy
∑n
i=1 uki > 0, k = 1, . . . , c and

∑c
k=1 uki =

1, i = 1, . . . , n. The parameter m ≥ 1 is the degree of fuzzification (usually
m = 2). Both the cluster centres, νk, and the membership probabilities,
uki, are obtained by an iterative process. At the t-step these are calculated
as follows:

ν
(t)
k =

n∑
i=1

u
m,(t−1)
ki yi

n∑
i=1

u
m,(t−1)
ki

, k = 1, . . . , c, and u
(t)
ki =

1

c∑
k=1

(
de(yi, ν

(t)
k )

de(yi, ν
(t)
k )

)2/(m−1)
.

(3)
Once the algorithm converges, an object i is usually classified into the
cluster k with highest membership probability uki.

3 Simulation results

The classic FCM directly applied on the simplex is compared with the FCM
algorithm applied on the ilr space (Eq. 1). For ease reference, we will refer
the former as FCM and the latter as FCM-C. Two opposite scenarios have
been considered. In the Scenario A clusters are very close each other and
denser than in Scenario B, where clusters are less homogeneous and located
near the corners (except for one around the barycentre). Accordingly, two
data sets in S3 were simulated with a 4-cluster structure embedded into
them (see Figs. 1A-B).
After applying FCM and FCM-C, the total percentage of wrong alloca-
tions is computed. In Scenario A (the most complex) it is 19.87% for FCM
and 13.87% for FCM-C. In Scenario B these percentages are 9.87% and
4.20%, respectively. Table 1 summarises the erroneous allocations by clus-
ter. FCM-C provides in general less errors. Globally, both algorithms make
fewer errors when allocating objects belonging to cluster 4. The FCM works
better here because it is the more spherical one. Even so, the FCM-C pro-
vides smaller errors, specially in scenario B.
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FIGURE 1. Simulated data sets and clusters for two scenarios in S3: (A) four
close and dense clusters, (B) four scattered clusters. Solid points (•) represent
the respective centres.

TABLE 1. Wrong allocations for Scenario A and Scenario B by cluster (values
are percentages).

FCM FCM-C

Cluster A B A B

1 9.79 14.37 13.75 5.83
2 18.95 4.12 10.43 2.19
3 39.90 11.26 21.83 5.39
4 5.21 6.95 4.78 1.73

3.1 Inter-cluster distribution of errors

Tables 2 and 3 show the percentage of points belonging to a cluster that
have been allocated to any of the others. The main confusion is that points
belonging to clusters 1, 2 or 3 are grouped into cluster 4. FCM yields wrong
assignments among all the clusters.

4 Concluding remarks

In order to clustering a set of objets in the simplex, a measure of dissim-
ilarity coherent with its geometrical particularities is required. Numerical
results illustrate that the FCM-C algorithm produces a lower number of
wrong allocations than the common FCM approach. Only when points are
located near the barycentre of the simplex, both may provide similar re-
sults. For points near the corners, the FCM does not take into account that
a small variation involves a great relative change.



Palarea-Albaladejo and Mart́ın-Fernández 453

TABLE 2. Scenario A: distribution of errors by clustering method (values are
percentages). True belonging cluster is in rows. Allocated cluster is in columns.

FCM FCM-C

True cluster 1 2 3 4 1 2 3 4

1 - 2.13 2 95.74 - 15.15 31.82 53
2 7.25 - 1.45 91.30 0 - 0 100
3 18.82 2 - 79.41 31.18 0 - 68.82
4 8.33 41.67 50 - 0 64 36 -

TABLE 3. Scenario B: distribution of errors by clustering method (values are
percentages). True belonging cluster is in rows. Allocated cluster is in columns.

FCM FCM-C

True cluster 1 2 3 4 1 2 3 4
1 - 5.80 0 94.20 - 7.14 17.86 75
2 0 - 13.33 86.67 0 - 0 100
3 6.25 0 - 93.75 4.35 0 - 95.65
4 18.75 37.50 44 - 0 25 25 -
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1 Introduction

Several studies have been made to explain housing prices evolution in Spain.
Maza and Peñalosa (2010) show how from 2008 began a decline in levels
that still remains. However, they have observed that in recent quarters the
fall of housing prices have moderated, with smaller quarterly decreases.
They have found substantial differences according to type of housing, lo-
cation or within cities. In this paper we have performed the same analysis
but using statistical inferences methodology, so that conclusions can be ex-
tending to the whole population from where the sample has been selected.
On building econometric approaches, there are two aspects which play a
crucial role in determining the accuracy of modeling results, the first is the
selection of the variables, and the second the statistical method used to
construct the model. The ordinary least squares (OLS) is the commonly
used technique, but it assumes that observations are independent random
variables, identically distributed, with normal distribution and common
variance. Therefore if you have time-dependent covariates, missing data, or
non-normality, then this approach may not be adequate.
In our case the data are not independent, we have repeated measurements
in the same municipalities at different times. Furthermore, the normality
assumption does not hold. The aim of this work is to explore the use of the
generalized estimating equations (GEE) as a potential alternative to the
classical methods usually considered.

2 A review of the GEE method

In recent years, researchers have begun to use a new method for the re-
peated measurements analysis, the generalized estimating equation ap-
proach (Liang and Zeger, 1986). It provides a semiparametric approach
to longitudinal data analysis with univariate outcomes and allows the res-
ponse probability distribution to be any member of an exponential family
of distributions.
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The GEE model is an extension of the generalized linear model. The ex-
tension is presented in the subscript j time, which indicates that the same
individuals can be measures repeatedly over time.
Let t be the maximum number of time points at which data are collected.

Let yi = (yi1, ..., yiti)
t

be the ti×1 vector of responses and xi =
(
xti1, ..., x

t
iti

)t
be the ti × p matrix of covariate values for the ith subject (i = 1, ..., n).
Here ti is the number of time points for the ith subject and may be less
than t because of missing observations. The marginal density of yij is

f (yij) = exp
[
yijθij−b(θij)

a(φ) + c (yij , φ)
]
.

The mean and variance of yij are given by E (yij) = µij = b′ (θij), var(yij) =
V (µij)a(φ) where V (µij) = b′′ (θij) is the variance function and φ is a pos-
sibly unknown dispersion parameter. The regression model for the mean is
ηi = xiβ, where ηi = (ηi1, ..., ηiti)

t
with ηij = g(µij) and ηij = xijβ. Here

β = (β1, ..., βp)
t

is the p× 1 vector of unknown parameters to be estimated
and g(.) is a link function.
Let Ri(α) be the ti × ti “working” correlation matrix of yi and let α be
an s × 1 vector which fully characterizes Ri(α). Let A be a t × t diagonal
matrix with V (µij) as the jth diagonal element. Then, for the ith subject
the ti × ti working matrix of yi is given by

Vi = φ (Ai)
1/2

Ri(α) (Ai)
1/2

,

where Ai is a ti × ti submatrix of A. If Ri(α) is indeed the true correla-
tion matrix for the y,is, Vi is equal to cov (yi). The generalized estimating
equations for estimating the vector of parameters β is given by

n∑
i=1

Dt
iVi
−1Si = 0

where Si = yi − µi with µi = (µi1, ..., µiti)
t

and Di = ∂µi/∂β.
Estimation requires iterating between this method for estimating β and a
robust method for estimating α and φ as it is explained in Liang and Zeger
(1986). There are several possibilities for the working correlation structure,
see Hardin et al (2003). The GEE generally produces consistent estimators
of the true variance of the estimated parameters, even when the working
correlation has been misspecified.

3 Application

3.1 Dataset

The dataset used have been downloaded from official website of the Spanish
Housing Ministry for the years 2005 to 2010, a sample size of 150 munici-
palities has been selected.
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As dependent variable we consider the mean price per square meter of hous-
ing and as exploratory variables we have region, province, type of housing
with two levels: housings with two years old or less and housings with more
than two years old, size of the municipality, categorized into 4 levels: level 1
(less than 50.000 inhabitants); level 2 (between 50.000 and 150.000 inhabi-
tants); level 3 (between 150.000 and 250.000 inhabitants) and level 4 (more
than 250.000 inhabitants). A longitudinal study of these data was carried
out using GEE. We have checked that the dependent variable follows a
gamma distribution.

3.2 Conclusions

The results show a significant influence of the variables introduced into
the model, region, province, type of housing, size, quarter and year, plus
an interaction effect between region and year and between quarter and
year. Using its effects estimated, we can conclude that the mean prices are
bigger in municipalities with more number of inhabitants and new housing,
as expected.
As we can observe in Figure 1, from 2005 to 2007, the average price of
housing grew continuously, this situation changed in the second quarter
of 2007, starting a period of flat growth until third quarter 2008 when it
began a continuous decreasing up to the last period considered, the first
quarter of 2010. Our results are consistent with those obtained by Maza
and Peñalosa (2010).
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FIGURE 1. Coefficients and 95% CI estimated for time.

In order to make regression a useful and meaningful statistical tool, em-
phasis should be put not only on inference or fitting but also on diagnosing
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potential data problem. For checking the systematic departure, graphical
methods such as scatter plots of residuals against fitted values and/or prog-
nostic factors are helpful. The residual values should reflect only random
fluctuation, when all the corresponding requirements of model fitting are
met.
In Figure 2 we inspect the Pearson residuals against the predicted values,
this plot indicates that the model is satisfactory for the data, the residuals
appear to be randomly distributed around the line ε=0. Data do not contain
any outlier since no observations is far away from the rest of points. Then
GEE approach is a good alternative to model this type of data.

 

FIGURE 2. Plot of Predicted versus Residual.
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Abstract: Recently, several advances have been made in the analysis of interval
censored (IC) data mainly in relation to semi-parametric proportional hazard
(PH) models (Gómez et al., 2009, Lesaffre et al, 2005). It is arguable, however,
that the parametric case has been somewhat neglected, overall, and that more
can be learned, especially in relation to non-PH models. Accordingly, we focus on
simple parametric models for interval censored survival data arising in longitudi-
nal RCTs. For the exponential regression model we compare the performance of
a general likelihood with commonly used proxy likelihoods, which ignore the in-
terval censoring by treating the interval censored times to events as if they were
exact. We show analytically that use of proxy likelihoods leads to estimators
which are artificially precise and we quantify the extent of the resulting biases in
a simulation study and by analyzing real data. We also compare the likelihoods
using non-PH models and obtain different findings.

Keywords: Artificial precision, Interval Censoring, Longitudinal RCTs; PH &
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1 Introduction

In longitudinal settings where the response variable, Y (t), is binary typi-
cally we observe the ith patient at baseline in a healthy state, ie, Yi(t0) = 0.
As the process evolves an adverse event may occur, i.e., Yi(ts) = 1 where
ts > t0. Finkelstien (1986) and Collett (1994) elected to adopt a “time
to event” analysis in order to recover information on the treatment effect
in the LDA-RCT setting. Moreover, clinicians (Bergink et al., 1998) have
adopted a similar approach in which interval censored follow-up times, to
the loss of 3 lines of visual acuity (Bailey-Lovie, 1976), were treated as if
they were exact times to events. Intuitively, this simple expedient seems
sub-optimal and this note investigates the extent of any penalty incurred
by comparing a proxy likelihood with the IC likelihood which arises in lon-
gitudinal data (MacKenzie, 1999) . Here we focus on the use of proxy times
(beginning, midpoint and endpoint of intervals) to construct the likelihood
rather than treating the lack of exact times as missing data to be imputed.
We also focus on simple parametric survival models.
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2 Likelihood Construction

Suppose there are m+ 1 fixed, scheduled, inspection times, t∗0, t∗1,..., t∗m at
which continuous or ordinal responses Y0, Y1,..., Ym, are measured. This
arrangement implies m+1 time intervals: I1 = (t0, t

∗
1], I2 = (t∗1, t

∗
2], ..., Ik =

(t∗k−1, t
∗
k], ...., Im = (t∗m−1, t

∗
m] and Im+1 = (t∗m,∞]. Typically, t0 = 0, espe-

cially in RCTs where, t0 = 0 represents time of randomization. Hence, let
T be a non-negative random variable denoting the time to some outcome
of interest defined on the Y s. Let S(t; θ) and λ(t; θ) be the corresponding
survival and hazard functions, respectively, depending on the unknown pos-
sibly vector-valued parameter θ ∈ Θ. Then, for a sample of n independent
subjects subject to non-informative censoring the usual likelihood for the
unknown parameters is

L2(θ) = Πn
i=1[λ(ti; θ)S(ti; θ)]

δi [S(tic; θ)]
1−δi , (1)

where λ(ti; θ)S(ti; θ) = f(ti; θ), δi is the censoring indicator (δi = 1 for an
event and 0 otherwise) and tic is a right censored survival time. Substitut-
ing, one of: (a) the beginning point of the interval, tib, or (b) the interval
mid-point, tim or, (c) the interval end-point, tie, ∀ i, as if it were the exact
time at which failure occurred in L2(θ) yields the proxy likelihood.
Typically each individual (i = 1, . . . , n) defines their own trajectory over
the course of the longitudinal study, thereby generating a person-specific
set of intervals. Accordingly, we obtain the following interval censored like-
lihood

L1(θ) = Πn
i=1{S(ti,k−1; θ)[1− S(ti,k−1, tik; θ)]}δi [S(tic; θ)]

1−δi . (2)

Now, L1(θ) and L2(θ) may be used for comparative inference. Other au-
thors have reached similar conclusions about the structure of the likelihood
in the so-called Case II censoring situation; see Yu et al.(2000) and Schick
and Yu (2000), for further details of likelihood construction in related con-
texts. Note, however, it is unusual to have any exact times to events in a
longitudinal study.

3 The Exponential Regression Model

MacKenzie (1999) showed analytically that estimators obtained from the
proxy likelihood were artificially precise in the simple Exponential case.
Here we extend his results to the Exponential Regression case.

3.1 Likelihoods

Armed with these general formulae we investigate the Exponential Regres-
sion model. Let T follow the exponential regression model defined by

λi2 = λ(ti;α2, β2) = exp(α2 + x′iβ2),
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where S(ti;α2, β2) = exp[−λi2ti] and α2 is an unconstrained parameter,
β2 is p× 1 vector of regression coefficients and xi is a p× 1 vector of fixed
covariates. The corresponding proxy likelihood is

L2(α2, β2) =

n∏
i=1

{
λi2e−λi2ti

}δi{
e−λi2tic

}1−δi
, (3)

For the IC likelihood we have

λi1 = λ(ti;α1, β1) = exp(α1 + x′iβ1),

where S(ti,k−1, tik;α1, β1) = exp[−λi1di(tk)], and di(tk) = tik − ti,k−1 is
the width of the kth interval. Then,

L1(α1, β1) =

n∏
i=1

{
e−λi1ti,k−1

[
1− e−λi1di(tk)

]}δi{
e−λi1tic

}1−δi
, (4)

3.2 Comparison of IC and Proxy Approaches

Comparing the Proxy and IC approaches we find that approximate IC mles
are identical to those estimated at tie = tik, the end points of the interval
using the proxy likelihood (ie, α̂1 = α̂2 and β̂1r = β̂2r) with proxy tie.

We compared the relative efficiency of the two estimators by examining
V2(α̂2)/V1(α̂1) and V2(β̂2r)/V1(β̂1r), r = 1, 2, · · · , p. The details are too
lengthy to reproduce here. Analytical results are available only for cate-
gorical covariates. We have proved the following result for a categorical
covariate with p+ 1 categories, modelled by p binary dummy variables, i.e.

V2(α̂2e)/V1(α̂1) < 1

V2(β̂2er)/V1(β̂1r) < 1 (5)

so that the conjecture that the proxy mles are artificially precise holds,
under the first order conditions invoked above, for a single categorical co-
variate.
We have also proved a similar result for two correlated binary covariates.
For higher numbers of correlated binary covariates and for continuous co-
variates the matrix algebra rapidly becomes intractable. We conjecture that
the results hold for two or more categorical variables, but must resort to
simulation.
We note in passing that any continuous covariate may be represented in
p ≤ n distinct categories and hence for such a representation of a continuous
covariate the above conjecture holds.
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3.3 Information Matrices

The Fisher information matrix based on the IC likelihood for the Expo-
nential regression model is

I(α, β) =

[ ∑n
i=1 eα+xTi βE(t′i)

∑n
i=1 x

T
i eα+xTi βE(t′i)∑n

i=1 xie
α+xTi βE(t′i)

∑n
i=1 xix

T
i eα+xTi βE(t′i)

]
(6)

where E(t′i) = E
[
δiti,k−1 + (1− δi)tci

]
. In general, we have

I(α, β) = Ib(α, β) + Ic(α, β)

where the subscripts represent the beginning of the interval (ti,k−1) and
right censored (tci) components respectively.
Fisher Information involves taking the expectation of the negative of the
hessian matrix with respect to the random variable T . In this sense it is an
averaging or centering operation. Accordingly, in this spirit we may define
“general” Fisher information for the IC case by replacing ti,k−1 with t∗k
and replacing tci with its future expectation, as in Buckley & James (1979)
yielding

Igen(α, β) = It∗k(α, β) + Ic(α, β).

Looking at the structure of (6) it is tempting to simplify further by choosing

E(t′i) = E(Ti) = λ(ti)
−1 = e−(α+xTi β), whence

Iideal(α, β) =

[
n

∑n
i=1 x

T
i∑n

i=1 xi
∑n
i=1 xix

T
i

]
,

an “idealized” form, which is identical to the uncensored solution.
In simulation studies we conduct the exact survival times are known and
in these circumstances it is possible to compute an information matrix of
the form

Irc(α, β) = Iu(α, β) + Ic(α, β)

which we refer to as the “right-censored” version.
In the simulation section we evaluate the performance of all of the above
and compare it with the observed information from the IC likelihood which,
broadly, we consider should be regarded as the “truth”. In the simulation
study we found the following relationship between the generalized vari-
ances:

det[I−1
o (α̂, β̂)] > det[I−1

gen(α̂, β̂)] > det[I−1
ideal(α, β)] > det[I−1

rc (α̂, β̂)].

where we have assumed throughout that the δi are known.
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4 Simulation Study

We conducted a data-directed simulation study mimicking the conduct of
a RCT with two arms and a follow-up period of 2 years (Hart et al., 2002).
We generated failure times from the Exponential regression model with
two covariates: x1, a binary covariate mimicking the treatment effect (1 =
New(50%) and 0 = Old(50%) and x2 a continuous baseline covariate dis-
tributed, N(0, σ2

x2
), where σx2 ≤ 1 (σx2 = 0.5 in our simulation study). The

trajectories for each individual in the study were constructed according to
two schedules: an irregular schedule (0.25, 0.5, 1 and 2 years) and a regular
schedule (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 years), respectively. Censor-
ing rates of 20% (normal) and 50% (heavy) were considered. The method
of creating intervals is non-informative about the survival distribution.
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FIGURE 1. Percentage bias for 32 scenarios by sample size for β1 and β2. The
x-axis labels 1-4 represent sample sizes n=100, 200, 500 and 1000 respectively.
Boxplot titles: estimates obtained at the beginning, mid, and end points (identical
to the first order approximation) by proxy likelihoods and by IC likelihood (NR).

Figure 1 shows the average percentage bias in an exponential regression
model by sample size (n=100, 200, 500 and 1000), likelihood method and for
two covariates (β1, β2) using the irregular schedule. These results show that
the estimators from the IC likelihood (NR) have minimum bias and that
the bias is asymptotically consistent. However, for the proxy likelihoods
this is not the case. Only the mid-point estimator has acceptable levels of
bias, but the box-plots (which depict the variation over scenarios) suggest a
lack of consistency for β1. The findings are similar for the regular schedule.
We also considered the Weibull PH model and two non-PH models - the
log-logistic the canonical time dependent logistic.
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For PH models the results showed that, among the IC and proxy likelihoods
considered, the estimators in the IC likelihood had the largest variances.
This was re-assuring, as á priori, one might reasonably expect the IC like-
lihood to represent the most uncertainty. Accordingly, this demonstrates
that the estimators in all of the proxy likelihoods are artificially precise.
However, surprisingly, for non-PH models this finding did not hold. We
were able to find immediate contradictions in the non-PH models. The re-
sults will be described in detail at the Workshop together with the analysis
of two published data sets.

5 Discussion

The analysis of IC data has been reviewed recently by Gomez et al (2009).
Here, we tried to develop an analytical approach to the analysis of pre-
cision of the regression estimator. This was successful in the Exponential
Regression model for simple cases. However, for more complicated cases,
the algebra rapidly becomes intractable and one must resort to simulation.
Our findings support the conjecture that the estimators based on the proxy
likelihoods are artificially precise in the PH models studied. Hence proxy
approaches should be avoided, especially in RCTs, when the data obey the
PH assumption. However, this is apparently not true of non-PH models, a
finding which warrants further investigation.
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Abstract: A methodological approach for modelling species occurrence patterns
for fisheries management purposes is here proposed. The presence/absence of the
fish species is modelled with a hierarchical Bayesian model using the geograph-
ical and environmental characteristics of each fishing spot. Maps of predicted
probabilities of presence are generated using Bayesian kriging.
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1 Introduction

Modelling species presence/absence patterns using local environmental fac-
tors has been a growing matter in Ecology in the last few years. The distri-
bution models have been extensively used to address several issues, which
include identifying Essential Fish Habitat (EFH) in order to classify and
manage conservation areas, and predicting the response of species to en-
vironmental features. Different approaches and methodologies have been
proposed for modelling species distribution. Generalized linear and addi-
tive models (GLM and GAM), species envelope models such as BIOCLIM,
and the multivariate adaptive regression splines (MARS) are some of them.
Most of these applications are only explanatory models that seek to assess
the relationship between a species presence and a suite of one or more
explanatory variables (e.g. precipitation, bathymetry, etc.). But, as these
models are based on the use of independent variables, its application to
fishery data often ignores the spatial autocorrelation. On the other hand,
few works have been developed for predictive models, although these mod-
els, in addition to offer an estimate of the processes that drive the species
distribution, also seek to provide one or more useful factors to predicting
the probability of species occurrence in unsampled areas (Chakraborty et
al., 2010).
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Our interest here is to propose a hierarchical Bayesian model to predict
species occurrence while incorporating the environmental and spatial fea-
tures of each fishing spot. Bayesian approach is appropriate to spatial hier-
archical model analysis of fisheries because it allows both the observed data
and model parameters to be random variables (Banerjee et al., 2004), re-
sulting in a more realistic and accurate estimation of uncertainty. Also,
implementation of Markov chain Monte Carlo (MCMC) avoids asymp-
totic inference and the computational problems encountered in likelihood-
based fitting. Moreover, incorporating prior information can usually be very
helpful in discriminating spatial autocorrelative effects from ordinary non-
spatial linear effects. In our proposal, maps of predicted probabilities of
presence in unsampled areas are generated using Bayesian kriging.
In particular, we have applied our approach to describe the distribution
of the Mediterranean mackerel (Trachurus mediterraneus), in the Western
Mediterranean. Environmental satellite data, such as the monthly data on
precipitation, sea surface temperature (SST) and chlorophylla-a concentra-
tion have also been included into the analysis.

2 Modelling fish presence

Point-referenced spatial models are very suitable for situations in which we
have observations made at continuous locations happening within a defined
spatial domain. This particular case of spatial models has also the appealing
characteristic that the spatial domain is unchanging, even though the spots
locations will change over time. In fisheries, this resolves the dimensional
control guarantying that the inference is realized in relation to the domain
instead of the current observed positions, which can change over the years.
When analyzing the distribution of fish species, data observed at each lo-
cation could be used as a measure of relative species occurrence at those
precise locations. When absolute abundance information is not available,
the spatial distribution of a species based on presence/absence could be
used to assess their status and distribution. In other words, our response
variable of interest will be the presence/absence (with Bernoulli distribu-
tion) instead of the absolute abundance (with normal distribution). Then,
assuming that the probability of catching a species is related to its pres-
ence, we can model the presence/absence using a point-referenced spatial
hierarchical bayesian model. In particular, if Zi and πi represents respec-
tively the presence (1) or absence (0) and the probability of presence at
location i, then:

Zi|Wi, Ui ∼ Ber(πi) , (1)

where Wi and Ui represent the spatial random effects and the non-spatial
random effects respectively, and the relation between πi and the covariates
of interest is the usual logit link:

logit(πi) = Xβ + Ui +Wi ,
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where Xβ represents the usual linear predictor.
In order to complete the model we have to specify the prior distributions of
Wi, which is responsible of the spatial dependence through the correlation
matrix with an exponential variogram:

W |σ2, φ ∼ N(0, σ2H(φ)) , (2)

and Ui, which provides the nugget effect:

Ui|τ2 ∼ N(0, τ2) . (3)

Once the model is determined, the next step is to estimate its parameters.
As we are using the Bayesian paradigm, we have to specify the (hyper) prior
distributions of each parameter involved in the model. We have considered
rather noninformative prior distributions, with the aim of expressing our
initial vague knowledge about the parameters. Expressions above jointly
with the priors of all the parameters contain all our knowledge of the system
but they do not yield to analytical estimates. Therefore, we have had to
resort to numerical methods in order to obtain the posterior distributions of
all the parameters and also to make prediction about the presence/absence
in a series of unsampled locations. In particular, MCMC inference have
been carried out using WinBUGS (Spiegelhalter et al., 1999).

3 Predictive model

Bayesian kriging has been used to predict the species occurrence where
fishery data is not available. This approach treats the species occurrence
at a new location as a random variable and calculates, in addition to the
estimation, a range of likely values together with their probabilities to be
the true values at a specific location. Furthermore, it takes into account
the uncertainty over the hyperparameters, a substantial advantage over
the classical kriging methods. We have computed the predictive posterior
distributions at new locations using INLA (Rue et al., 2009).

4 Results and Conclusions

To demonstrate the usefulness of our approach, we have applied the model
discussed above to the Mediterranean mackerel fishery data, in the Almeŕıa
Bay. This species is not a targeted species of the commercial fishery, so
its occurrence is a good indicator of this presence/absence. We have used
bathymetry and environmental factors, such as precipitation, SST, and
chlorophylla-a concentration as covariates. In order to compare competing
models, we have used the deviance information criterion (DIC) introduced
by Spiegelhalter et al. (2002). Our analysis demonstrates that both the
bathymetry and the chlorophylla-a concentration play an important role in
the mackerel distribution. Figure 1 shows the estimated spatial effect for
the pelagic fishery unit.
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FIGURE 1. Mediterranean mackerel (Trachurus mediterraneus) mean of the spa-
tial effect in the Almeŕıa Bay.
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Abstract: The beta regression or the inflated beta regression may be a rea-
sonable choice to fit a proportion in most situations. However, they do not fit
well variables that do not assume values in the open interval (0, c), 0 < c < 1.
Variables related to a kind of double bounded payment amount when studied
as a proportion of the maximum payment amount have this feature. For these
variables, Pereira et al. (2011) introduced the truncated inflated beta distribution
(TBEINF). This work proposes a regression model where the response variable
is TBEINF distributed. The model allows all the unknown parameters of the
conditional distribution of the response variable to be modelled as a function of
explanatory variables. Moreover, the model allows nonconstant known parame-
ter c across population units. For these model, maximum likelihood estimation
is discussed and closed-form expressions for the score function and for Fisher’s
information matrix are provided. In addition, some results when c is not constant
are obtained, Monte Carlo simulation studies are performed and an application
to credit card data is presented.
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1 Introduction

The beta regression (Ferrari and Cribari, 2004) or the inflated beta regres-
sion (Ospina, 2010; Ospina and Ferrari, 2008) may be a reasonable choice
to fit a proportion in most situations. However, they do not fit well vari-
ables that do not assume values in the open interval (0, c), 0 < c < 1.
Variables related to a kind of double bounded payment amount when stud-
ied as a proportion of the maximum payment amount have this feature. An
example of these variables is the ratio between the payment amount and
the total amount owed in the credit card (proportional payment amount,
PPA). A credit card holder receives a monthly statement indicating the
minimum payment and, hence, PPA can not assume values in the closed
interval (0, c), where c is a known value. Therefore, the variable has positive
probability at points zero, c and one because many credit card holders do
not have enough money to pay anything, and many others can pay only the
minimum due, whereas there are many others who pay the entire amount
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owed to avoid interest charges. In addition, it can assume any real num-
ber in the interval (c, 1). Another variable with the same features is the
ratio between the amount of the unemployment insurance benefit and the
maximum allowable benefit paid to unemployed workers in Brazil.
Pereira et al. (2011) introduced the truncated inflated beta distribution
(TBEINF) for variables that assume values at zero, at one and at a known
value c with positive probability and at any real number in the open in-
terval (c, 1). This work proposes a regression model where the response
variable is TBEINF distributed. The model allows all the unknown param-
eters of the conditional distribution of the response variable to be modelled
as a function of explanatory variables. For this model, maximum likelihood
estimation is discussed and closed-form expressions for the score function
and for Fisher’s information matrix are provided. In addition, some results
when c is not constant are obtained, Monte Carlo simulation studies are
performed and an application to credit card is presented.

2 The TBEINF regression

The model proposed in this work allows nonconstant known parameter
c across population units. For PPA in the credit card, c is not constant
across population units and in the unemployment insurance example, c
is constant. The properties of the model are similar when c is constant
or nonconstant. For this reason, we propose a single model that allows
nonconstant c. Thus, we propose the following definition for the truncated
inflated beta regression (TBEINF regression).

Definition 1 Let Y1, Y2, . . . , Yn independent random variables, where Yi
∼ TBEINF(δi0, δi1, δic, µi, φi, ci) as defined in Pereira et al. (2011). The
truncated inflated beta regression are defined by the TBEINF distribution
and the following functional relations:

g1(µi) = ηi1, g2(φi) = ηi2, H(δi0, δi1, δic) = (ζi0, ζi1, ζic), (1)

where ηi1 = x>i1β1, ηi2 = x>i2β2, ζi0 = z>i0γ0, ζi1 = z>i1γ1 and ζic = z>icγc
are linear predictors, β1 = (β11, β21, . . . , βpµ1)>, β2 = (β12, β22, . . . , βpφ2)>,

γ0 = (γ10, γ20, . . . , γp00)>, γ1 = (γ11, γ21, . . . , γp11)> and γc = (γ1c, γ2c, . . . ,
γpcc)

> are vectors of unknown parameters, xi1 = (xi11, xi21, . . . , xipµ1)>,
xi2 = (xi12, xi22, . . . , xipφ2)>, zi0 = (zi10, zi20, . . . , zip00)>, zi1 = (zi11, zi21,

. . . , zip11)> and zic = (zi1c, zi2c, . . . , zipcc)
> are known explanatory vari-

ables, g1 : (ci, 1) → R and g2 : R+ → R are link functions strictly mono-
tonic and twice differentiable, and H : C → R3 is a bijective link func-
tion and twice differentiable, where C is a subspace of R3 defined as C =
{(δi0, δi1, δic) : 0 < δi0 < 1, 0 < δi1 < 1− δi0, 0 < δic < 1− δi0 − δii}.
Parameters can be estimated by maximum likelihood using a numerical
nonlinear optimization algorithm. We find closed-form expressions for
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Fisher’s information matrix and conclude that (γ>0 , γ
>
1 , γ

>
c ) and (β>1 , β

>
2 )

are orthogonal parameters. We also obtain expressions for confidence in-
tervals, confidence regions and four test statistics.
An interesting feature of the TBEINF regression model is that it allows
nonconstant known parameter c across population units. This means that
the model allows the support of the distribution of the response variable
varies across population units, since yi can assume values in 0 ∪ [ci, 1]. As
mentioned earlier, the properties of the model are similar when c is constant
or nonconstant. However, some practical issues should be discussed when c
is not constant. In these cases, as c increases, the width of the interval (c, 1)
decreases. Therefore, it is reasonable to expect that even if two population
units have the same values for the explanatory variables, they will probably
have different µ if they have different c. For this reason, it may be reasonable
to include ci or a function of ci as an explanatory variable for µi. For the
link function g1(µi) = log[(µi − ci)/(1 − µi)], some results are obtained
when c is not constant.

3 Simulation studies

The finite-sample behavior of the estimators are studied through Monte
Carlo simulation studies. The obtained results suggest that maximum like-
lihood estimators in TBEINF regression model do not have large bias even
in small samples. In addition, the performances of the estimators of the vec-
tor of parameters β1 seem to be better than the estimators of the vectors
β2, γ0, γ1 and γc. Some others conclusions are obtained and discussed.

4 Application

This section contains an application to credit card data. Sample includes
5000 credit cards for non-account customers of a financial institution. The
dependent variable is the PPA in the credit card. Length of time as cus-
tomer, balance-to-limit ratio, a dummy variable for installment purchases,
among others are used as independent variables.
For all variables, the signs of the estimated parameters are in agreement
with what was expected from the descriptive analysis performed. For pa-
rameters δ0, δ1, δc and µ of the distribution of the response variable, we
split the sample into five groups based on quintiles of the fitted values for
these parameters and obtain for each group the average fitted value, the
relative frequency (for δ0, δ1 e δc) and the sample average (for µ). Table 1
presents the results and suggests that the model fits relatively well.

5 Conclusion

We introduced in this work the truncated inflated beta regression. Inferen-
tial results were obtained, Monte Carlo simulation studies were performed
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TABLE 1. Empirical and fitted values for the TBENF regression for the variable
PPA in the credit card.

δ0 δ1
Fitted Aver. Relat. Fitted Aver. Relat.
value fit freq. value fit freq.

]0.0000;0.0088] 0.006 0.006 ]0.0000;0.1450] 0.070 0.075
]0.0088;0.0131] 0.011 0.009 ]0.1450;0.7900] 0.392 0.404
]0.0131;0.0222] 0.016 0.018 ]0.7900;0.8920] 0.860 0.840
]0.0222;0.0746] 0.046 0.044 ]0.8920;0.9159] 0.906 0.899
]0.0746;1.0000[ 0.157 0.147 ]0.9159;1.0000[ 0.924 0.937

δc µ

Fitted Aver. Relat. Fitted Aver. Sample
value fit freq. value fit aver.

]0.0000;0.0195] 0.016 0.007 ]0.0000;0.3460] 0.306 0.302
]0.0195;0.0245] 0.022 0.021 ]0.3460;0.4465] 0.395 0.386
]0.0245;0.0374] 0.029 0.035 ]0.4465;0.5800] 0.507 0.512
]0.0374;0.1728] 0.084 0.088 ]0.5800;0.7168] 0.670 0.709
]0.1728;1.0000[ 0.353 0.357 ]0.7168;1.0000[ 0.766 0.767

and two applications were presented. The results suggest that TBEINF
regression is useful to fit some variables in the field of econometrics.
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1 Introduction

Lung cancer is the second incident malignant neoplasia in Spain. Despite
all new advances in its treatment, five-year absolute survival rate is cur-
rently only 10.2% (Sant et al., 2009), and consequently, searching for new
therapeutic strategies becomes essential. One of the most important facts
which restricts the election of the appropriate treatment is the impossibility
of personalizing the most adequate therapeutic option for each patient.
Although usual procedures to select the most appropriate treatment for a
patient suffering cancer are based on clinical trials, there are a wide sci-
entific consensus (National Cancer Institute, National Institute for Health
and Clinical Excellence) for promoting alternative methodologies, such as
observational studies, to help improving therapy decision making. In par-
ticular, understanding the role and significance of prognostic factors in
cancer will be very useful to gain insights about the different and complex
elements of this disease.
This work discusses a Bayesian Weibul regression analysis for survival times
of stage IV non-small cells lung cancer (NSCLC), which is the most common
type of lung cancer, and proposes a methodology to select the most related
predictor variables to the overall and the progression-free survival.

2 The data

Data are provided by the Infanta Cristina Hospital of Madrid and consist
of survival times for stage IV NSCLC and several covariates that may be
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related to the disease, observed along the time period from January 2008
to December 2010. A total of 35 patients have been observed, for which
we annotate 14 variables related to: patient information (age, sex, smoking
habit, body mass index, baseline state, previous complications), tumour
characteristics (location, number of affected organs, histologic type) and
baseline analytics (cea: carcinoembryonic antigen, ldh: lactate dehydroge-
nase, anaemia, calcaemia, albumin). From the 35 patients present in the
study, there are 19 (54%) censored overall survival, while the number of
censored observations is 22 (63%) for the progression-free survival.

3 Survival Analysis

Consider (t1,x1, δ1), . . . , (tn,xn, δn), where ti denotes the time in which
even occur or a censored time for individual i, xi denotes covariates and
δi = 0 indicates censored time for subject i. We are interested in modelling
the overall and the NSCLC progression-free survival, where the events of
interest are dead and progression, respectively.
The Weibull distribution is a flexible model for survival data (Klein and
Moeschberger, 2003) which considers that the survival time, T , follows
a Weibull distribution of parameters α and λ, W(α, λ). We consider this
model in the context of accelerated failure-time models where covariates are
introduced. Considering the logarithm of the survival time, it is possible to
write

Zi = log(Ti) = µ+ x′iβ + σWi, (1)

where xi is the vector of covariates of dimension p and W is the standard
Gumbel distribution with density and survival functions, fW (w) = exp(w−
ew), SW (w) = exp(−ew), respectively. The distribution for Ti results in a
Weibull distribution with parameters α = 1/σ and λi = exp(−(µ+x′iβ)/σ).
Note that the sign of parameters β indicates whether the covariates are
related negatively or positively with the increase of the risk, with a negative
coefficient indicating that the risk increases with the associated covariate.
In order to make inference about parameters in model (1) from a Bayesian
perspective, we need to specify a prior distribution over parameters. In
this first study we do not have previous information to use for the elicita-
tion of this prior distribution, hence, we use a prior distribution reflecting
minimum information, π(µ,β, σ) ∝ 1/σ. This prior, that leads to a proper
posterior distribution with p + 2 uncensored observations, has been pro-
posed in Evans and Nigm (1980).
The posterior distribution can be written as:

π(µ,β, σ|z, δ,X) ∝
1

σ

n∏
i=1

(
1

σ
fW

(
zi − (µ+ x′iβ)

σ

))δi (
SW

(
ti − (µ+ x′iβ)

σ

))1−δi
,
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where X, is a design matrix composed by the p covariates observed in the
n subjects in the sample. We have approximated the posterior distribution
using Markov Chain Monte Carlo (MCMC) methods.

4 Prognostic Variables Selection

In order to select the covariates that are significantly related with the sur-
vival, we have used the Bayesian Information Criterion (BIC). The BIC
was derived by Schwarz (1978) as a large sample approximation to twice
the logarithm of the Bayes Factor, which quantifies the evidence for one
hypothesized model against another (Kass and Raftery, 1995). In particu-
lar, we use the BIC proposed in Volinsky and Raftery (2000) for censored
data. When different values of BIC are obtained for different models, the
smaller the value of BIC the greater the evidence in favor of the model.
Once we have sorted all the possible models with additive effects following
the BIC, we have interpreted the relations between the covariates included
in these models and the survival, excluding those models where the sign of
the coefficients was not compatible with previous medical knowledge.

5 Results

Among the possible models for overall survival, we have selected the model
with the smallest BIC, in which covariates are calcaemia and smoking habit.
The fitted model has an increasing baseline hazard along time, with prob-
ability 0.86. Regarding the effect of calcaemia, βcalc, is clearly lower than
0. The effect of having a greater value of calcaemia significantly increases
the risk. Similar comments apply to the effect of smoking.
Regarding NSCLC progression-free survival, we select the model of small-
est BIC among the models compatible with medical knowledge. The final
model has the following covariates: cea, albumin, body mass index and ldh.

6 Discussion

Instead of the Weibull regression model we could have used nonparametric
models. However, although these are very popular in survival analysis, as
stated in Ibrahim et al. (2001), parametric models play an important role in
Bayesian survival analysis, since they offer straightforward inference even
for small sample sizes.
The methodology used for model selection combines the BIC together with
the expert knowledge, leading to an effective way of extracting the prognos-
tic factors for overall and progression-free survival. We acknowledge that
the small sample size can make problematic the use of BIC and on this
pourpose expert knowledge has been relevant for model selection.
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The results obtained are in the line of the expert knowledge and suggest
that calcaemia and smoking habit are related to the overall survival of
a patient. Regarding progression-free survival, we find that cea, albumin,
body mass index and ldh are the most related variables. This result also
agrees with the expert knowledge, as cea, albumin and ldh are related to
the progression of the tumour, and body mass index is connected with the
state of the patient that is receiving the treatment.
It is important to note that the aim of this work is to present an application
of survival analysis and model selection and that the strength of eventual
clinical conclusions need to be measured in the light of the available sample.
It would be interesting to apply these methods to more data.
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Abstract: In this paper we take into account the stratified data structure of
former avalanche models using mixed effect models.
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1 Introduction

In Austria, most fatal snow avalanche accidents are caused by skiers or
snowboarders. 79 avalanche accidents (17 fatalities) were reported during
the winter of 2001/02. 16 out of 17 these fatalities were caused by alpine
skiers or snowboarders. By far the highest number of accidents took place
in Tyrol (2001/02: 47 accidents/ 12 fatalities).
However, it is rather difficult to predict the risk (=probability) of avalanche
events on a backcountry ski slope under given conditions. About 10 years
ago, the mountain guide Werner Munter suggested a quantitative method in
order to estimate the risk of avalanche events. Assuming that the variables

• danger levels from the local avalanche information service (low=1 to
very high=5),

• incline of the slope (flat to steep),

• aspect of the slope (north, south) and

• skiers behaviour

have an influence on the risk, he calculated a quantity which he calls ”re-
maining risk”. On the base of this quantity, he developed a strategy for
backcountry skiers whether to go or not to go on a skiing tour (stop if
”remaining risk” is larger than 1, see [3]). But Munter’s quantity cannot
be understood as a probability of avalanche events. Moreover, there is no
empirical evidence for his method because he does not take skiing incidents
without avalanche accidents into account ([5]). At least, it is necessary to
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include some information on frequencies of skiers on slopes under specific
conditions.
At the 25th International Workshop on Statistical Modelling (see [7] and
[8]) we proposed a logistic regression model (no vs. on or more accidents
as dependent variable for days i with avalanche reports from the Tyrolean
avalanche information service), in order to estimate the probabilities p in
question.

logit(p) = LWS + NEIG + EXPOS + WOENDE + TOURV

Beside danger level lws, incline of slope neig and aspect of slope expos
we took the qualitative variates skiing conditions tourv and day of the
week wotag into consideration. There is some evidence that frequencies of
skiers on slope strongly depend on weather and snow conditions and on
the days of the week (weekend, working days). We used accident data and
avalanche forecasts in Tyrol within the seasons 1999-2002 reported by the
Tyrolean avalanche information service (497 days of observation). Based on
this very simple model, we established a decision strategy for backcountry
skiers based on empirical/statistical arguments.

2 Mixed models

In this paper we are considering some comments of the discussion at the
25th IWSM meeting (see [8]). For example, we are going to take the strat-
ified data structure of the avalanche data into account. We notice that
several observations (one at each class of incline and aspect of the slope)
are taken on the same day of observation. As a result of this, we introduce
the variable day as a random effect (ν) considering at the same time the
variables lws, neig, expos, woende, tourv as fixed effects (β).

1 In the case of the logistic model above, there are several R-packages
(Bayesian and non-Bayesian) which allow us to calculate estimates of
this random effect model. We are using the package glmmML written
by G. Broström and H. Holmberg ([1]).

Table 1 shows the parameter estimates and standard errors for the
logit model with (mixed model) and without random effects. Beside
the fixed effects, σ denotes the estimated standard deviation of the
random effect ν.
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Logit Logit mixed

param se param se

ICPT -7.228 0.639 -8.548 0.871
LWS 0.912 0.178 1.087 0.242
NEIG 0.832 0.146 0.916 0.157
EXPOS -0.578 0.215 -0.644 0.228
WOENDE 0.401 0.215 0.497 0.284
TOURV1 -0.123 0.290 -0.191 0.379
TOURV2 -0.936 0.381 -1.108 0.492
σ 1.328 0.216

2 If we consider counts of avalanche events instead of logit probabilities
as dependent variable (see [6]), we have to employ ZIP models (or
something which is similar to ZIP models): Avalanche accidents are
rather rare events and thus we assume the counts to come from a
mixture of a Bernoulli and Poisson distribution. In order to define
the covariate effects on the observations we define link functions of
the logit and the loglinear model in our case as follows:

logit(p) = Xβ + ν log(λ) = τ(Xβ + ν),

which is denoted as ZIP(τ) model, using τ as a shape parameter
(see [4] and [9]). In the case of random effects with regard to ZIP
models, we are doing maximum likelihood estimation (nlminb) using
numerical integration (Gauss-Hermite quadrature) for calculating the
full likelihood ([2]).

Table 2 shows results (parameter estimates and standard errors and
log-likelihood) for the Poisson, the ZIP(τ) and the mixed ZIP(τ)
model.

Poisson ZIP(τ) ZIP(τ) mixed

param se param se param se

ICPT -7.025 0.584 -5.426 1.278 -7.242 0.636
LWS 0.937 0.165 0.805 0.242 0.942 0.180
NEIG 0.795 0.136 0.678 0.193 0.820 0.144
EXPOS -0.541 0.200 -0.464 0.203 -0.563 0.211
WOENDE 0.323 0.199 0.292 0.186 -0.367 0.215
TOURV1 -0.314 0.256 -0.248 0.245 -0.222 0.284
TOURV2 -1.090 0.343 -0.928 0.389 -1.025 0.376
σ 0.355 0.013
τ 0.302 0.363 0.728 0.150
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3 Discussion

Comparing the results of the logit models in table 1, we notice that the
effects are stronger in the mixed case. If we consider the results of the mixed
ZIP model in table 2 we take notice that the coefficients are more similar
to those of the logit model than to those of the ZIP model.
Considering the estimated probabilities (which are the quantities that are
of interest for the ‘avalanche community’), we notice that they are slightly
smaller in the mixed logit case and more or less equal to the mixed ZIP
case if we compare the quantities with the logit model in table 1.
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Abstract: The Kaplan-Meier method is commonly used to estimate the inci-
dence of an event over time. The use of models that take into account the presence
of competing risks will allow more precise estimates in this context.The aims of
this study are: (i) to establish the incidence of cancer in recipients of renal trans-
plants performed in a hospital in A Coruña (Spain) during the period 1981–2008
compared to that experienced by the general population, ii) to demonstrate the
importance of apporpiately estimating the cumulative incidence of an event of
interest in the presence of competing risk events.
Analysis of cancer incidence rates was calculated using the indirect standardisa-
tion method. Kaplan-Meier and competing risk analysis were used to analyze the
incidence of cancer during the follow-up.
Neoplasm incidence rates are higher after kidney transplantation compared with
the general population. Kaplan-Meier methodology overestimates the incidence
of cancer in kidney transplant recipients.
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1 Background

The Kaplan-Meier method is commonly used to estimate the incidence of
an event over time. It assumes independence between the event of interest
and any competing event that precludes the event of interest to occur.
Often times, a patient may experience an event other than the one of
interest which alters the probability of experiencing the event of interest.
Such events are known as competing risk events. Any subject who does
not experience the event of interest can be treated as censored. However, a
patient experiencing a competing risk event is censored in an informative
manner. Hence, the Kaplan-Meier estimation procedure may not be directly
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applicable. In this setting, it would often be of interest to calculate the
cumulative incidence of a specific event of interest. The use of models that
take into account the presence of competing risks will allow more precise
estimates in this context (Aalen (1978), Prentice y Kalbfleish (1980), Gray
(1988), Fine y Gray (1999)).
Cardiovascular illnesses and neoplasms are the two main causes of death
with normal function of the graft in the long-term follow-up of patients who
have received kidney transplants (Morales (2006), Campistol (2009)). The
presence of neoplasms is a major threat and cause of morbidity in kidney
transplant patients.
According to data published in other countries, the accumulated incidence
of neoplasms can reach 20% 10 years from the transplant (Buell et al.
(2005)) and nearly 30% after 20 years (Chapman y Webster (2004), Chap-
man y Webster (2004b)). The rate of expected cancers compared to those
which are observed varies in the different registers. On average, it is esti-
mated that the incidence of cancer in patients who have received kidney
transplants is 3 times higher than that for the general population. By lo-
calizations, this ratio can reach an incidence rate of between 8 and 14 times
more for kidney cancer in transplant patients, and an incidence of between
65 and 92 times more of non-melanoma skin tumours (Chapman y Webster
(2004), Chapman y Webster (2004b), Kasiske et al (2004), Birkeland et al.
(1995), Jensen et al (1999), Lindelof et al. (2000), Birkeland et al. (2000)).
In the largest study on the incidence rates of malignancies among first-time
recipients of deceased or living donor kidney transplantation (n = 35765)
the rates for most malignancies are higher after kidney transplantation
compared with the general population (Kasiske et al (2004)). Similar results
were observed in studies from five national tumour registries in Denmark
(Birkeland et al. (2000)), Finland (Kyllonen et al. (2000)), Sweden (Adami
et al. (2003)), Australia (Vajdic et al. (2006)), and Canada (Villeneuve et
al. (2007)) with a total sample size of 31,977 transplant recipients.
The aims of this study are: (i) to establish the incidence of cancer in re-
cipients of renal transplants performed in a hospital in A Coruña (Spain)
during the period 1981–2008 compared to that experienced by the general
population, ii) to demonstrate the importance of apporpiately estimating
the cumulative incidence of an event of interest in the presence of competing
risk events.

2 Methods

An observational prospective follow-up study with a retrospective com-
ponent, carried out in the health district of A Coruña (northwest Spain)
during the period 1981–2008. During that period 2059 kidney transplants
were performed in the University Hospital Complex of A Coruña, which
corresponded to 1794 patients. Patients with pretransplant neoplasms were
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excluded from the analysis (n = 91). A follow-up study was designed in or-
der to estimate cancer incidence after kidney transplantation. This sample
size would make it possible to detect relative risks of ≥ 1.2 estimating an
exposed proportion of 35% and a proportion of censured observations of
40%, with a security of 95% and a statistical power of 80%.
The methodology of this study was described previously (Pita-Fernández
et al. (2009)).
Incident cancer is considered as new cases of cancer which occur after the
transplant and which have anatomopathological confirmation. Their local-
ization is classified according to the International Classification of Diseases-
9 (ICD-9).
Analysis of cancer incidence rates was calculated using the indirect stan-
dardisation method. Estimates of age-adjusted cancer incidence rates in
the general population of Spain are obtained from the Carlos III Health
Institute, the National Epidemiology Centre of Spain’s Ministry of Science
and Technology. Crude first, second and third-year post-transplantation
cancer incidence rates are calculated for male and female recipients. The
number of observed cases of cancer at each site is calculated from data
in the clinical records. The expected number of cancers is calculated from
data supplied by the Carlos III Health Institute. For each tumour loca-
tion we estimate the standardized incidence ratios (SIRs) of cancer, using
sex-specific cancer incidence rates, by dividing the incidence rate for the
transplant patients by the rate of the general population. The 95% confi-
dence intervals of the SIRs and their associated p-values are calculated by
assuming that the observed cancers follow a Poisson distribution.
Competing risk survival analysis methods are applied to estimate the cu-
mulative incidence of developing cancer over time from kidney transplan-
tation. This method allows for the fact that a patient may experience an
event which is different from the event of interest. These events are known
as competing risk events, and may preclude the onset of the event of in-
terest, or may modify the probability of the onset of the event of interest.
In particular, a transplanted patient may die or lose the graft without de-
veloping any kind of cancer. In a Kaplan-Meier estimation approach, these
persons would be treated as censored and would be eliminated from the risk
set. This could lead to misleading results, as it is based on the assumption
that censoring is ”non-informative”, meaning that a censored patient has
the same risk of developing cancer as those who have complete follow-up.
This is not the case in patients who die before without developing cancer,
as they are no longer at risk. Occurrence of cancer is the event of interest.
Any other event, such as death of graft failure, are considered competing
events. Estimates of cumulative incidence functions are calculated based
on the two-step process developed by Kalbfleisch and Prentice (2002). In
the first step, we calculate the Kaplan-Meier estimate of the overall sur-
vival from any event. In the second step, the conditional probabilities of
developing cancer are calculated. The cumulative incidences are estimated
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using these probabilities.
Statistical analysis are performed by using the R statistical package (ver-
sion 2.9. 2009; The R Foundation for Statistical Computing) and EPIDAT
statistical software (version 3.1, 2006; Dirección Xeral de Saude Pública,
Organización Panamericana de la Salud).

3 Results

Mean age is 46.2(SD=14.3) years, 62.8% are males. One hundred twenty
nine patients were diagnosed of cancer during the follow-up period, the
more frequent locations were: skin(non-melanoma), kidney and non-Hodking
lynfoma. Comparing the observed to expected cancer incidence in the Span-
ish population, using standardized incidence ratios, a significant increase is
observed in the incidence of cancer in transplant patients in non-melanoma
skin cancers (SIR=19.59), kidney (SIR=24.07), breast (SIR=3.45) and non-
Hodgkin lymphoma (SIR=8.7). In the other locations (except bladder), a
non statistically significant increase of the cancer incidence was detected.
Five years after kidney transplantion, 4.05% of the patients presented a
neoplasm, 26.32% lost the allograft, 9.08% died and 60.55% were alive.
Ten years after transplantion, these figures were: 8.03% of the patients
presented a neoplasm, 33.99% lost the allograft, 15.10% died and 42.88%
were alive, respectively (Figure 1).
Differences in the estimated cancer cumulative incidence using the Kaplan-
Meier method and the competing risk analysis are shown in Figure 2. Using
the Kaplan-Meier method, the neoplasm incidence at 5 and 10 years were
5.72% and 12.48%, respectively. These values overestimate the incidence
of cancer in the follow-up estimated with the competing risk methodology
(4.05% and 8.03%, respectively).

4 Conclusions

Neoplasm incidence rates are higher after kidney transplantation compared
with the general population. Kaplan-Meier methodology overestimates the
incidence of cancer in kidney transplant recipients.
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Abstract: Change detection algorithms for data streams typically return binary
decisions of “Change” or “No Change”. However, binary responses provide no
additional information about the properties of an algorithm such as sensitivity
to different types of changes, or stability with respect to small perturbations in
the distribution. In this paper, we propose a general statistical framework, for
the evaluation of change detection algorithms, based on an objective performance
measure, streaming power. We model the change of distribution in data streams
using a mixture model and vary the change to study the behavior of change
detection algorithms. We demonstrate using simulated data examples.
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1 Evaluation of Change Detection Algorithms

Data streams are rapidly accumulating data sets that are used for real
time decision making and thus pose computational challenges. Examples
include telecommunications data, financial ticker streams, and network
polling data. An important problem is determining distributional shifts
within a data stream. Kifer et. al. (2004), Song et al.(2007), and Dasu et.
al.(2009) are three popular change detection (CD) algorithms but their be-
havior is not well understood. No single algorithm can detect all types of
changes with equal efficacy. Current evaluative methods are ad hoc, relying
on relative benchmarking based on a handful of data sets, with no general
framework of reference that reflects the true behavior of the algorithm.
The binary outcome from a single run does not provide any insight into
the true behavior of a given CD algorithm. In this paper, we propose a
rigorous, objective performance measure, streaming power (SP), to evaluate
and identify desirable properties that an effective CD algorithm should
have. In doing so, we provide the user with a framework that enables them
to compare different algorithms and choose the one that best meets their
needs.
Typically a CD algorithm A compares a reference distribution F0 ∈ F ,
where F is the space of distributions, with a test distribution, F1 ∈ F and
associates a binary response IA ∈ {0, 1}. While we only have access to the
mapping IA : F → {0, 1}, in reality A maps F to p ∈ [0, 1] where p is the
probability of detecting change from F0 to any F1 ∈ F .
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1.1 Streaming Power

We adapt the notion of statistical power to build a framework for associat-
ing a probability of detecting change which we call streaming power (SP).
This allows for the general comparison of CD algorithms for data streams
by measuring the ability of an algorithm to discriminate between F0 and
F1.
Consider a multi-dimensional data stream of observations, Xt = (x1, ..., xd)t
where d is the dimension and t indexes time. Assume that the CD algorithm
under analysis uses the sliding window framework, as presented by Kifer
et. al. (2004). A window refers to a contiguous segment of the data stream
containing a specified number of data points n. The generating distribution
of the data in each window Wt corresponds to some F ∈ F , where t is the
starting point of the window in the data stream. The distribution F of the
data in Wt is compared to the distribution F0, of the data in a reference
window W0. The size of the window is typically dependent on the data set.
Initially, the window W0 contains only samples from the reference distri-
bution F0. When the distribution changes, samples in the data stream are
generated from a new distribution F1. As the window slides over the data
stream, we define the mixing proportion δ(t) ∈ [0, 1] to be the proportion
of samples from F1 in the current window, which we now denote Wδ(t).
We model the distribution in Wt as coming from the mixture distribution,

Fδ(t) = (1− δ(t)) · F0 + δ(t) · F1. (1)

This is a natural model for the way change occurs in a data stream as
illustrated in Figure 1. From here on we denote δ(t) as δ.
The streaming power of an algorithm A, with binary response IA, is the
probability of detecting a change from F0 to a F1,

SA(δ) = P (IA = 1|Fδ), (2)

where δ is the mixing proportion.
SP can be thought of as a temporal version of statistical power from the
hypothesis testing context and is empirically estimated through commonly
used simulation techniques, such as bootstrapping. The algorithm is used
to compare N pairs of simulated windows {W ′0,W ′δ(t)}

N

k=1
, created by sam-

pling with replacement from W0 and Wδ(t). The resulting binary outcomes

{IkA}Nk=1 are i.i.d. Bernoulli trials with probability pδ := SA(δ). The esti-
mated SP is given by,

p̂δ =
∑N

k=1
IkA/N. (3)

By the central limit theorem, p̂δ ∼ AN(pδ,
pδ(1−pδ)

n ). A high value of SP
represents a strong ability to discriminate between the distributions. Fig-
ure 1 illustrates how p̂δ can be used to measure an algorithm’s change de-
tection ability. For a given algorithm and small values of δ, the SP should
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FIGURE 1. SP Framework: Initial reference window W0 consists of samples from
distribution, F0 (lighter shade). As the stream advances, its distribution changes
to F1 (darker shade).

be low as shown by the first downward arrow in Figure 1. The estimated
value of SP , p̂δ should increase with the mixing proportion δ for a good
CD algorithm.
The ability of an algorithm to detect change varies by the type of change.
Some algorithms focus on keeping down the false positive rate. In doing
so, the algorithms allow for a broader interpretation of F0, reducing the
ability to discriminate when F1 and F0 are close. This, in turn, reduces its
SP . On the other hand, some algorithms define F0 too specifically and are
sensitive to the slightest of perturbations, reducing their usefulness in any
realistic setting.
In order to analyze the robustness of an algorithm A, we define its sensi-
tivity as

ηA(δ) :=
1

δ

d SA(δ)

d δ
. (4)

Intuitively, sensitivity measures how the SP of an algorithm increases in
relation to its distance from the reference distribution. Ideally, we would
like a CD algorithm to detect statistically significant change, but not small
perturbations. That is, there should be no sudden increase in SP, especially
when δ is very small. The example in Section 2 demonstrates this notion.

2 Simulation Results

In this section, we present analysis of three CD algorithms, the Rank tests
(3 variants) of Kifer et. al. (2004) (only for 1D data), the KL test of Dasu et.
al. (2009), and the Density test of Song et. al. (2007). To demonstrate the
use of SP for their comparison, we implement the method in Section 1.1 on
two sets of data. The SP and sensitivity of the two algorithms are computed
as δ goes from 0 to 1. Figure 2(a) displays power curves of Rank (3 variants)
(lines with markers), KL (solid line) and Density (dashed line) tests for the
two parameter 1D-Gamma distribution. The X-axis represents the mixing
proportion of F0 (Γ(0.5, 0.5)) and F1 (Γ(0.5, 0.6)). Figure 2(b) shows the
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corresponding sensitivity curves. The sensitivity of each algorithm occurs
at the maxima of this curve. In this example, the Rank methods yielded
sensitivity values of 2.99, 2.87 and 3.3, while those of KL and Density were
4.08 and 4.16, respectively. Note that the Rank tests have lower sensitivity
than the other two tests. Figure 2(c) shows power curves of KL (solid line)
and Density (dashed line) tests where F0 = N 3(0, 1) (the 3D standard
Gaussian) and F1 = (N 2(0, 1),N (0.2, 1)). Figure 2(d) the corresponding
sensitivity curves. The Density method becomes more sensitive (20.36), and
hence less stable, in higher dimensions compared to the KL method (2.46)
even though the contamination is only in one dimension.

FIGURE 2. Simulation results

3 Conclusion
In this paper, we have proposed a novel framework for evaluating change
detection algorithms for multidimensional data streams called streaming
power. We model the change in data streams using a mixture model, and
explore the sensitivity of algorithms by varying the amount of change.
Sensitivity has implications for the robustness of a CD algorithm, which
we will explore in future work.
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Abstract: The analysis of marital dissolution in Italy represents a quite inter-
esting and challenging topic from a substantive standpoint; in fact, despite of the
decreasing number of marriages and the increasing number of divorces, the tra-
ditional family based on the marriage of heterosexual partners is still considered
as a fundamental institution of the society. Here we present a censored quantile
regression model with additive terms to investigate the determinants of the tim-
ing of marital dissolution on a large and substantial sample from a survey carried
on in Italy.

Keywords: censored quantile regression; Timing of Marital Dissolution; Survival
data; Smoothing

1 Introduction

It is commonly asserted that the family is the fundamental institution of
the Italian society. The main consequence of this assertion is a widespread
political support addressed to the upholding of the classical family built
on the marriage of heterosexual partners. In this context the analysis of
the possible determinants of the marital dissolution is a largely debated
issue: the study of the factors that could affect the end of the marriage is
prominent in the social research. The topic is also of great interest for the
policy-makers as the marital dissolution affects some of the key features of
the modern societies, such as economy, gender equality and especially fer-
tility. Although the study of the time-to-separation can provide quite useful
information and insights to evaluate trends and changes in the formation
and dissolution of the marriage, relatively few studies take explicitly into
account the time dimension, see Cavanagh and Huston (2008), Gottman
and Levenson (2000).
Using a large sample surveyed by the Italian national statistics institute
(ISTAT), we aim to model the time-to-marital dissolution in a regression



Porcu et al. 491

quantile framework. While the Cox model represents the most used frame-
work to model survival data, censored quantile regression (CQR) offers a
more flexible alternative by focusing the attention on narrow slices, lower
or upper tails, of the conditional survival distribution of interest (Koenker,
2008).

2 The Data

The data considered in this paper come by from the sample survey on Fam-
ilies and Social Subjects (FSS), carried on in Italy by the official statistics
institute at the end of 2003 on a sample of over 19,000 Italian families
(nearly 50,000 individuals). The survey was addressed to collect broad in-
formation on the Italian households, such as the shapes, the network of
kinship, the relations among partners, the permanence of young adults in
the family, and the working life.

TABLE 1. Some descriptive statistics on data analysed.
Males (n = 4633) Females (n = 5235)

Covariates Separated Non-Separ Separated Non-Separ

Area (obs.)
North 335 1640 445 1763
Center 190 1164 223 1269
South 124 1180 151 1384

Education (obs.)
1st stage basic 75 591 63 684

2nd stage basic 253 1529 268 1586
Upper secondary 232 1473 384 1713
Degree 89 391 104 433

Age at Marriage (Years)
Mean (sd) 26.3(5.7) 27.7 (5.8) 23.3(5.0) 22.2(5.7)

Childless
% 33.4 12.8 32.1 12.9

Work
Yes at marr (%) 80.1 86.7 51.2 45.0
Yes at separ (%) 88.0 — 64.7 —

The data from the 2003 FSS survey here analyzed represent the most re-
cent information available on the topic: the data from the last FSS survey
carried out in 2010 are not yet available. We have omitted from the sample
persons married before the 1970 when the divorce, understood as the ‘to-
tal dissolution of marital status’, was not allowed. Moreover, to keep away
from any potential confounding interaction between sex, covariates and
timing we have considered females and males independently (e.g., Schoen
and Canudas-Romo, 2006). Table 1 summarizes some descriptive statistics
for the sample.
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3 Methods and Results

We aim to model the time-of-dissolution as a function of the following co-
variates in a CQR model: the categorical variables Education, Area, and
Work at Marriage, and the numerical variables Age at Marriage,
Number of Sons and Year of Birth. Until now, CQR has been dis-
cussed only with parametric linear terms, however for the aforementioned
continuous covariates the linearity assumption is not tenable and more
flexible alternatives are requested: we use B-spline bases with quadratic
penalties on the coefficients to get smooth estimates of the nonlinear re-
lationships. The additive CQR model with J nonparametric terms for the
variables z and linear terms for the variables x, may be written as

Qτ (Y |xi) = xTi βτ +

J∑
j

fτj(zij), (1)

where the subscript τ points the percentile of interest (0 < τ < 1). Notice
that, unlike the usual model for the conditional mean, here the covari-
ate effect (parametric or nonparametric) depends on the percentile τ . The
response Y measures the time span of their marriage up to the year of sep-
aration; we consider as uncensored the spouses (male or female) which stop
living together regardless of the possibility of reconciliation; in fact in Italy
only a slight proportion of separations ends with a reuniting of the couple
(Castiglioni, 2008). We modify the iterative estimating algorithm described
in Bottai and Zhang (2010) to include the additive (spline) terms in the lin-
ear predictor and to obtain parameter estimate of the additive CQR model
(1). Although QR allows to model every quantile of the response condi-
tional distribution, our analysis focuses on the lowest quantiles (τ ≤ 0.10).
Indeed, early dissolutions (i.e. the left tail of the survival distribution) are
of major interest in the present study since the first years of marriage are
known to be crucial for fertility, children social development, changes in
lifestyle and also for their influence on the probability of remarriage.

TABLE 2. Point estimates for the parameters of the linear terms in the four CQR
models.

Males Females
Linear Terms τ = 0.05 τ = 0.10 τ = 0.05 τ = 0.10
EDUC (2 stage basic vs 1 stage basic) -2.257 -1.666 -2.190 -3.971
EDUC (upper sec. vs. 1 stage basic) -1.372 -1.138 -3.444 -5.668
EDUC (degree vs 1 stage basic) -2.291 -2.474 -4.454 -6.503
Area (center vs. north) 0.197 1.081 0.770 1.116
Area (south vs. north) 2.319 2.730 1.317 1.486
Work at marr (yes vs. no) 1.500 2.157 0.469 0.130

For the four fitted additive CQR models (two quantiles 0.05 and 0.10 for
males and females), Table 2 shows the point estimates for the parameters
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of the linear terms and Figure 1 reports the fitted smooth effects of the
three continuous covariates.
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FIGURE 1. Fitted quantiles (τ = 0.05, continuous line; τ = 0.10 dashed line) for
males and females.

In short, for the early marital dissolutions (i.e., the low percentiles 5% and
10%) we observe strong and somewhat expected effects of the ‘area’ and
of the ‘educational level’ for both male and female groups. On the other
hand, the effect of the ‘working status’ is somewhat different. The plots in
Figure 1 emphasize the nonlinear effects of the continuous covariates, by
highlighting a different role of the number of sons variable.
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Abstract: Method is developed for estimating the size or the density of cetacean
populations using data from a fixed passive acoustic sensor. We must link the
number of sounds detected with the number of individuals of the group. Nowadays
research follows two ways: estimating the population density in a given area,
and to estimate the recurrence the songs are produced. We introduce a Poisson
process with two parameters, one spatial that deals with the density of whales in
an area and the other one temporal which measures the intensity of the number
of sequences of sounds detected by a whale in an interval of time. We suppose
that every whale acts independent of each other. With these hypotheses, we
develop a distribution spatio-temporal associated with the process and we use
it to calculate the likelihood functions in order to find a maximum that would
produce estimators of both parameters spatial and temporal. This distribution is
used to fit the experimental data: The intervals of time between two consecutive
sequences of calls. We specify sequences as we are using not each cue detected,
but the whole sequence of song produced by an individual. This method is a
preliminary study and it is potentially applicable other species.
Method is illustrated with a case study: To estimate the density of Antarctic
blue Whales (BMi) population around the Crozet Islands, in the Austral Ocean,
using the sounds detected from April 2003 to March 2004. Our data come from
the records of only one fixed hydrophone. These records of the sound produced by
Antarctic Blue Whales must be processed to produce a multiple count time-series.

Keywords: Population density; Poisson model; Passive acoustic; Cetaceans.

1 Introduction

Method of population assessment based on acoustic techniques is applied
to the study of Antarctic Blue whales using a hydrophone located off the
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Crozet Archipelago, in the southern Indian Ocean. An area where so few
Blue whales have been seen that their density has not been previously
estimated. This information is vital from the point of view of marine biol-
ogy/ecology because the Blue whale is a specie endangered since 1967. It is
estimated that its population has been reduced to 0.15% of the initial pop-
ulation and nowadays there are about 3000 individuals in all the oceans.
The object of this paper is to increase the repertoire of tools available for
making species assessments. We present an initial Poisson process with two
parameters. The first one is spatial, it measures the density of whales in
an area and the latter is temporal that measures the intensity of sounds
sequences detected by a whale in an interval of time. Also we suppose in-
dependence in the way, two whales sing. Then we develop a distribution
spatio-temporal associated with the process, using the intervals of time
between two consecutive sequences of calls. We use it to calculate the like-
lihood function in order to find a maximum that would produce estimators
of the parameters for obtaining estimates of population stocks abundance.
This paper presents a framework for estimating cetacean density from fixed
passive acoustic detectors. It is general enough that it might be used under
considerably different scenarios, with appropriate modifications that are
also discussed.

2 Materials and methods

The data set used in this study was recorded from April 2003 to March 2004
at a station located in the South-western Indian Ocean (Crozet Islands -
46◦51’S-51◦53’E). The station is moored in the International Monitoring
System (IMS) and support the Comprehensive Nuclear Test-Ban Treaty
(CTBT). These hydrophone systems were designed to control nuclear tests
in the ocean, but the recordings also contain some natural sounds produced
by whales. So although the main objective was not register whales sounds,
as the filter used is a low frequency one, the sounds of Blue whales were
detected as a secondary product.
There were two arrays of three instruments each one located in the Northern
and Southern coasts of Possession Island. The instruments were deployed
on the seafloor at a depth between 1100 and 1500 meters in a triangular
configuration (triad) with approximately 2 km spacing. The two arrays
were located on opposite sides of the island and spaced 60 km apart. The
hydrophones were suspended near the sound channel axis (SOFAR) at a
depth of approximately 300 m. In this area of the ocean, the speed of propa-
gation of sound waves is minimal, making that the ocean behaves at these
depths as a wave guide. The hydrophones monitored sound continuously,
24 hours a day, 7 days a week.
The acoustic data from each hydrophone were analyzed to check for the pre-
sence of calls typically associated with Antarctic and Pygmy Blue whales.
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An automatic detection method for both call types was designed (Samaran
et al. 2008). The detector used a matched filter process that related the
acoustic data with synthetic waveforms (templates) defined for both blue
whale subspecies’ calls (McDonals et al. 2006).
On this paper we analyzed the data of BMi calls (Antarctic Blue whales)
of only one hydrophone located in the North of the island which covers
a recording surface of 47123 m2. We have data of one year. Although the
hydrophone registered continuously, we have a gap of data due to technical
incidents. We modify the data in order to obtain the time between two
consecutive sequences of calls. We have used the R language to apply the
initial model to these data and estimate the density of Antarctic blue whales
in the area.

3 The model

Assessing the size of cetacean populations in the open ocean has tradi-
tionally relied on visual surveys alone. The addition of acoustic monitoring
can complement these surveys. Nowadays we do not known to assign an
individual acoustic signature in the case of whales and the only method
for estimating the size of cetacean populations that has been adapted to
the acoustic is Distance Sampling (Thomas et al. 2002). This method use a
punctual estimation of the density adding a probability of detection based
on the distribution of observed detection distances. It requires additional
information like the probability of detecting cues and the rate at which
animals produce it. To obtain estimation of this rate, (Marques et al. 2009)
proposed to use specific tag including sensors attached on the back of the
beaked whales. However, it is not possible to generalize this approach for
different cases, especially when the individuals are not reachable. In this
case visual observation was not possible and the knowledge of these pa-
rameters neither. So in this paper an initial model is presented to estimate
Antarctic blue whale population based on near-continuous recording from
a single hydrophone as a new alternative method.

Let T (s) : the observed time between two consecutive sequences of calls

produced into the surface s

N(t, s) : be the number of calls in s in a interval of time t

B(s) : number of whales in the area s

C(t) : be the number of registered calls for whale in the time interval t

We model B(s) and C(t), unobserved, as a Poisson process of intensity λ
and µ, so B(s) ∼ P(λs) and C(t) ∼ P(µt).

The distribution function is given by FT (t) = 1 − P
(
T (s) > t

)
., If the

time between two detected sons is more than t, means that in the range t
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have not had any song, then:

P
(
T (s) > t

)
= P

(
N(t, s) = 0

)
=

∞∑
i=0

P
(
N(t, s) = 0

/
B(s) = i

)
P
(
B(s) = i

)
=

∞∑
i=0

P
((
C0(t) + · · ·+ Ci(t)

)
= 0
)
P
(
B(s) = i

)
=

∞∑
i=0

e−µite−λs
(λs)i

i!
= e−λs

∞∑
i=0

(λs e−µt)i

i!
= e−λs eλs e

−µt

Therefore its distribution and density function are:

FT (t) == 1− eλs (e−µt−1) fT (t) = µλs e−λse−µteλs e
−µt

Suppose we have a sample of size m of the time between songs, so we have
the log-likelihood function.

`T (λ, µ) = λs

m∑
j=1

e−µtj − µ
m∑
j=1

tj + ln
(
µλs

)m −mλs
4 Results

We have processed the data using R software.
First of all we have represented the number of calls observed. Through
the model created we have estimated λ̂EMV and µ̂EMV , as the values that
maximized the likelihood function. Our goal is to estimate the density of
population of Antarctic Blue whales in the vicinity of the Crozet island,
ie, the number of whales B(s), in the area. Then we have calculated the
confidence intervals of 90% y 95% of the number of Antarctic Blue whales
present in the Archipelagos. We analyze if the data set shows some seaso-
nality, (hypothesis supported by studies carried out earlier) but the lack of
recording hours in our data make it no visible enough.
To sum up our model have estimate a number close to 5 individuals, which
corresponds to the expectations of biologists.
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Abstract: We consider the optimal pooling of DNA to detect single nucleotide
polymorphisms (SNPs), sites along the genome at which a population shows vari-
ation. The focus is on the detection of low frequency variants. Pooling individuals
increases the probability that a rare variant appears in the sample. However, as
the pool size increases, the mean number of reads from an individual decreases,
making it harder to distinguish reads of a rare variant from errors. A hypothesis
test for the detection of SNPs is defined. On the basis of this test, we deter-
mine the asymptotically optimal pool size given the parameters of the genome
sequencer used, the number of lanes available and a specified significance level.

Keywords: genome sequencing; optimal pooling; single nucleotide polymor-
phisms.

1 Introduction

The genome consists of sequences made of 4 nucleotides (bases). At a ma-
jority of the sites in these sequences, each individual in a population has
the same base. A site where there is variation is called a single nucleotide
polymorphism (SNP). At such sites, in general, just two of the four bases
appear. These variants are called alleles, the most common (rare) is termed
the major allele (minor allele, respectively). We treat chromosomes, rather
than members of a species, as individuals. However, our analysis can be
generalized.
Since any reasonable test detects alleles of relatively large frequency with
power close to 1, we concentrate on the detection of low frequency alleles.
Following Futschik and Schlötterer (2010), one may use the following test:
accept that there is a minor allele if in any lane the number of reads for a
non-major allele exceeds a given threshold. We develop their work by spec-
ifying this threshold given the parameters of the sequencer and significance
level required. An estimate of the power of this test is derived, which is used
to find the optimal pool size for detecting low frequency alleles. For more
on the practical issues involved in gene pooling see Kenny et al. (2010).
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2 Description of the Problem and a Simplified Model

Genome sequencers read DNA from a pool (of m individuals) placed in a
lane. Suppose we have k independent pools, i.e. the sample size is n = km.
Consider a given site. Each lane gives a random number of reads for that
site. If the same (large) amount of genetic material is taken from each
individual, we may assume that the number of reads from an individual
given that there are r reads in a lane has a binomial distribution with
parameters r and 1/m. Assume that each read is incorrect with a small
probability ε, independently of other reads. Also, suppose that only two
alleles are possible, the major allele and the putative minor allele.
Let R = (R1, R2, . . . , Rk), where Ri is the total number of reads for that
site in lane i. It is assumed that the Ri are i.i.d. from the Poisson(λ)
distribution. In addition, suppose good estimates of λ and ε are available
for the gene sequencer used.
The major allele is inferred to be the one with the largest number of reads
in the whole sample. As we are interested in detecting low frequency alleles,
we may assume that for reasonable sample sizes the major allele is correctly
identified with probability 1. Let X = (X1, X2, . . . , Xk), where Xi is the
number of reads of the putative minor allele in lane i.
Denote the minor allele frequency at a given locus by p. We wish to define
an optimal pooling procedure (maximizing power) while controlling the
type I error rate for a test of the following hypotheses.
H0: The locus is not a SNP, i.e. p = 0.
HA: p = p0, where p0 is some small positive value.

3 A Test for the Presence of a Minor Allele

Consider the test statistic U = max1≤i≤kXi, i.e. U is the maximum number
of reads of a putative minor allele in a lane. Hence, under H0, U is the
maximum of independent observations from the Poisson(λε) distribution.
The critical value for the test, uk, is the smallest integer satisfying

P (U≤uk|H0)≥1−α⇒P (Xi≤uk|H0)k≥1−α⇒P (Xi≤uk|H0)≥ k
√

1− α.

Thus we can take the k
√

1− α quantile of the Poisson(λε) distribution as
the critical value. We reject H0 if and only if U > uk. Note that this proce-
dure takes into account the fact that we essentially have a multiple testing
problem based on k test statistics X1, X2, . . . , Xk. The critical value used
in the test can be approximated using the Bonferroni procedure. However,
this test does not take into account that such a procedure is repeated for
each site. Hence, the value of α chosen should reflect this.
Under HA, the number of minor alleles in the sample has a Bin(n, p0)
distribution. This can be approximated by the Poisson(np0) distribution.
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Result. When there are b individuals with the minor allele, the distribution
of the test statistic stochastically dominates the distribution of this statistic
when one individual with the minor allele appears in each of b lanes.
Let D denote the event that HA is accepted given that it is true. Let
the number of individuals with the minor allele in the sample be B and
µ = E[B] = mkp0. We obtain

P [D] =

∞∑
b=0

P [D|B = b]P (B = b) ≥
∞∑
b=1

P [D|B = b]P (B = b).

Since P [D|B = 0] ≤ α, we can treat the resulting bound as a good approx-
imation of P [D]. For b ≥ 1,

P [D|B=b]=P (U >uc|B=b)=1− P (U≤uk|B=b)≥1− P (V1≤uk)b,

where V1 is the number of correct reads from one individual. If p0 is small
enough to neglect the possibility of two individuals with the minor allele
being in a pool, it follows that P [D|B = b] ≈ 1− qbk, where

qk =

uk∑
j=0

e−λ/m(λ/m)j

j!
.

Hence,

P [D] ≈
∞∑
b=1

e−µµb[1− qbk]

b!
= 1− e−µ(1−qk).

Since the exponent in this expression is linear in p0, the asymptotically (as
p0 → 0) optimal pool size is independent of p0.

4 Results from Simulations

Simulations were carried out for each of the following models:

1. Mistakes from reading the major allele always resulted in observing the
same allele (the minor allele, if one was present). Mistakes in reading
the minor allele always resulted in observing the major allele.

2. Mistakes from reading an allele always resulted in observing the same al-
lele (neither the major allele nor the minor allele, if one was present).

3. Mistakes from reading any allele gave the other three possibilities with
equal probability.

It should be noted that Model 1 corresponds to the model described in
Section 2. Under Models 2 and 3, more than two alleles can be observed
at a site. In these cases, as before, the major allele is assumed to be the



502 Optimal DNA Pooling

allele with the largest number of reads in the whole sample. The putative
minor allele is taken to be the non-major allele with the largest number
of reads from a single lane. Note that it is possible to correctly reject H0,
but incorrectly infer which base is the minor allele. For such an error to
occur, it is necessary for the number of errors in a lane to exceed both
the threshold and the number of reads of the real minor allele. Hence, the
probability of such an error is less than α. Tables 1-3 give results based on
10,000 simulations in each case. In each case p = 0.01 and α = 0.001. It
can be seen that the optimal pool size and empirical power are robust to
deviations from the assumptions of the model.

TABLE 1. Optimal pool sizes (derived by simulation), theoretical and estimated
power under Model 1. The power estimated by simulation is given in brackets.

k = 16 k = 40 k = 80 k = 120

ε=0.01 4, 0.3752 (0.3864) 3, 0.6145 (0.6252) 3, 0.8514 (0.8489) 3, 0.9427 (0.9425)

ε=0.005 4, 0.3752 (0.3825) 4, 0.6915 (0.6973) 4, 0.9048 (0.9065) 4, 0.9706 (0.9728)

ε=0.002 6, 0.4628 (0.4733) 6, 0.7885 (0.7995) 7, 0.9553 (0.9583) 4, 0.9706 (0.9707)

ε=0.001 7, 0.4628 (0.4678) 7, 0.7885 (0.7946) 6, 0.9553 (0.9581) 6, 0.9905 (0.9917)

TABLE 2. Optimal pool sizes, estimated power and the probability of wrongly
determining the minor allele (given in brackets) under Model 2.

k = 16 k = 40 k = 80 k = 120

ε=0.01 4, 0.3696 (0.0006) 3, 0.6167 (0.0002) 3, 0.8504 (0.0000) 3, 0.9388 (0.0000)

ε=0.005 4, 0.3729 (0.0001) 4, 0.6948 (0.0001) 4, 0.9060 (0.0001) 4, 0.9728 (0.0000)

ε=0.002 6, 0.4723 (0.0001) 6, 0.7917 (0.0001) 6, 0.9588 (0.0001) 4, 0.9712 (0.0000)

ε=0.001 6, 0.4699 (0.0000) 6, 0.7883 (0.0000) 5, 0.9535 (0.0001) 6, 0.9907 (0.0000)

TABLE 3. Optimal pool sizes, estimated power and the probability of wrongly
determining the minor allele (given in brackets) under Model 3.

k = 16 k = 40 k = 80 k = 120

ε=0.01 4, 0.3752 (0.0000) 3, 0.6133 (0.0000) 3, 0.8549 (0.0000) 3, 0.9421 (0.0000)

ε=0.005 4, 0.3766 (0.0000) 4, 0.6993 (0.0000) 4, 0.9056 (0.0000) 4, 0.9703 (0.0000)

ε=0.002 6, 0.4694 (0.0001) 6, 0.7923 (0.0000) 7, 0.9575 (0.0000) 4, 0.9712 (0.0000)

ε=0.001 6, 0.4711 (0.0000) 6, 0.7942 (0.0000) 6, 0.9546 (0.0000) 6, 0.9922 (0.0000)

Acknowledgments: D. M. Ramsey is grateful for the support of Science
Foundation Ireland under the BIO-SI project (no. 07MI012)
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Abstract: Seasonal patterns, as they occur in time series of infectious disease
surveillance counts, are frequently modelled using a superposition of sine and
cosine functions. However, in some cases this might be too simple. We propose
the use of circular second order random walks instead and extend this approach
to multivariate time series of counts. A correlated Gaussian Markov random field
approach combines a uniform correlation matrix with a circular random walk to
allow the seasonal pattern to be similar across regions, say, but not identical.
Thus, spatially-varying disease onsets may be accounted for. The methodology is
applied to weekly number of deaths from influenza and pneumonia in nine major
regions of the USA.

Keywords: circular random walk; infections disease surveillance; INLA; Kro-
necker product; multivariate time series of counts.

1 Introduction

Time-series of infectious disease counts are marked by occasional outbreaks,
but furthermore there are frequently seasonal variations, for instance harder
strikes in winter than summer. To model seasonal variation a superposi-
tion of sine and cosine functions is often used, where the amplitudes can be
described by a fixed coefficient or, to be more flexible, by smoothly time-
varying coefficients, see for example Harvey and Koopman (1993), Eilers
et al. (2008), Paul et al. (2008) or Fanshawe et al. (2008). However, in
some cases this approach might be too simplistic and specific seasonal vari-
ations, for example sharp peaks around Christmas, might not be captured
(Harvey and Koopman, 1993). Circular random walks (CRWs) are similar
in spirit to periodic splines (see Harvey and Koopman, 1993) and repre-
sent a flexible alternative to adequately capture seasonal variations. In a
multivariate setting, where different regions, say, show a similar seasonal
pattern which is, however, likely to vary across regions, we propose the
use of correlated CRWs. Analyses are performed using integrated nested
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FIGURE 1. Weekly number of deaths from influenza and pneumonia in the USA
from 40/1996 - 39/2006.

Laplace approximations (INLAs), see www.r-inla.org, which is a fast de-
terministic alternative to MCMC for latent Gaussian random field models
(Rue et al., 2009). We apply the methodology to weekly number of deaths
from influenza and pneumonia in the USA, previously analysed by Paul et
al. (2008). Using the deviance information criterion (DIC) we compare the
correlated approach with a model using independent CRWs for each region
and a model assuming a common seasonal pattern across all regions.

2 Weekly data of influenza in nine regions of the
USA

Weekly data on the number of deaths from influenza and pneumonia are
provided for the weeks 40/1996 to 39/2006 in nine major geographic re-
gions of the USA, see Figure 1. Region-specific population counts are not
available for all years. Thus, we used the population counts derived from a
census in the year 2000 in our analysis.
Let ytr denote the number of deaths at time point t in region r, r = 1, . . . , R,
with R = 9. In our application, time is divided into weeks from 40/1996
to 39/2006, so that t = 1, . . . , 520. We adopt a Poisson model with mean
nrλtr, where nr denotes the population counts in region r (in the year
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2000). To adequately model the seasonal pattern in a general and flexible
way we use a CRW of second order (CRW2) for the 52 weeks. The precision
matrix of a CRW2 is given by

RCRW2 = κ
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, (1)

with unknown precision parameter κ. As for all circulant matrices, only
one column or row is sufficient to derive the whole structure matrix (Rue
and Held, 2005, Section 2.6.1). To allow for similar but not equal seasonal
patterns across the nine regions, we correlate the single CRW2s using the
precision matrix P = C−1 ⊗RCRW2. Here, C−1 is the inverse of a 9 × 9
uniform correlation matrix C = (1 − ρ)I + ρJ, where ρ denotes the un-
known correlation parameter, I the identity matrix, J a matrix of ones,
and RCRW2 is the precision matrix given in (1). In addition to seasonal
variation, the disease incidence, as displayed in Figure 1, shows occasional
outbreaks. To address such temporal dependence beyond seasonal varia-
tion, we additionally introduce an autoregressive process of order 1 (AR1)
again coupled with a uniform correlation matrix. The linear predictor fol-
lows as:

log(λtr) = µr + αtr + β(t mod 52)r, (2)

where µr denotes the region-specific intercept, αtr the outbreak-specific
component modelled as a correlated AR1 and β(t mod 52)r the seasonal com-
ponent modelled as a correlated CRW2.
All 5 hyperparameters (the seasonal precision, the correlation between the
CRWs, precision and autoregressive parameter of the AR1 processes and
correlation between the AR1s) are treated as unknown. For the unknown
precision parameters we use gamma hyper-priors, namely a Ga(1, 0.00005)
for the precision κ of the correlated random walk, and a Ga(0.1, 0.001) for
the precision of the AR(1) process as proposed by Schrödle et al. (2011). For
the Fisher’s z-transformed autoregressive parameter we use a normal dis-
tribution with zero-mean and variance 0.2−1, corresponding to a U-shaped
prior. The same prior is used for the transformed correlation parameters be-
tween the CRWs and the AR1s. Here, the general Fisher’s z-transformation
(Fisher, 1958, page 219) is used, which ensures that the correlations only
take values between (−1/(R− 1), 1), so that C is positive definite without
imposing an additional constraint, see also Riebler et al. (2011).
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TABLE 1. DIC for three different models using a CRW2 to model seasonal vari-
ation in the nine major regions of the USA.

region-specific CRW2 region-specific CRW2
common CRW2 uncorrelated correlated

DIC 36707 36716 36704

0.9965 0.9975 0.9985 0.9995
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FIGURE 2. Approximated posterior marginals for the correlation parameters and
the autoregressive parameter.

3 Results

We compared the model, which uses correlated CRW2s to model the sea-
sonal pattern in the nine regions, with a model assuming independent
CRW2s and a model assuming a common CRW2. The DIC values for all
three models are shown in Table 1. The model assuming correlated region-
specific CRW2s is classified as the best model for which Figure 2 shows
the approximate posterior marginals for both correlation parameters and
the autoregressive parameter. The correlation between the seasonal com-
ponents is close to unity (0.999; 95% CI: [0.998, 1]). Figure 3 shows the
seasonal pattern (mean within 95% CI) for NewEngland, and for the other
regions the pair-wise differences of the estimated mean seasonal effects to
NewEngland are shown. For all regions, the seasonal component is higher
in the winter months and lower during the summer, but some small dif-
ferences occur across regions. For example, in Mountain the peak in the
winter months is higher, while the pattern in summer is lower compared to
NewEngland. In SouthAtlantic it is the other way around.
Of note, the seasonal pattern is not completely smooth. The decreasing
effect at the end of the year and the increasing effect at the beginning
might be explained by a Christmas effect, where few cases are reported
around Christmas but many after the holidays. Peaks throughout the year
are not completely clear and need to be investigated in detail.
Turning to the correlated AR1 processes, we note that the estimated au-
toregressive parameter is 0.53 (95% CI: [0.49, 0.56]) and the correlation
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FIGURE 3. Estimated seasonal effects (mean and 95% CI) for NewEngland (NE)
(top left). For the other regions the difference of the mean seasonal effects to NE
is shown.

between the processes is estimated to be 0.25 (95% CI: [0.20, 0.29]) and
thus also clearly different from zero.

4 Discussion and outlook

We proposed the use of correlated CRW2s for modelling seasonal variation
in multivariate time series of counts. We applied the methodology to weekly
numbers of deaths from influenza and pneumonia in nine major regions of
the USA. Although, the correlation between the single seasonal trends was
close to unity, this model was preferred compared to a model with one
common seasonal component.
In certain aspects the CRW2 represents a quite flexible approach, as the
seasonal pattern is not restricted in its functional form, so that also sharp
peaks can be captured. However, it assumes that the temporal pattern
repeats every 52 weeks, whereas ideally we would like to account for time-
varying disease onsets.
The modulation model proposed by Eilers et al. (2008) is more flexible in
this aspect. However, here the (co)sine function might be too simple in
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certain applications. An unstructured non-parametric model as defined in
Rue and Held (2005, page 122f) can also account for time-varying disease
onsets. However, here the week indicators are treated exchangeable so that
the seasonal pattern is not required to be smooth. Both the modulation
model of Eilers et al. (2008) and the seasonal model of Rue and Held (2005,
page 122f) can be implemented in INLA and could also be coupled across
regions using a uniform correlation matrix. Currently, we are working on a
comparison and if possible a combination of these models. Furthermore, we
are exploring possibilities to include spatial correlation between the nine
geographical regions of the USA.
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Segmented smoothing with an L0 penalty
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Abstract: Copy number variations in tumor DNA show sudden jumps between
constant segments. We propose a smoother with a roughness penalty on the
number of jumps, implemented by an L0 norm. A simple iterative weighting
algorithm finds the solution.
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1 Introduction

In normal (human) DNA, the autosomal chromosomes form pairs, so there
are two very similar copies of each segment of a chromosome. In tumors
aberrations can occur: some segments get lost and others occur three or
more times. This is called copy number variation (CNV). A useful way
to detect and quantify CNV is to use the (fluorescence) signals that are
delivered by microarrays for genotyping of SNPs (single nucleotide poly-
morphisms). Each SNP has two alleles, and the signals are proportional to
the number of alleles in a biological sample. For normal DNA the sum of
the signals should be 2 (times an unknown scaling factor), in tumors we
find segments where this sum is either smaller or larger.
Biologists and medical doctors are highly interested in these segments. Re-
cently, quite some work was done (Morganella et al, 2010; Tsuang et al.,
2010; Winchester et al., 2009) comparing available methods to determine
the presence of CNVs. The common denominator is the suggestion to use
multiple methods in conjunction. Here we present a new smoothing al-
gorithm. Our main goal is better (clearer) visualization, by either signal
smoothing or scatterplot smoothing, but preliminary tests show that it can
also be used for actual CNV detection.
The observed signal can be quite noisy, so we have to smooth it to en-
hance segments. However, standard smoothers do not respect the sharp
boundaries between segments that occur in these data. The smoother we
start with, based on ideas from Whittaker (Eilers, 2003), uses as roughness
penalty the sum of squared differences of adjacent fitted values. This is
fine if we aim for a “rounded” smooth result, as is often the case. For the
present application this is not what we want; instead we like to see sharp
jumps between constant segments.
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Eilers & de Menezes (2005) showed how replacing sums of squares by sums
of absolute values (the L1 norm) goes a long way towards our goal. They
used linear programming for the computations. Here we further improve
their approach by introducing the L0 norm in the penalty, which is es-
sentially a penalty on the number of jumps. Also we introduce a simple
iterative weighting scheme to avoid linear programming.

2 Theory and application for CNV signals

In this section we introduce the model. We develop it in several steps and
illustrate results directly, not in a separate section.
The data (for one chromosome) are m data pairs (xi, yi), where xi gives
the position of SNP i (xi < xi+1 for all i) and yi is the copy number signal.
We are going to compute a smooth series z. Our starting point is a variant
of the Whittaker smoother (Eilers, 2003). It rounds off edges, which is fine
in many applications, but not here. Therefore, Eilers & de Menezes (2005)
replaced the sum of squares (the L2 norm) by sums of absolute values (the
L1 norm). Their objective function is

S1 =

m∑
i=1

|yi − zi|+ λ

m∑
i=2

|zi − zi−1|.

As can be seen from the top panel of Figure 1, this goes in the right
direction. The bold middle line shows the smoother with a λ chosen by
eye. Segments become more clearly visible, although the jumps are not
perfect. The shifted thin line above shows the effect of setting the smoothing
parameter too large (misses major jumps) and the shifted line below shows
the result for a too small λ: it shows too many small jumps.
Notice that the L1 norm occurs not only in the penalty but also in the
first term of S1. The reason is that Eilers and de Menezes use linear pro-
gramming to minimize S1. The first term measures the quality of the fit
to the data. The L1 norm there implies median smoothing. This increases
robustness, but decreases sensitivity to the data, relative to the L2 norm.
In practice robustness is hardly an issue in CNV studies.
We propose the following modification:

Sq =

m∑
i=1

(yi − zi)2 + λ

m∑
i=2

|zi − zi−1|q

where q is a number between 0 and 1. Actually we will concentrate on
q = 0, the L0 norm. Essentially this is a penalty on the number of non-zero
difference between neighboring elements of z. As a result, we are no longer
detecting relatively small deviations: only large(r) regions are picked up,
as illustrated in the bottom panel in Figure 1. Again, the thin lines above



Rippe and Eilers 511

FIGURE 1. Illustration of smoothing with two different norms for the roughness
penalty. Top: L1 norm; bottom: L0 norm, giving better segmentation. In both
panels results are shown for three values of the smoothing parameter λ (chosen
subjectively).
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show results when λ is too large, while the lower lines illustrate a too small
smoothing parameter.
It is easy to find the solution for the Whittaker smoother, using matrix-
vector operations. If D is a matrix that forms first differences of z, Dz =
∆z, the objective function can be written as S2 = ||y−z||2 +λ||Dz||2, with
an explicit solution that follows form the linear system (I + λD′D)ẑ = y.
The system is banded and thus very sparse, which can be exploited in
native Matlab or in R, using the spam package. For large m this reduces
computation time and memory use by orders of magnitude, compared to
non-sparse matrix operations.
We propose a simple, but effective, algorithm to minimize Sq, using iterated
weights in an adapted Whittaker smoother. Obviously |a|q = a2|a|q−2,
for any number a. If we do not know a itself, but an approximation ã,
then |a|q ≈ a2|ã|q−2. Using this relation, we approximate |zi − zi−1|q by
vi(zi − zi−1)2, with vi = |z̃i − z̃i−1|q−2. If V = diag(v), the system to be
solved becomes (I +λD′V D)ẑ = y. This gives a new approximation to the
solution from which new weights are computed. These steps are iterated
until convergence.
To improve numerical stability and reduce the number of iterations, we
modify the weights somewhat: vi = 1/[(z̃i − z̃i−1)2 + α2]1−q/2, where α is
a small number, of the order of 1/1000th the expected size of the jumps.

3 The L0 norm in scatterplot smoothing

Another useful application of the L0 norm can be found as an addition
to the so-called scatterplot smoother (Eilers & Goeman, 2004). Here we
visualize the ratio of the signals for the two alleles, r = log(b/a). In nor-
mal, healthy, tissue we find three signal bands: one centered around 0,
representing the heterozygous genotype AB, and two above and below 0,
representing the homozygous AA and BB genotypes. In tumor tissue re-
gions can occur where the middle band is missing: loss of the heterozygosity
(LOH). It can get worse: one or both alleles can be missing. These changes
usually occur in larger regions on a chromosome, so we want to smooth the
scatterplot, while keeping the clear segmentation. This is not the case with
the existing scatterplot smoother (Figure 2, top panel).
The scatterplot smoother first computes a two-dimensional histogram. Rows
and columns are smoothed with a modified Whittaker smoother, in which
both first and second order differences occur. This is done to guarantee that
smoothed counts are always positive. The penalty is λ2D′2D2 + 2λD′1D1.
We keep this penalty for the signal (vertical) direction, but for the location
direction we use a penalty based on the the L0 norm of first differences:
λD′1V D1. Because we apply the smoothing to all rows of the histogram
simultaneously, the weights in V have to be determined by a whole column.
We found that 1/ṽj =

∑
i(zij − zi, j − 1)2/m+ α2 works well. Results are

shown in the bottom panel in Figure 2.
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FIGURE 2. Illustration of scatterplot smoothing without (top) and with (bottom)
built-in L0 norm in horizontal direction.
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4 Discussion

We have shown that using the L0 norm in the difference penalty of a
smoother works well to give segmented results, as is required by the bi-
ological application.
It is remarkable that this norm works so well, because the objective function
is non-convex. In the first iteration we use the Whittaker smoother, which
probably sets the scene well for the iterations that follow. Yet we cannot
be sure that a solution is optimal: it might have reached a local minimum.
At present we do not try to optimize the choice of λ, the smoothing param-
eter, in some objective way. The primary goal was to deliver an improved
tool for data visualization and exploration. However, we will study per-
formance as a CNV detection algorithm in simulation experiments. Then
automatic smoothing will be needed. The linear equation system after the
final iteration is suitable to compute the effective model dimension and
hence allows for an AIC or a cross-validation measure.
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Abstract: In this work a bootstrap-based procedure for testing continuous co-
variate effect on the ROC-GAM regression model is proposed. The validity of the
bootstrap-based tests is examined in a simulation study, and endocrine data are
analysed with the aim of assessing the performance of the waist circumference
(WC) in detecting patients having a higher risk of cardiovascular problems.
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1 Introduction

The receiver operating characteristic (ROC) curve is the most widely used
measure for evaluating the accuracy of continuous diagnostic tests. Re-
cently, Rodŕıguez-Álvarez et al. (2009) have proposed a new flexible esti-
mator for the conditional ROC curve, based on direct modelling (Alonzo
and Pepe, 2002). In that approach, the effect of the covariates and false
positive fraction on the ROC curve is modelled non-parametrically using
generalised additive models (GAM) combined with local polynomial kernel
smoothers (Fan and Gijbels, 1995). More precisely, given X a set of p con-
tinuous covariates, the following ROC-GAM regression model for the ROC
curve is assumed:

ROCX (t) = g

(
α+

p∑
k=1

fk (Xk) + h0 (t)

)
, t ∈ (0, 1) , (1)

where fj and h0 are smooth and unknown functions.
In this work we introduce bootstrap-based procedures to test for contin-
uous covariate effect on the ROC-GAM regression model specified in (1).
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Specifically, for each continuous covariate, Xr, in (1), our interest is focused
on the null hypothesis

Hr
0 : fr(Xr) = 0.

2 Testing for continuous covariate effect

The test for the null hypothesis

Hr
0 : ROCX (t) = g

(
α+

r−1∑
k=1

fk (Xk) +

p∑
k=r+1

fk (Xk) + h0 (t)

)
(2)

versus the general hypothesis

Hr
1 : ROCX (t) = g

(
α+

p∑
k=1

fk (Xk) + h0 (t)

)

is based on the estimate f̂r. For this purpose, L1 and L2 norms are consid-
ered yielding the following test statistics:

T || =

nD∑
j=1

∣∣∣f̂r (xjr)
∣∣∣ , T 2 =

nD∑
j=1

f̂r (xjr)
2
.

2.1 Bootstrap-based procedure

To approximate the distributions of T || and T 2 under the null hypothesis,
a general bootstrap procedure is proposed:

Step 1. Estimate µD̄, σD̄, and SD̄ from
{(

xD̄i , y
D̄
i

)}nD̄
i=1

.

Step 2. Estimate the null ROC-GAM regression model (2) from
{(

xDj , y
D
j

)}nD
j=1

,

and obtain the bootstrap pilot estimates R̂OC
0

xDj
(t), j = 1, . . . , nD.

Step 3. For b = 1, . . . , B, generate the bootstrap resamples
{(

xD̄i , y
D̄∗
i,b

)}nD̄
i=1

and
{(

xDj , y
D∗
j,b

)}nD
j=1

where

yD̄∗i,b = µ̂D̄

(
xD̄i

)
+ σ̂D̄

(
xD̄i

)
εD̄∗i,b ,

yD∗j,b = µ̂D̄
(
xDj
)

+ σ̂D̄
(
xDj
)
Ŝ−1
D̄

((
R̂OC

0

xD
j

)−1 (
u∗j,b
))

,{
εD̄∗i,b

}nD̄
i=1

is an i.i.d. sample from ŜD̄,
{
u∗j,b

}nD
j=1

is an i.i.d. sample

from U [0, 1], and
(
R̂OC

0

xDj

)−1 (
u∗j,b

)
= inf

{
t : R̂OC

0

xDj
(t) ≥ u∗j,b

}
.
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Step 4. From
{(

xD̄i , y
D̄∗
i,b

)}nD̄
i=1

and
{(

xDj , y
D∗
j,b

)}nD
j=1

obtain Tb.

Since the bootstrap resamples are constructed under the null hypothesis,
this procedure approximates the distribution of T (T ||, T 2) under H0. Con-
sequently, the test rule based on T consists of rejecting the null hypoth-
esis if T > Tα where Tα is the empirical (1-α)-percentile of the values of
T1, . . . , TB obtained in Step 4.

3 Simulation study

Data were simulated from

YD = sin (πX) +
√

0.2 + 0.5 exp (X) +
√

0.2 + 0.5 exp (X)εD,

YD̄ = sin (πX)− a0.3X3 +
√

0.2 + 0.5 exp (X)εD̄,

where a is a real constant, X ∼ U [−1, 1], and εD̄, εD ∼ N (0, 1). With the
above configurations, the corresponding covariate-specific ROC curves is

ROCX(t) = Φ

(
a0.3X3 +

√
0.2 + 0.5 exp (X)√

0.2 + 0.5 exp (X)
+ Φ−1 (t)

)
.

It should be noted that a = 0 corresponds to the null hypothesis, and
the more the constant a shifts towards zero, the greater the effect of the
covariate on the ROC curve. The bootstrap procedure described above was
applied using B = 200 bootstrap samples for determining the critical values
of the tests. The type I error, as well as the power, have been calculated
as the proportion of rejections of H0 in 1000 runs. The results are shown
in Table 1.

4 Application to endocrine data

We applied the proposed bootstrap-based tests to an endocrine study, with
the aim of assessing the effect of age on the accuracy of the WC when
predicting clusters of cardiovascular risk factors. The study was carried out
with a random sample of Galician adult population (2945 subjects, 46.2%
men; age range 18-85 years). Subjects having two or more cardiovascular
disease risk factors (raised triglycerides, blood pressure and plasma glucose,
and reduced HDL-cholesterol) were considered as diseased. The following
ROC-GAM model was considered:

ROC(Age,Gender)(t) = Φ
(
α0 + α11{Gender=Men} + f(Age) + h0(t)

)
.

Figure 1 depicts the conditional areas under the ROC curve (AUCs) to-
gether with 95% pointwise bootstrap confidence bands. The resulting p-
value of the proposed T || and T 2 tests (with B = 200) was lower than
0.001 in both cases.
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TABLE 1. Estimated type I error (a = 0) and rejection probabilities under the
alternative hypothesis (a = 2) of the T || and T 2 tests

Level
a Sample size Test 0.01 0.05 0.10 0.15 0.20

0

50
T || 0.024 0.074 0.122 0.175 0.236
T 2 0.024 0.074 0.117 0.174 0.241

200
T || 0.025 0.077 0.120 0.180 0.226
T 2 0.017 0.066 0.117 0.171 0.224

500
T || 0.017 0.064 0.120 0.170 0.223
T 2 0.024 0.068 0.120 0.174 0.218

2

50
T || 0.089 0.202 0.291 0.38 0.449
T 2 0.103 0.201 0.286 0.365 0.423

200
T || 0.411 0.605 0.706 0.791 0.833
T 2 0.415 0.616 0.714 0.792 0.834

500
T || 0.834 0.938 0.971 0.987 0.991
T 2 0.891 0.955 0.978 0.990 0.993
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FIGURE 1. Estimated AUCs adjusted by age and gender with 95% pointwise
bootstrap confidence bands for Women and Men.
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Abstract: In the context of nonlinear models, the analytical expression of the
Fisher information matrix is essential to compute optimum designs. The Fisher
information matrix of the random effect logistic regression model is proved to
be equivalent to the information matrix of the linearized model, which depends
on some integrals. D-optimum designs are computed for the univariate logistic
regression model with Gaussian random effects. It is proved that D-optimum
designs are invariant with respect to a scale transformation of the design region.
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1 Introduction

The interest in finding optimum designs in the context of regression models
with random effects is steadily increasing. See for instance, Holland-Letz et
al.(2011) and Debusho and Haines (2011). Another setting where optimal
designs have been extensively studied is the context of (fixed effect) binary
regression models. Recently, Ouwens et al.(2006) have studied optimum
designs for logistic models with random intercept. In this paper, D-optimum
designs are derived for the logistic regression model where not only the
intercept but all the coefficients are random.

2 Binary regression model and Fisher information
matrix

Let Y be a binary response variable such that P (Y = 1|β) = F (x′ β)
where “ ′ ” denotes transposition, x = (1, x1, . . . , xk−1)′ is a k× 1 vector of
experimental conditions which may be chosen in an experimental domain
X ⊆ IRk and β = (β0, β1, . . . , βk−1)′ is k × 1 vector of random coefficients.
In other words, for each experimental unit there is a vector of unobservable
random coefficients β ∈ Ωβ ⊆ IRk such that β ∼ φ(β; θ), where φ(·) is a k-
variate probability density function (pdf) which depends on some unknown
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parameters θ ∈ Θ ⊆ IRm, with k ≤ m. It is well known that if β is a
vector of constant unknown coefficients then the Fisher information matrix
coincides with information matrix corresponding to the linearized binary
regression model. This equivalence holds even when the coefficients are
random variables.
In order to have n independent observations, y1, . . . , yn, it is assumed that
one observation per individual is taken, as in Graßhoff et al. (2009). With
this assumption, the log-likelihood function is

logL(θ) =

n∑
i=1

log

∫
[F (x′i β)]

yi [1− F (x′i β)]
1−yi φ(β; θ)dβ,

where from now on the integration is taken over Ωβ ⊆ IRk.
The Fisher information matrix of an exact design ξ = {x1, . . . ,xn} is the
m×m matrix I(ξ; θ) = {Irs(ξ; θ)}, whose (r, s)-item (r, s = 1, . . . ,m) is

Irs(ξ; θ) =

n∑
i=1

∫
F (x′i β) ∂

∂θr
φ(β; θ) dβ ·

∫
F (x′i βi)

∂
∂θs

φ(β; θ) dβ∫
F (x′i β) φ(β; θ) dβ ·

[
1−

∫
F (x′i β) φ(β; θ) dβ

] (1)

where the last equality is obtained after some algebra, assuming the usual
regularity conditions on the pdf φ(·).
An alternative expression for the binary regression model is Yi = E[Yi]+εi,

where E[Yi] =

∫
F (x′i β)φ(β; θ) dβ and εi is such that E[εi] = 0 and

V ar[εi] = V ar[Yi] =

∫
F (x′i β)φ(β; θ) dβ · [1−

∫
F (x′i β)φ(β; θ) dβ].

If this model is linearized at some nominal values of the parameters, then
the information matrix for one observation is given by g(xi; θ)g(xi; θ)

′

where g(xi; θ) is the m× 1 vector whose j-th item, (j = 1, . . . ,m), is

gj(xi; θ) =

∫
F (x′i β) ∂

∂θj
φ(β; θ)dβ√∫

F (x′i β)φ(β; θ) dβ · [1−
∫
F (x′i β)φ(β; θ) dβ]

.

From (1) it follows that I(ξ; θ) =
∑n
i=1 g(xi; θ)g(xi; θ)

′ and this proves the
equivalence between the Fisher information matrix and the information
matrix corresponding to the linearized model.

3 Univariate logistic regression model

In this section the previous results are applied to the case of univariate
logistic regression model with Gaussian random coefficients. Thus, the suc-
cess probability of the binary response Y is given by the following model

P (Y = 1|β) = F (x′ β) =
eβ0+β1 x

1 + eβ0+β1 x
; β ∼ N2(b,V), where x ∈ X ⊆ IR

is an experimental condition, β = (β0, β1)′ is the vector of random co-
efficients (k = 2), which comes from a Normal distribution with mean
vector b = (b0, b1)′ (the so called fixed effects) and dispersion matrix
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V = diag(v2
0 , v

2
1). If v = (v0, v1)′, the unknown vector of model param-

eters is θ = (b′,v′)′, thus m = 4.
For an approximate design ξ, the Fisher information matrix is proportional
to I(ξ; θ) =

∫
X g(x; θ)g(x; θ)′d(ξ) where g(x; θ) is a 4×1 vector whose items

are given by,

g1(x; θ) =
I1(x; θ)

v0

√
I0(x; θ)[1− I0(x; θ)]

, g2(x; θ) =
I2(x; θ)

v1

√
I0(x; θ)[1− I0(x; θ)]

,

g3(x; θ) =
I3(x; θ)− I0(x; θ)

v0

√
I0(x; θ)[1− I0(x; θ)]

, g4(x; θ) =
I4(x; θ)− I0(x; θ)

v1

√
I0(x; θ)[1− I0(x; θ)]

,

where integrations are taken over IR2 and

I0(x; θ) =

∫
F (x′ β)φ(β; θ) dβ =

1

2π

∫
eh1(β̃;x;θ) dβ̃,

I1(x; θ) =
1

2π

∫
β̃0 e

h1(β̃;x;θ) dβ̃, I2(x; θ) =
1

2π

∫
β̃1 e

h1(β̃;x;θ) dβ̃,

I3(x; θ) =
1

2π

∫
β̃2

0 e
h1(β̃;x;θ) dβ̃, I4(x; θ) =

1

2π

∫
β̃2

1 e
h1(β̃;x;θ) dβ̃,

h1(β̃;x; θ) = b0 + v0β̃0 + b1x+ v1β̃1x−
1

2
β̃2

0 −
1

2
β̃2

1

− log
[
1 + exp

(
b0 + v0β̃0 + b1 x+ v1β̃1x

)]
,

β̃ = (β̃0, β̃1)′ with β̃0 = (β0 − b0)/v0 and β̃1 = (β1 − b1)/v1.
Thus, integrals Ij(x; θ), j = 0, 1, . . . , 4, must be evaluated to compute the
Fisher information matrix of the logistic regression model with Gaussian
random effects.

4 D-optimum designs

Among all optimality criteria for precise estimation of the whole vector of
parameters, the D-criterion is indeed the most popular. It is defined by the

following criterion function ΦD(ξ) =

{
− log |I(ξ; θ)| if |I(ξ; θ)| 6= 0
∞ otherwise

A design which minimizes ΦD(ξ) is a D-optimum design. The following
theorem states that the D-optimum design is invariant to a scale transfor-
mation of the design region.
Theorem Let ξ∗D be a D-optimum design to estimate θ on X and let q
be a positive constant, then a D-optimum design on the scaled design space
Z = {z = q x |x ∈ X }, is η∗D(z) = ξ∗D(x), x ∈ X and z = q x.
Table 1 shows locally D-optimal designs on X = [0, 1] for the logistic ran-
dom effect model and different nominal values of the parameters. Weights
are not shown because most of designs are equally-weighted four-point de-
signs. The six-point design has respective weights 0.246, 0.206, 0.151, 0.231,
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TABLE 1. Support points of D-optimal designs on X = [0, 1], for different nominal values

of the parameters. All the designs are equally-weighted, but the six-point one, whose weights

are 0.246, 0.206, 0.151, 0.231, 0.042 and 0.124.

v = (v0, v1)′

b = (b0, b1)′ (0.02,0.03)’ (0.2,0.3)’ (2,3)’

(0.1,0.2)’ {0,0.276,0.723,1 } {0,0.275,0.720,1} {0,0.192,0.579,1}

(1,2)’ {0,0.226,0.648,1} {0,0.227,0.647,1} {0,0.248,0.649,1}

(10,20)’ {0,0.1,0.84,0.95} {0,0.07,0.2,0.93,0.94,0.98} {0,0.03,0.12,0.29}

0.042 and 0.124, respectively. The case b0 = 10, b1 = 20 is very difficult to
solve from the computational point of view. After several trials (with dif-
ferent initial designs) D-optimal designs with the largest support point
different from 1 are found, which is an unusual result. In addition, the 6-
point design cannot be reduced, even when some support points are very
close to each other. For instance, the joining of points 0.93 and 0.94 would
produce a deep decreasing of the lower bound for the D-efficiency.

5 Conclusions

The Fisher information matrix of the random effect logistic regression
model is proved to be equivalent to the information matrix of the linearized
model. Besides, D-optimal designs are proved to be invariant with respect
to a scale transformation of the design region, thus when the experimental
domain changes according to a scale transformation, the optimal experi-
mental conditions change in the same way. Finally D-optimal designs are
computed for different values of the parameters.
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Abstract: We propose methodology for analyzing possibly nonstationary time
series by adaptively dividing the time series into an unknown but finite number
of segments and estimating the corresponding local spectra by smoothing splines.
The model is formulated in a Bayesian framework, and the estimation relies on
reversible jump Markov chain Monte Carlo (RJMCMC) methods. For a given
segmentation of the times series, the likelihood function is approximated via a
product of local Whittle likelihoods. Thus, no parametric assumption is made
about the process underlying the time series. The number and lengths of the
segments are assumed unknown and may change from one MCMC iteration to
another. The method is illustrated with simulated and real data.

Keywords: MCMC; Nonstationary Time Series; Whittle Likelihood.

1 Introduction

This paper proposes methodology for analyzing possibly nonstationary
time series by adaptively dividing the time series into an unknown but fi-
nite number of segments and estimating the corresponding local spectra by
smoothing splines. The model is formulated in a Bayesian framework, and
the estimation relies on reversible jump Markov chain Monte Carlo (RJM-
CMC) methods. For a given segmentation of the times series, the likelihood
function is approximated via a product of local Whittle likelihoods. Thus,
no parametric assumption is made about the process underlying the time
series. The number and lengths of the segments are assumed unknown and
may change from one MCMC iteration to another.
The analysis of nonstationary time series is important in many fields. For
example, in epilepsy research, understanding seizure initiation and its prop-
agation is a critical task (Qin and Wang (2008)) which relies on analyz-
ing EEG time series. Another example is weather research where global
warming is of major concern. One time series which is often analyzed in
this context is the Southern Oscillation Index which is an indicator of the
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El Niño Southern Oscillation (ENSO) phenomenon. A related question is
whether human-induced global warming has changed the structure of the
ENSO time series (Timmermann et al. (1999)). In Section 5 we present
some results for this time series.
Rosen, Wood and Stoffer (2009) estimate the log of the local spectrum
using a Bayesian mixture of splines. The basic idea of this approach is to
first partition the data into small sections. It is then assumed that the
log spectral density of the evolutionary process in any given partition is a
mixture of individual log spectra. A mixture of smoothing splines model
with time varying mixing weights is used to estimate the evolutionary log
spectrum. The mixture model is fit using MCMC techniques that yield
estimates of the log spectra of the individual subsections. As described
above, unlike Rosen et al. (2009), the current paper adaptively divides the
time series into segments of variable lengths, rendering the mixture model
unnecessary. In addition to more accurate estimation, this also leads to
computational saving.

2 Spectral Estimation for Stationary Time Series

We first explain our approach to estimating the spectral density of a sta-
tionary process. Suppose that a stationary time series, {Xt}, has a bounded
positive spectral density, f(ν), for −1/2 < ν ≤ 1/2. Given a realization,
x1, . . . , xn, the periodogram of the data at frequency ν (measured in cycles
per unit time) is

In(ν) =
1

n

∣∣∣∣∣
n∑
t=1

xt exp(−2πiνt)

∣∣∣∣∣
2

.

Let νk = k/n, for k = 0, . . . , n − 1, be the Fourier frequencies. Whittle
(1957) showed that, under appropriate conditions, for large n, the likelihood
of x = (x1, . . . , xn)′, given f = (f(ν0), . . . , f(νn−1))′, can be approximated
by

p(x
∣∣ f) = (2π)−n/2

n−1∏
k=0

exp

{
−1

2

[
log f(νk) + In(νk)/f(νk)

]}
. (1)

Note that in (1), there are only [n/2] + 1 distinct observations since the
spectral density and the periodogram are both even functions of ν. The
notation [n] means the largest integer less than or equal n. For ease of
notation, in what follows, we assume that n is even. Letting yn(νk) =
log In(νk) and g(νk) = log f(νk), we place a smoothing spline prior on
g(νk), (Wahba (1990)) and estimate it by MCMC methods.
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3 Spectral Estimation for Locally Stationary Time
Series

Consider a time series x = (x1, . . . , xn)′ with an unknown number of locally
stationary segments. Before specifying the model, we introduce some nota-
tion. Let m be the unknown number of segments and nj,m be the number
of observations in the jth segment of m locally stationary segments. We
assume that nj,m ≥ tmin, where tmin is taken to be large enough in order for
the local Whittle likelihood to provide a good approximation to the true
local likelihood. The location of the end of the jth segment is denoted by
ξj,m, j = 0, . . . ,m, where ξ0,m and ξm,m are t = 0 and t = n, respectively.
Given a partition ξm = (ξ0,m, . . . , ξm,m)′ of the time series x, the jth seg-
ment consists of the observations xj,m = {xt : ξj−1,m + 1 ≤ t ≤ ξj,m},
j = 1, . . . ,m, with underlying spectral densities fj,m and periodograms
Inj,m , evaluated at frequencies νkj = kj/nj,m, 0 ≤ kj ≤ nj,m − 1. For a
given partition ξm, the approximate likelihood of the time series is thus

L(f1,m, . . . , fm,m
∣∣ x, ξm) =∏m

j=1(2π)−nj,m/2
∏nj,m−1
kj=0 exp

{
− 1

2

[
log fj,m(νkj ) + Inj,m(νkj )/fj,m(νkj )

]}
.

Prior distributions are placed on all the parameters, including the number
of segments, m, and the partition, ξm. The estimation is performed via
reversible jump MCMC methods.

4 Simulations

To illustrate the methodology, we present results based on single realiza-
tions from a slowly-varying autoregressive process and a piecewise autore-
gressive process. The model is fitted to the data with a total of 10,000
iterations, 2000 of which are used as burn-in. The value of tmin is set to 40.
Data were generated from each of the models

xt = atxt−1 + εt where at = −0.5 + t/500 for t = 1, . . . , 500 (2)

xt = atxt−1 + εt where at =

{
−0.5 for t ≤ 250

0.5 for t > 250
(3)

and εt ∼ N(0, 1).
Figure 4 displays the log spectrum as a function of frequency and time,
corresponding to the realizations from models (2) and (3) (top and bottom,
respectively.) As Figure 4 shows, our methodology may handle situations
where a time series changes slowly, as well as cases where the change is
abrupt.
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FIGURE 1. Log spectrum vs. time and frequency. The upper plot corresponds
to the time series generated from (2); the lower plot correspond to the series
generated from (3).

5 Analysis of the Southern Oscillation Index

The Southern Oscillation Index (SOI) is calculated from the monthly or
seasonal fluctuations in the air pressure difference between Tahiti and Dar-
win. The SOI time series is presented in Figure 2. Sustained negative values
of the SOI often indicate El Niño episodes. These are characterized by sus-
tained warming of the central and eastern tropical Pacific Ocean, decrease
in the strength of the Pacific Trade winds and a reduction in rainfall over
eastern and northern Australia. Positive values of the SOI indicate La Niña
episodes. These tend to be accompanied by stronger Pacific Trade winds
and warmer sea temperatures to the north of Australia, cooling of the wa-
ters in the central and eastern tropical Pacific Ocean and an increased
probability that eastern and northern Australia will be wetter than nor-
mal. As mentioned in Section 1, it is of interest to find out whether the
structure of the SOI time series has changed as a result of human-induced
global warming. Our analysis of the SOI time series shows that there is a
probability of about 10% that a change has occurred in this time series.
Figure 3 displays the estimated posterior cumulative distribution function
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P̂r(ξ12 < t) as a function of time. It shows that in 10% of the time where
the SOI time series is partitioned into two segments, the transition between
these segments occurs slowly between 1906 and 1934. We have found no
evidence for a more recent change.
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Abstract: The distributed lag model (DLM), used prominently in air pollution
studies, finds application wherever the effect of a covariate is delayed and dis-
tributed through time. We explore the use of a modified formulation of a DLM
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on how changes in the relationship between environmental covariates and flow
regimes can be captured.
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1 Introduction

The relationship between river flow and precipitation and the models that
attempt to capture it have long been of interest to environmental scientists.
Such models find application in flood prediction, as part of larger river
catchment-scale models and in attempting to simulate and understand the
changing climatic scenarios that might be expected in the future. We wish
to investigate the relationship between precipitation and flow rates observed
on the River Dee. In particular, we would like to construct a model capable
of capturing the state and sensitivity of the catchment, enabling identifica-
tion of any changes in the strength of the relationship between flow rates
and rainfall for which evidence is already emerging (Baggaley et al., 2009).
We review some current methodology before proposing a model which we
fit to hourly river discharge (m3s−1) and hourly precipitation (mm) ob-
served on the River Dee between December 2006 and November 2007. The
River Dee system is located in the North East of Scotland, covering an area
of over 2000km2 and has an average annual discharge of 45m3s−1

2 Background ideas

A wealth of time series models exist for modelling the relationship between
two time dependent variables, most only allowing a limited amount of flex-
ibility in model structure. We propose models based on B-spline basis func-
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tions and difference penalties (Eilers and Marx, 1996) that allow particu-
larly flexible specification of time-lagged dependence. The models are mod-
ified versions of the distributed lag model (DLM) most commonly found
in the air pollution literature (Zanobetti et al., 2000; Welty et al., 2009;
Gasparrini et al., 2010). The former propose models in which the temporal
dependence between response and lagged covariate is assumed static, while
Gasparrini et al. (2010) extend the DLM allowing nonlinearity through
interaction with other covariates. A DLM is a natural choice for flow mod-
elling, as flow can be considered as directly responsive to rainfall at lag s,
and is sometimes expressed as the transfer function f(t) =

∫∞
0
r(t)h(t−i)dt

(Sherman, 1932) where h is some response function; the DLM framework
allows h to be estimated from within a wide class of functions. In the cur-
rent context we use a similar DLM specification to Gasparrini et al. (2010),
but use time as the only effect modifier of the DLM curve.

3 Model

3.1 Specification

We set up a model for river discharge, ft, in terms of preceding rainfall
rt−i where 1 ≤ i ≤ p. We specify that the contribution each rainfall lag
variable rt−i makes to ft is allowed to change smoothly through time,
in turn determined by a regression on a set of B-spline basis functions
B(t) = (B1(t), . . . , Bk(t))T . The model can be represented thus:

ft =

p∑
i=1

βi(t)rt−i + εt =

p∑
i=1

k∑
j=1

aijBj(t)rt−i + εt

and so f = Xa + ε

where a = vec(A), A is the matrix of aij ’s, εt is an iid error sequence and
the i-th row of X is given by B(p + i) ⊗ (rp+i−1, rp+i−2, . . . , ri) where ⊗
is the Kronecker product. We assume here that the smooth change in each
βi through time can be captured by the same basis set.

3.2 Penalties

We specify two penalties on a, each of which is a weighted sum of squared
differences of ‘neighbouring’ aijs. The first penalty, λ1D

T
1 D1a, penalises

the way each rainfall lag variable rt−i is allowed to influence ft as t changes.
If Pk is a quadratic difference matrix on k parameters (so that Pka =∑k−2
i=1 (ai − 2ai+1 + ai+2)2), then D1 = Pk⊗Ip.

The second penalty term, λ2D
T
2 D2a, is for controlling differences between

rt−i and rt−(i+1) for 1 ≤ i ≤ p−1 for any time t. This is a penalty on differ-
ences between neighbouring elements in the columns of A, or equivalently,
elements of a that are spaced k elements apart, so that D2 = Ik⊗Pp.
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we can then combine the two penalties so that the estimating equation is

a =
(
XTX + λ1D

T
1 D1 + λ2D

T
2 D2

)−1
XT f .

3.3 Results and comments

The optimal smoothing parameters λ1 and λ2 were chosen by minimising
GCV. The mid-monthly fitted βis for a model with k = 100, p = 70 are
given in Figure 1 from which it is clear that the shape and strength of the
temporal dependency between rainfall and flow varies greatly throughout
the year.
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FIGURE 1. Estimated distributed lag curves at monthly intervals with 95% con-
fidence regions
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We note much higher parameter estimates in winter and spring months than
during summer, probably an expression of nonlinearity between rainfall and
flow levels occurring seasonally. Figure 2 shows the fitted flows with those
observed for a spring period and and a late autumn period, from which
it can be seen that the model performs best during periods of high and
continuous rainfall.
It may be desirable to interpret the curves of Figure 1 as discrete estimates
of the function h described in section 2, which combined with rainfall lag
variables represent a discrete transfer function of rainfall through time.
Some of the estimated curves suggest unrealistic relationships if interpreted
as the function h, for example during April where rainfall even 70 hours ago
appears to heavily influence flows occurring in the present. It is likely that
these estimates represent the influence of unobserved, spatially and tem-
porally correlated rainfall, presenting itself in the coefficient estimates as
anomalously high values. Adjustments are suggested for improving model
performance during periods of decreased rainfall and for periods when snow
and ice accumulation and ablation have an impact.
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3.4 Future work

Our analysis was limited by a lack of hourly rainfall data and was unable
to discover how much variation in dependence exists between years. By
applying similar models to daily data, we hope to discover whether longer
term changes can be identified in the flow response to rainfall.

Acknowledgments: Thanks to the Scottish Environmental Protection
Agency (SEPA) for providing the river discharge data, the British Atmo-
spheric Data Centre for providing precipitation and temperature data and
to Nikki Baggaley for help and advice with the River Dee data

References

Baggaley, N.J., Langan, S.J., Futter, M.N., Potts, J.M., and Dunn, S.M. (2009).
Long-term trends in hydro-climatology of a major Scottish mountain
river. Science of the Total Environment. 407(16), 4633–4641.

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines
and penalties. Statistical Science. 11(2), 89-102 .

Gasparrini, A., Armstrong, B. and Kenward, M.G. (2010). Distributed lag
non-linear models. Statistics in medicine. 29, 2224–2234

Sherman, L.K. (1932). Streamflow from rainfall by the unit-graph method
Engineering News Record. 108(14), 501–505

Welty, L.J., Peng, R.D., Zeger, SL., Dominici, F. (2009). Bayesian distributed
lag models: estimating effects of particulate matter air pollution on
daily mortality. Biometrics. 65(1), 282–291.

Zanobetti, A. and Wand, M.P., and Schwartz, J. and Ryan, L.M. (2000). Gen-
eralized additive distributed lag models: quantifying mortality dis-
placement. Biostatistics. 1(3), 279.



Exact and approximate inferences for
nonlinear mixed-effects heavy-tailed models

Cibele M. Russo1, Victor Hugo Lachos2, Reiko Aoki1 ,
Gilberto A. Paula3
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Abstract: Nonlinear mixed-effects models provide an useful alternative to model
nonlinear correlated data. The most usual assumption is that the random effects
and errors jointly follow a normal distribution, which may not be adequate in
cases of outliers or heavy-tailed data. In this work, we suppose a multivariate
scale mixture of normal distributions for the random effects and errors. Aiming
to obtain an efficient estimation procedure, we compare two estimation methods,
an exact method via Monte Carlo EM and an approximate method, which ap-
proaches the problem to linear case. A real data set illustrates the modelling and
a simulation study is performed to compare the methodologies.
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1 Introduction

The interest for nonlinear mixed-effects models (NLMEMs) comes from dif-
ferent application areas as pharmacokinetics longitudinal data or growth
curves, for instance. In the literature, the most common assumption for the
distribution of the errors and the random effects in NLMEMs is the normal-
ity (see, for instance, Wu, 2004), which may not be the most appropriate
choice in cases of heavy-tailed data or in the presence of outlying observa-
tions. Nonlinear elliptical mixed-effects models were discussed by Russo et
al. (2009), where the random effects were included linearly to the model.
Recent discussions on heavy-tailed nonlinear mixed-effects models can be
found in Meza et al. (2010) and Lachos et al. (2011). We assume that the
joint distribution of the random effects and errors belongs to the class of
scale mixture of normal (SMN) distributions, which covers important fam-
ilies as the multivariate Student-t (MSt), the multivariate slash (MSl), the
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multivariate contaminated normal (MCN), among others. Considering this
model we present two methods of estimation, a Monte Carlo EM method
which is referred to as an “exact” method, since it is based on the exact
likelihood, and an approximate method based on iterative approximations
to a linear mixed-effects model.

2 The model

Suppose that y = (y>1 , . . . ,y
>
n )> is a vector of observed continuous mul-

tivariate responses in which yi denotes an (ni × 1) vector containing the
observations for the experimental unit i, i = 1, . . . , n, such that

yi = g(φi,Xi) + εi, i = 1, . . . , n,
φi = Aiβ + Bibi,

(1)

in which Xi = (Xi1, . . . ,Xini)
> is a matrix of explanatory variables for the

ith unit, bi is a (q × 1) vector of random effects, εi is a (ni × 1) vector of
random errors for i = 1, . . . , n, β is a (p × 1) location vector and Ai and
Bi, with dimensions (p× p) and (p× q) respectively, are full rank matrices
of known constants. In this work, we will assume that(

εi
bi

)
ind.∼ SMNni+q

((
0
0

)
,

(
Σi 0
0 D

)
; H(ui)

)
, (2)

where D and Σi are positive-definite dispersion matrices. For simplicity,
we assume that D = D(τ ) is a diagonal matrix and denote its elements by
τ = (τ1, . . . , τq)

>. Matrix Σi with dimension (ni×ni) is typically dependent
upon i through its dimension, and is initially assumed to be of the form
Σi = σ2Ini for i = 1, . . . , n and σ > 0 a scalar. Since Ai, Bi and Xi

are known matrices, we will simplify the notation by writing g(β,bi) to
represent g(φi,Xi) = g(Aiβ+ Bibi,Xi). The quantity H = H(u,ν) is the
cdf generator that determines the specific SMN model that was assumed.
The obtention of maximum likelihood estimates for the parameters are
drawn by using two methods, a Monte Carlo EM (MCEM) algorithm and
an approximate method. MCEM method is called exact, although it entails
a simulation step, because the model is maintained as originally proposed,
whereas the approximate method brings the problem to a linear solution. A
similar approach was discussed by Wu (2004). To select the model, the ICQ
criterion is used (see Ibrahim et al., 2008). The same criterion may be used
to choose the parameters from the scale mixture of normal distributions,
which are assumed to be fixed.
For the MCEM algorithm, bi and the scale factor Ui is considered as miss-
ing data, so that the “complete data” is given by {(yi,bi, ui), i = 1, . . . , n}.
For individual i, let {(b(1)

i , u
(1)
i ), . . . , (b

(mi)
i , u

(mi)
i )} denote a random sam-

ple of size mi generated from [ui,bi|yi,θ(t)] then the E step at the (t+1)th
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EM iteration can be written as

Q(θ|θ(t)) ∝
n∑
i=1

mi∑
j=1

1

mi

[
−ni

2
log σ2 − κ−1(u

(j)
i )

2σ2
||yi − g(β,b

(j)
i )||2

]

+

n∑
i=1

mi∑
j=1

1

mi

[
−1

2
log |D| − κ−1(u

(j)
i )

2
b

(j)>
i D−1b

(j)
i

]
,

and the M step can be obtained straightforwardly.
For the approximate method, first-order Taylor expansion of gij around the

current parameter estimate β̂ and the random effect estimate b̂i, and the
problem is reduced to the iterative solution of the LME response model

ỹi = Wiβ + Tibi + εi (3)

where ỹi = yi − gi(β̂, b̂i) + Wiβ̂ + Tib̂i and the elements of Wi and Ti

are related to the derivatives of the entries of gi with respect to β and bi,
respectively.

3 Numerical illustration

Considering the growth soybean data set analysed by Pinheiro & Bates
(2000, chap. 6), a possible nonlinear mixed effects model could be written
in the form

yij =
β1 + bi

1 + exp{−[xij − β2]/β3}
+ εij , j = 1, . . . , ni, i = 1 . . . , n, (4)

where ni assumes the values 8, 9 or 10 depending on the value of i ∈
{1, . . . , n = 48}. The measurements of leaf weights were taken within ap-
proximately weekly intervals after planting, over three years, 1988, 1989
and 1990, and two genotypes, P (plant introduction) and F (forrest). The
observed value yij represents the jth mean weight (in g) of leafs from a
soybean plant in the ith plot, after t days of being planted, where for each
of the 6 year-genotype combination there were 8 plots. In this case, β1,
β2 and β3 represent the asymptotic leaf weight, the time at which the leaf
reaches half of its asymptotic weight and the time elapsed between the leaf
reaching half and 1/(1 + e−1) of its asymptotic weight, respectively. The
maximum likelihood estimates of the parameters obtained by the exact
and the approximate method are given in Tables 1 and 2. We can observe
that the fixed effects parameters estimates are close, but the scale elements
estimates are distant when the two different methodologies are applied.
Simulation studies showed that the approximate method is more efficient
and quite reasonable in this case.
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Table 1: Maximum likelihood estimates of the parameters with standard errors
(S. E.) obtained by the MCEM method.

normal Student-t (3) slash (3)

Estimate (S. E.) Estimate (S. E.) Estimate (S. E.)

β1 19.196 (0.48) 19.657 (0.41) 19.134 (0.43)
β2 55.541 (0.47) 56.487 (0.48) 55.611 (0.43)
β3 8.902 (0.29) 9.078 (0.25) 8.913 (0.26)
σ2 1.744 (0.13) 0.944 (0.13) 0.93 (0.09)
τ1 15.089 (3.33) 13.266 (3.60) 10.726 (2.44)

ICQ 1653.595 1397.845 1378.642

Table 2: Maximum likelihood estimates of the parameters with standard errors
(S. E.) obtained by the approximate method.

normal Student-t (3) slash (3)

Estimate (S. E.) Estimate (S. E.) Estimate (S. E.)

β1 18.939 (0.26) 19.439 (0.21) 18.828 (0.23)
β2 55.277 (0.39) 56.306 (0.31) 55.393 (0.35)
β3 8.7651 (0.26) 8.9903 (0.20) 8.8053 (0.23)
σ2 1.7478 (0.12) 0.91984 (0.06) 0.93157 (0.07)
τ1 14.7437 (3.01) 12.9969 (2.65) 10.5225 (2.15)

ICQ 1656.199 1384.248 1379.955

Acknowledgments: This research is supported by FAPESP and CNPq,
Brazil.
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1 Introduction

Suppose we have pmetrical covariates x1, . . . , xp and use the additive model
y = β0 +

∑p
j=1mj(xj) + ε, where ε ∼ N(0, σ2). When xj is included non-

linearly in the model, we assume

mj(xj) = xjβj +Zj(xj)
Tuj

where Zj(xj) is the K × 1 spline basis vector at position xj and uj ∼
N(0, σ2ρjI) is the corresponding coefficients vector. In order to combine
n observations, we stack these to the n× 1 vector xj and the n×K basis
matrix Zj , both modified to be zero-centred and orthogonal to each other.
We then translate the variance parameter ρj into the corresponding degree
of freedom (Aerts, Claeskens and Wand, 2002, section 2.2)

dj(ρj) = tr{(ZTj Zj + ρ−1
j I)−1ZTj Zj}+ 1 ∈ (1,K + 1). (1)

A larger ρj (or a larger dj) leads to a weaker penalty on the non-linear
component of the function mj . If xj is excluded from or linearly included
in the model we have mj(xj) ≡ 0 or mj(xj) = xjβj and set dj = 0 or
dj = 1, respectively. Thus, the function mj is exactly defined by dj , which
we may restrict to a finite set of values, say dj ∈ {0, 1} ∪ {2, 3, . . . ,K}.
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As default prior for the parameters β0, β = (βj : dj ≥ 1) and σ2 in a given
model specified via d = (d1, . . . , dp),

y |β0,β,u, σ
2 ∼ N(1β0 +Xβ +Zu, σ2I) (2)

with X = (xj : dj ≥ 1), Z = (Zj : dj > 1) and u = (uTj : dj > 1)T ,
we propose the hyper-g prior (Liang et al., 2008) described in Section 2.
For the models we propose a multiplicity-correction prior in Section 3.
The methodology is applied to diabetes data in Section 4 and extended to
generalised additive models in Section 5.

2 Hyper-g Priors for Additive Models

Integrating out the spline coefficients vector u ∼ N(0, σ2D), where D =
diag{ρjI : dj > 1}, from the conditional model (2) yields the marginal
model

y |β0,β, σ
2 ∼ N

(
1β0 +Xβ, σ2V

)
(3)

with V = I + ZDZT having Cholesky decomposition V = RTR. The
transformed response vector ỹ = R−Ty follows a linear model with sim-
ilarly transformed design matrix X̃ and diagonal covariance matrix σ2I.
It turns out that we can use the hyper-g prior (Liang et al., 2008) for this
transformed model, i. e. a locally uniform prior p(β0) ∝ 1 on the intercept,
Jeffreys’ prior p(σ2) ∝ (σ2)−1 on the variance and the g-prior (Zellner,
1986)

β | g, σ2 ∼ N
(
0, gσ2(X̃T X̃)−1

)
(4)

on the coefficients are combined with a uniform prior on the shrinkage
coefficient g/(1 + g). Note that σ−2X̃T X̃ = σ−2XTV −1X is the Fisher
information matrix of β in the marginal model (3). The hyper-g prior leads
to a closed form of the marginal likelihood, which we can compute on the
original response scale via the change of variables formula:

p(y |d) ∝
∥∥ỹ − ˜̄y

∥∥−(n−1)
(ld + 2)−1

2F1

(
n− 1

2
; 1;

ld + 4

2
; R̃2

)
|R|−1,

where ld is the dimension of β, 2F1 is the Gaussian hypergeometric function
and R̃2 is the classical coefficient of determination in model (3).

3 Model Prior

We propose a prior p(d) on the model space which explicitly corrects for
the multiplicity of testing inherent in the simultaneous analysis of many
covariates (see Scott and Berger, 2010): A priori, the number of covari-
ates included in the model (ld) is uniformly distributed on {0, 1, . . . , p}.
Then the number of non-linearly included covariates (sd) is uniformly dis-
tributed on {0, 1, . . . , ld}. The respective choice of the ld and sd covariates
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TABLE 1. Marginal posterior probabilities (x1: age, x2: systolic blood pressure,
x3: cholesterol/HLD ratio, x4: BMI, x5: waist/hip ratio, x6: gender).

x1 x2 x3 x4 x5 x6

not included (dj = 0) 0.00 0.65 0.00 0.14 0.50 0.65
linear (dj = 1) 0.71 0.33 0.93 0.81 0.48 0.35
non-linear (dj > 1) 0.29 0.03 0.07 0.05 0.02 —

is uniformly distributed on all possible configurations. Finally, the degrees
of freedom of the non-linearly modelled covariates are independent and
uniformly distributed on {2, 3, . . . ,K}. Altogether, this gives

1/p(d) =

(
p

ld

)
(p+ 1)

(
ld
sd

)
(ld + 1)(K − 1)sd

and leads to marginal prior probabilities Pr(dj = 0) = 1/2, Pr(dj = 1) =
Pr(dj > 1) = 1/4.

4 Application

We illustrate our modelling approach with the diabetes data from Harrell
(2001). We study the association of (the negative reciprocal of) glycosolated
haemoglobin of n = 377 study participants with the continuous covariates
age (in years), systolic blood pressure (in mmHg), cholesterol/HDL ratio,
body mass index (BMI, in kg/m2) and waist/hip ratio as well as the bi-
nary covariate gender. As the computational complexity is quadratic in
the spline basis dimension K, we want to use splines with few quantile-
based knots. Therefore, we choose cubic O’Sullivan splines (Wand and
Ormerod, 2008). Here, we get basis matrices Zj with K = 9 columns
from 7 knots. The exhaustive evaluation of the posterior model probabili-
ties p(d |y) ∝ p(y |d)p(d) of all (K + 1)5 · 2 = 200 000 models takes only
585 seconds due to an efficient C++ implementation which is available in an
R-package from the first author. In Table 1 the marginal posterior proba-
bilities for linear and non-linear inclusion of the six covariates are shown.
There is strong evidence for linear inclusion of cholesterol/HDL ratio and
BMI, while the posterior probability for inclusion of systolic blood pressure
or gender is only 35%. There is overwhelming evidence for (non-linear) in-
clusion of age, and the posterior odds for (linear) inclusion of waist/hip
ratio are around 1. The maximum a posteriori model includes age, choles-
terol/HDL ratio and BMI all linearly. Note that these are the covariates
which have inclusion probabilities larger than 50%, thus defining the set of
median probability models (Barbieri and Berger, 2004) d with d1, d3, d4 ≥ 1
and d2 = d5 = d6 = 0. Figure 1 shows the estimated covariate effects from
the resulting model average. While the age effect is slightly non-linear (with
38% probability in the median probability models), both other covariates
have essentially linear effect estimates.
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FIGURE 1. Estimated covariate effects in the median probability model average,
based on 10 000 samples: Posterior means (solid lines), pointwise (dashed lines)
and simultaneous (dotted lines) 95%-credible intervals as well as positions of data
points (ticks above x-axes) are shown.

5 Extension to Generalised Additive Models

Now we assume more generally that the covariate effects mj(xj) enter addi-
tively into the linear predictor η = β0+

∑p
j=1mj(xj) of an exponential fam-

ily distribution with canonical parameter θ, mean E(y) = h(η) = db(θ)/dθ
and variance Var(y) = φ/w · v(µ) = φ/w · d2b(θ)/dθ2 (see McCullagh
and Nelder, 1989). We restrict our attention to non-normal distributions
with fixed dispersion φ (as φ = 1 for the Bernoulli and Poisson distribu-
tion) and known weight w. For n observations, the linear predictor vector
η = (η1, . . . , ηn)T is η = 1β0 + Xβ + Zu, where u ∼ N(0,D), and the
likelihood is

p(y |β0,β,u) ∝ exp

{
n∑
i=1

yiθi − b(θi)
φ/wi

}
. (5)

A reasonable generalisation of (1) is (see Ruppert, Wand and Carroll, 2009,
section 11.4)

dj(ρj) = tr{(ZTj ŴZj + ρ−1
j I)−1ZTj ŴZj}+ 1, (6)

which uses a fixed weight matrix Ŵ = W (1β̂0) for all models, where
W (η) = diag{(dh(ηi)/dη)2v(h(ηi))

−1φ−1wi}ni=1 is the usual generalised

linear model (GLM) weight matrix and β̂0 is the intercept estimate from
the null model. Therefore, we now arrange 1, xj and the columns of Zj to

be orthogonal with respect to the inner product in terms of Ŵ , so that (6)
correctly captures the degrees of freedom associated with the non-linear
part of mj .
In order to derive a generalised g-prior for β, we will use the iterative
weighted least squares (IWLS) approximation to (5) to come back to a
normal model and then derive the resulting g-prior (4). So let

z0 = η0 + diag{dh(η0)/dη}−1(y − h(η0))
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be the adjusted response vector resulting from a first-order approximation
to h−1(y) around h(η0), such that

z0 |β0,β,u ∼ N
(
1β0 +Xβ +Zu, W (η0)−1

)
is the working normal model. This can be rewritten to

z̃0 |β0,β,u ∼ N(1̃β0 + X̃β + Z̃u, I) (7)

by setting z̃0 = W (η0)1/2z0 etc. Since (7) is analogous to (2), our proposal
for a generalised g-prior is

β | g ∼ N(0, gJ−1), (8)

where J is the Fisher information for β in (7) with η0 = 0:

J = X̃T (I + Z̃DZ̃T )−1X̃

= XTW
1/2
0 (I +W

1/2
0 ZDZTW

1/2
0 )−1W

1/2
0 X,

abbreviating W0 = W (0). Note that this prior directly generalises the
prior proposed by Sabanés Bové and Held (2011) for GLMs, to which it
reduces when there are no spline effects in the model.
The generalised hyper-g prior then consists of the improper prior p(β0) ∝ 1
on the intercept β0, the g-prior (8) on the linear effects vector β, the
penalty prior u ∼ N(0,D) on the spline coefficients vector u and some
proper hyper-prior p(g) on the hyper-parameter g in the g-prior. For the
implementation of posterior inference we can easily extend the approach
of Sabanés Bové and Held (2011, section 3). Let Xa = (1,X,Z) and
βa = (β0,β

T ,uT )T , such that η = Xaβa. The prior for βa conditional
on g has Gaussian form with mean zero and singular precision Ra =
diag{0, g−1J(0),D−1}. Thus, the Laplace approximation of p(y | g,d), which
is based on a Gaussian approximation to the conditional posterior p(βa |y, g),
can be obtained by the Bayesian IWLS algorithm (West, 1985). Afterwards,
the marginal likelihood

p(y |d) =

∫ ∞
0

p(y | g,d)p(g) dg,

can be approximated by numerical integration of the Laplace approxima-
tion p̃(y | g,d). Note that this strategy of integrated Laplace approxima-
tions was proposed more generally by Rue, Martino and Chopin (2009).
Finally, for sampling from the posterior of βa and g in a specific model d
we can use a tuning-free Metropolis-Hastings algorithm.
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Abstract: In field trials the development of plants is regularly scored on a visual
scale. Plots of the data show strongly curved relationships with time. We inves-
tigate optimal scaling of the time axis in order to get linear curves and apply it
to decay data of potato plants.
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1 Introduction

In plant research field experiments are a common instrument to study the
behavior of a plant population under different environmental conditions.
However, there are many aspects that contribute to the uncertainty of the
data. On the one hand some phenotypic traits for plant development are
only registered on an ordinal scale by qualitatively judging the level of
development. It is not clear how this translates into a numeric scale used
in data analysis. The distances between two subsequent levels of the ob-
servation are often not known. On the other hand another data problem
might result from the different environmental conditions during a field ex-
periment. Weather cannot be kept constant. Temperature and exposure to
daylight are the main factors driving plant development. For better com-
parison between field experiments in different environments it is necessary
to have an uniform and adapted time scale that can capture these differ-
ences. In this analysis we will focus on transforming the time axis.

2 Data and objective

During a field experiment in Finland in 2004, haulm senescence of 200
potato varieties was recorded at 11 days (Zaban et al., 2006) on a discrete
scale from “green plant” (1), “upper leaves with first signs of yellowing” (2)
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etc. to “dead plant” (7). Figure (1.2) shows examples of three varieties. The
horizontal axis is not calendar time, but it is beta-thermal time (PBTT)
(Yin et al., 1995). This is a scale, developed by plant physiologists, in which
the history of daylength and temperature is integrated over the growing
season.
To summarize the senescence data for each variety, we would like to fit a
simple curve to them, so that only a few clearly interpretable curve char-
acteristics can be carried on to a genetic analysis. The simplest curve is
a straight line. We assume that PBTT is a first step in the direction of a
linear relationship between φ, i.e. transformed PBTT (indicated by τ), and
y, the observed scores. The same transformation of PBTT is to be used for
all varieties of the population.
We do not consider transformation of the response scale — nor of both
scales simultaneously — but we will return to this issue in the Discussion.

3 Theory

Let there be m time points and n varieties. The senescence scores are
collected in a matrix Y = [yij ], i = 1, . . . ,m, j = 1, . . . , n. For simplicity we
assume Y to be complete. If that is not the case, an appropriate indicator
vector can be introduced easily.
Our goal is to find a vector φ with m elements, such that φ is the optimal
transformed PBTT τ . Optimal means that we get the best possible linear
correlation between φ and each column of Y . This leads to the following
objective function to be minimized:

S =
∑
j

∑
i

(yij − αj − βjφi)2

Given φ, we are looking for the least squares regression line for each variety.
This is an ill-posed problem, because any arbitrary shifting and scaling of
φ can be compensated by inverse scaling of βj and shifting of αj . In order
to find the unique solution we want φ to be standardized, i.e.

∑
i φi = 0

and
∑
i φ

2
i = m. This is an arbitrary constraint, and it is only used for

fitting the model. Afterwards a linear transformation to a more meaningful
scale can be applied (see Figure 1 for an example, where we have made
minimum and maximum of φ equal to those of τ).
An intuitive algorithm repeats the following steps which start with an ap-
proximate solution φ̃:

1. Estimate (new) αj and βj by linear regression of column j of Y on φ̃
for each variety j.

2. Improve φ̃ by linear regression of yij −αj on βj for each time point i.

In our experience this works well and convergence is obtained in few it-
erations. As starting values for φ̃ we take the integers from 1 to m and
standardize them.
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The actual PBTT times, τ , do not occur in the estimation only their index
i does. This is a consequence of the fact that all varieties have been scored
on the same days. If this would not be the case, a second matrix T = [τij ]
would give the actual observation times. Instead of a vector φ we would
have to estimate a continuous function f(τ) that gives the transformation
at every point in time.
A possible approach is to useB-splines for this purpose: f(τ) =

∑
k Bk(τ)γk.

The second step of the algorithm above would then involve fitting the B-
splines, scaled by bj , to yij − αj .

4 Application

Optimal time scaling to linearity seems to be suitable for the present data.
The results for the transformation of the scale as well as the linear fit
before and after transformation are presented in Figure 1. The model is
parsimonious and the estimated coefficients can be directly related to the
development process. The slope bj describes the speed of senescence for
variety j. An important other characteristic deduced from the results is
the halfway point of the senescence process, i.e. the transformed time at
which the score halfway between 1 and 7 is reached.

5 Discussion and outlook

Optimal scaling is a standard tool in psychometric research and practice.
To our knowledge it has not been used in plant research yet. As shown we
got interesting — but also somewhat worrying — results: linearity is much
better on the real time scale (just counting the days after planting) than
on PBTT. The transformation we found was almost the inverse of the one
from real time to PBTT.
Similar ideas can be used to transform only the senescence scores in re-
lation to time. Technically it also possible to transform both time and
scores simultaneously. However, interpretation of the results is unclear. Any
monotone transformation of time combines with the corresponding inverse
transform of the scores. There is a fundamental identification problem, for
which we have no solution yet.
We did not show it in the examples, but a number of varieties show early
saturation at the highest possible score. This leads to an S-shaped curve.
No time transformation can accommodate that. Our next step will be to
introduce a standard S-shaped curve –like the logistic function– with aj +
bjφi as its argument. This is similar to the link function in generalized
linear models.
A still more ambitious effort will be to investigate time transformations
including cumulative solar radiation and temperature as explanatory vari-
ables.
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FIGURE 1. (1.1) Original scale versus new scale retransformed to original range.
(1.2a-c) Original data (grey) and data on transformed time (black). Linear fit
before (grey) and after transformation (black) for three selected potato varieties.
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Abstract: Under-reporting of Poisson counts has been widely studied, given
concerns of respondents either forgetting or purposefully neglecting to provide
accurate count information. One can likewise argue, however, that a respondent
may overestimate a count for some reason (e.g. counting over a larger reference
period than of interest). Thus, we need a means by which to determine a “true
count” based on recorded data that presumably contains dispersion caused by
the count bias associated with misreporting (either via under- or over-reporting)
information. We consider a model based on the Conway-Maxwell-Poisson distri-
bution that incorporates such general dispersion to serve as a flexible alternative
for modeling report bias and determining true count estimation.
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1 Introduction

“Underreported count data are generated when only a fraction of the ac-
tual events of interest (e.g. purchases) are reported” (Fader and Hardie,
2000). The problem of underreporting is pervasive in any arena involving
data collection. Many surveying agencies contend with survey respondents
who forget or intentionally neglect to report a true event count. This has a
detrimental effect in that associated inferences are based on inaccurate in-
formation. Because this is such a significant problem in the statistics arena,
there exists several proposed methodological approaches to adjust under-
reported counts to obtain true estimated count information. The works of
Winkelmann and Zimmermann (1995) and Fader and Hardie (2000), for ex-
ample, both model under-reporting via a Poisson model for the true counts,
and a Binomial distribution to represent the conditional distribution of
recorded counts given knowledge of the true count. This formulation seems
quite natural for describing under-reporting in that the success probability
associated with the Binomial distribution denotes an individual’s reporting
rate, where one views the associated reporting as a sum of Bernoulli trials
over the true response count. While the details of their works differ beyond
this point, both develop a marginal distribution for the reported counts
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that is overdispersed. Still focusing on under-reported counts, Neubauer
and Djuras (2009) instead model the reported counts directly using a gen-
eralized Poisson distribution, recognizing that the mean-variance relation-
ship can result in over- or under-dispersion depending on whether or not
underlying parameters are presumed random.
One can likewise argue, however, that a respondent may overestimate a
count for some reason (e.g. counting over a larger reference period than of
interest). This introduces the broader question of misreporting, i.e. under-
or over-reporting of data. Li et al. (2003) address this by assuming the true
count to have a negative binomial distribution (and thus be overdispersed),
while the observed count is (conditionally) Poisson distributed (conditional
on the true count). Pararai et al. (2010) meanwhile use an approach sim-
ilar to Li et al. (2003) where the reported counts are still assumed to be
(conditionally) Poisson distributed, however the authors instead model the
true counts via the generalized Poisson distribution.
We consider the broader problem of misreporting in a manner that borrows
strength from both ideologies. Maintaining the belief that the true count
information can be modeled as a Poisson distribution, we assume that the
reported count information demonstrates its reporting bias (be it under- or
over-counting) through its associated dispersion in the distribution. Thus,
we need a flexible model distribution that can describe the misreporting in
order to determine a more accurate assessment or “true count” based on the
recorded information. Below, we introduce the Conway-Maxwell-Poisson
(COM-Poisson) distribution and the sum of COM-Poisson (sCOM-Poisson)
distributions as motivators for establishing this model. The broader consid-
eration of misreporting, in turn, will produce a marginal distribution that
exhibits over- or under-dispersion.

2 The COM-Poisson distribution

The Conway-Maxwell-Poisson (COM-Poisson) distribution is a general count
distribution that relaxes the equidispersion assumption of the Poisson dis-
tribution. The COM-Poisson probability mass function (pmf) is

P (Yi = yi) =
λyii

(yi!)νZ(λi, ν)
, ν ≥ 0, yi = 0, 1, 2, . . . , i = 1, . . . , n (1)

where λi = E(Y νi ), and Z(λi, ν) =
∑∞
s=0

λsi
(s!)ν is the normalizing constant.

This distribution includes the Poisson (ν = 1), geometric (ν = 0, λi <

1), and Bernoulli
(
ν →∞ with probability λi

1+λi

)
distributions as special

cases. Statistical properties are discussed in Shmueli et al. (2005).
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2.1 Sum of COM-Poisson random variables

The sum distribution of Conway-Maxwell-Poissons (sCOM-Poisson(λ, ν, n))
is likewise a general count distribution whose pmf is

P (Y = y) =
λy

(y!)νZn(λ, ν)

y∑
a1,...,an=0

a1+...+an=y

(
y

a1, · · · , an−1, an

)ν
, y = 0, 1, 2, . . . ,

for Y =
∑n
i=1 Yi, where Yi ∼ COM-Poisson(λ, ν) are independent and iden-

tically distributed, Zn(λ, ν) is the nth power of Z(λ, ν), and
(

y
a1,a2,··· ,an

)
is

a multinomial coefficient. The sCOM-Poisson distribution encompasses the
Poisson(nλ) distribution (for ν = 1), negative binomial(n, 1− λ) distribu-

tion (for ν = 0 and λ < 1), and Binomial
(
n, λ

λ+1

)
distribution (as ν →∞)

as special cases. Further, for n = 1, the sCOM-Poisson(λ, ν, n = 1) is sim-
ply the COM-Poisson(λ, ν) distribution. This distribution thus allows us
to generalize the ideas of Winkelmann and Zimmermann (1995) and Fader
and Hardie (2000), who use a Binomial distribution to model the reported
counts in the case of under-reporting, as well as the analogous notion that a
negative binomial distribution can model reported counts if over-reporting
is assumed.

3 The model and its properties

Let Ni = ni and Yi = yi equal the true and reported counts respectively
for individual i, and assume that Ni conditional on covariates xi is Poisson
distributed with mean E(Ni | xi) = κi = exp(x′iβ) and

• Yi | Ni > 0 ∼ sCOM-Poisson(λi = exp(x′iγ), ν, ni), and

• Yi | Ni = 0 ∼ COM-Poisson(µi = exp(x′iδ), ν0).

Accordingly, the marginal distribution for the recorded count is

P (Yi = yi) =
λyii e

−κi

(yi!)ν

∞∑
ni=1


κnii

ni!Zni(λi, ν)

yi∑
a1,...,ani

=0

a1+...+ani=yi

(
yi

a1, . . . , ani

)ν
+

µyii e
−κi

(yi!)ν0Z(µi, ν0)
, (2)

where κi = exp(x′iβ), λi = exp(x′iγ), and µi = exp(x′iδ); we denote Equa-
tion (2) as f(yi;β, γ, δ, ν, ν0). This distribution has an associated mean,

E(Yi) = µie
−κi

(
∂ logZ(µi, ν0)

∂ logµi

)
+ κi

(
∂ logZ(λi, ν)

∂ log λi

)
, (3)
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and variance,

V (Yi) = µie
−κi

(
∂2 logZ(µi, ν0)

∂µi∂ logµi

)
+ κi

(
∂2 logZ(λi, ν)

∂(log λi)2

)
+e−κi(1− µ2

i e
−κi)

(
∂ logZ(µi, ν0)

∂ logµi

)2

(4)

+κi

(
∂ logZ(λi, ν)

∂ log λi

)[(
∂ logZ(λi, ν)

∂ log λi

)
− 2µie

−κi
(
∂ logZ(µi, ν0)

∂ logµi

)]
.

3.1 Parameter estimation

With the model established, we will estimate the parameters, β, γ, δ, ν, ν0,
via maximum likelihood estimation. Considering the log-likelihood equa-
tion, logL(β, γ, δ, ν, ν0; y) =

∑n
i=1 log f(yi;β, γ, δ, ν, ν0), where f(yi;β, γ, δ, ν, ν0)

is provided in Equation (2), we use a bounded nonlinear optimization tool

to determine the maximum likelihood estimates, β̂, γ̂, δ̂, ν̂, ν̂0.

4 Motivating example

The Bureau of Labor Statistics (BLS) collects data from the Survey of
Occupational Injuries and Illnesses (SOII), which is a federal and state
program where employers annually report the number of workplace in-
juries and illnesses in a calendar year. The information (including average
annual employment size; total recordable cases; and total cases with days
away from work, job transfer, or restriction) is collected from employers’
respective Occupational Safety and Health Administration (OSHA) logs
and transferred to their SOII survey, along with other relevant survey in-
formation requested by SOII. As a result, SOII provides the most complete
information regarding injuries and illness throughout the country, as well
as at the state level.
While SOII represents a comprehensive compilation of injury and illness
data across different industries, the BLS is concerned that the SOII under-
counts the number of workplace illnesses and injuries. While the amount
of believed discrepancy varies, Ruser (2008) notes that the causes of the
underreporting in the SOII dataset include the failure to count illnesses
that have a latency period, injuries and illnesses incurred by out-of-scope
workers, injuries and illnesses that are included in other data systems (e.g.
workers’ compensation), and injuries and/or illnesses that are not included
anywhere. Some of these factors will always exist, given the construct of
the SOII survey; nonetheless, the BLS considers various methods to resolve
these concerns in order to provide accurate information.
We will work to apply the model described in Section 3 to capture and de-
scribe the level of misreporting that exists in the SOII dataset, and any re-
lationship associated with the misreporting. Through the model estimates,
we will then be able to describe the amount of count data misreporting.
Further (time permitting), we will consider and compare this approach with
alternative methods cited to adjust for misreporting.
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5 Discussion

This work introduces a model to estimate true count information stemming
from a survey that contains misreported count data. Here, we assume that
the true count distribution is represented via a Poisson distribution. To
allow for added flexibility, however, one may likewise consider a COM-
Poisson distribution to represent the true distribution of counts, arguing
that the true count distribution contains some underlying form of data
dispersion.

Acknowledgments: This research is supported in part by the ASA/NSF/BLS
Research Fellowship Program. The views expressed here are those of the
author and do not necessarily reflect the policies of the U.S. Bureau of
Labor Statistics.
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1 Introduction

The gross of genome-wide association (GWA) studies have focused on as-
sociations with cross-sectionally measured phenotypes. However it may be
desirable to identify genetic variations that are associated with the lon-
gitudinal development of a trait over time. This requires a longitudinal
study in order to characterize within-individual changes of the considered
phenotype. A popular approach to analyze repeated measures is given by
the linear mixed model (LMM). Unfortunately this technique can be com-
putationally demanding when many subjects are involved and becomes
prohibitively time consuming when it has to be executed a large number
of times. The Generalized Estimating Equations (GEE) approach is an al-
ternative which is computationally less demanding. However this method
requires the specification of a so called working correlation matrix and does
not protect against a missing at random (MAR) process. In addition fit-
ting a few millions of models using the GEE approach can still require a
too long computational time. We investigated three fast alternatives: 1) the
slope as outcome approach, 2) the two-step and 3) the conditional two-step
approach. Those three methods as well as the GEE approach with various
working correlation structures were explored as possible alternatives of the
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linear mixed model. We evaluated their accuracy and necessary computa-
tional time.
Rivadeneira et al. (2009) identified several genetic variations associated
with cross-sectional bone mineral density (BMD) values using data coming
from the Rotterdam Study (Hofman, A. et al. 2009). In this prospective
population-based cohort study the BMD from 4987 individuals was mea-
sured at baseline and then after 2 and 6 years. However not all 3 measure-
ments were available for every individual. Of interest is to identify SNPs
associated with the evolution of BMD over time. Computational time for
fitting 500K LMMs (for 500K SNPs) was estimated as more than 120 hours.

2 Statistical approaches

Let Yij be a continuous variable measured for individual i (belonging to
SNP group Si) at time tij (i = 1, ..., N , j = 1, ..., k). We are interested in
the effect of each of the SNPs on the evolution over time of the response
Yij . We considered the following approaches. The LMM of interest is given
by:

Yij = β0 + β1tij + β2Si + β3tijSi + b0i + b1itij + εij , (1)

where b0i ∼ N (0, σ2
0), b1i ∼ N (0, σ2

1) ( corr(b0i, b1i) = ρ) represent subject-
specific intercept and slope respectively and εij ∼ N (0, σ2) is the residual
term. Additionally, b1, ..., bN , ε1, ..., εN are assumed to be mutually inde-
pendent. The model is fitted using a full likelihood approach. Furthermore
the marginal model

E(Yij) = β0 + β1tij + β2Si + β3tijSi (2)

is fitted using the GEE approach based on quasi-likelihood, which makes
the computation time shorter. We are mainly interested in testing if there
is a statistically significant effect of SNP (Si) on the evolution of Yij . This
is verified by testing H0 : β3 = 0 resulting in the corresponding p-value. We
explored three alternative methods that could provide approximately the
same p-value in a much shorter time. Those methods split the analysis into
steps in order to avoid fitting the full model (1) repeatedly for the different
SNPs. The slope as outcome method is based on two-stage formula-

tion of LMM. In the first stage the slope β41i per individual is estimated
according to the model:

Yij = β40i + β41i tij + ε4ij . (3)

In the second stage the estimated β̂41i ’s are regressed on Si using ordinary
least squares method of estimation On the other hand in the first step of
the two-step approach all terms containing Si are omitted from model
(1), so the model becomes:

Yij = β∗0 + β∗1 tij + b∗0i + b∗1itij + ε∗ij (4)
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In the second step we regress BLUPS of b̂∗1i on Si with a simple linear
regression model:

b̂∗1i = β∗∗0 + β∗∗1 Si + ε∗∗i (5)

If Yi denotes a vector of ki measurements taken on the i-th individual, the
LMM can be reformulated as

Yi = X
(1)
i β(1) +X

(2)
i β(2) + Z

(1)
i bi0 + Z

(2)
i bi1 + εi, (6)

where X
(1)
i and X

(2)
i are the matrices of time stationary and time-varying

covariates respectively. As given in Verbeke et al. (2001) the original data
satisfying (6) can be transformed into

y∗i ≡ ATi yi = ATi X
(2)
i β(2) +ATi Z

(2)
i b

(2)
i +ATi εi = X∗i β

(2) +Z∗i b
(2)
i + ε∗i , (7)

where Ai is ki × (ki − 1) matrix Ai such as ATi 1ni
= 0. All the fixed cross-

sectional effects as well as random intercepts have been vanished from the
model (6). The conditional two-step approach is performed in the
same way as the previously explained two-step, but on the data satisfying
(7).

TABLE 1. Simulated balanced data. Approximate system time for 500K models
(CPU 2.99 GHz, 3.21 GB of RAM).

Method System time

linear mixed model ≈ 130h
GEE-unstructured ≈ 107h
GEE-exchangeable ≈ 52h
GEE-fixed ≈ 17h
GEE-independence ≈ 24h
slope as outcome ≈ 45min
two-step ≈ 45min
conditional two-step ≈ 45min

3 Simulation study and application to BMD data

To assess precision and computational time of proposed methods in com-
parison to full mixed model approach we conducted a simulation study
for balanced and unbalanced scenarios (MCAR and MAR dropout). For
each scenario we generated 200 data sets for 2000 individuals according to
model (1). The p-values for the SNP*time interaction term obtained from
the LMM were compared to the corresponding p-values from the GEE
approach (with various choices of the working correlation matrix) and the
three fast alternatives. The resulting plots for balanced scenario and MCAR
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dropout (similar to MAR dropout) are given in Figure 1. Estimated com-
putational times for the GWA scan (500K SNPs) using each of the method
are given in Table 1. The simulation study showed that the conditional
two-step approach is the most accurate method in the presence of missing
responses.

FIGURE 1. Simulation study for 2 different scenarios

We conducted GWA analysis of BMD data for ≈ 500K SNPs using the
conditional two-step approach. None of the SNPs reached genomewide sig-
nificance level (p < 5× 10−8).
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1 Problem: Gene duplications and losses

Gene duplication is one of the most dominant driving forces behind genome
evolution and the primary source for gene and protein functional evolu-
tion. Based on current theory, the most likely fate of any gene duplication
or birth is subsequent gene loss or death, where duplicate genes may sim-
ply become silenced or nonfunctionalized by deleterious mutations. The
other fates of duplicate genes, neofunctionalization, subfunctionalization
and dosage compensation, are not of primary importance for this paper.
Rates of gene birth and death are not well understood, and the main fo-
cus here is the estimation of these rates, which are key for understanding
genome evolution as well as protein function evolution.
Past analyses of such gene duplication and loss data (Lynch and Conery,
2000 and Hughes and Liberles, 2007) have several shortcomings. In the
sections that follow, we describe the data and how they are obtained, the
main shortcomings of previous analyses and our approach for addressing
them. We present results which have been obtained to date, and the next
steps in our data modelling and analysis.

2 Data

To investigate the rates of gene birth and death, the primary data con-
sist of estimates of time since genes duplicated, commonly denoted by dS.
The dS estimates are of synonymous substitutions per synonymous sites
within the DNA sequence of a species; these are silent mutations in the
DNA sequences which do not alter the codon. To obtain these estimates, a
long data generation process is undertaken. For a given species, the initial
dataset of nucleotide or DNA sequences and their corresponding amino acid
sequences are obtained from whole genome sequencing. The sequences are
then filtered through different bioinformatics software packages. First, the
Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) is used
to identify duplicate pairs within a genome. Next, the Multiple Sequence
Comparison by Log-Expectation (MUSCLE) (Edger, 2004) package aligns
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the sequences, and finally, the Phylogenetic Analysis by Maximum Likeli-
hood (PAML) (Yang, 1997) software allows for estimation of dS between
any two sequence pairs. Within each software, a variety of decisions are
made, all of which can affect the final dS data to some extent. One of our
goals is to investigate the effect of these decisions, with the view that mea-
surement error is accumulated at each step. It should also be noted that
for various reasons having to do with the underlying biological processes,
the final dS values are usually truncated at dS = 0.3, which corresponds
to 30 million years ago.
The dataset on time since duplication analyzed here is for the Oikopleura
dioica species. Oikopleura dioica, a type of sea squirt, is an organism of
much interest in evolutinary genetics due to its rapidly evolving genome.
Its genome was sequenced in early 2010, and the final dS data analyzed
here were generated by our collaborator, Dr. David Liberles. Some statis-
tical analyses of this data are part of our paper (Denoeud et al., 2010).
Histograms for this and other similar datasets, not presented here due to
space considerations, show that distribution of the dS values is extremely
skewed, a large proportion of dS values are estimated to be zero, and there
are various ‘bumps’ in the histograms indicating the presence of hetero-
geneity in the distributions.
Previous analyses of such dS data have several shortcomings. First, they
used the frequency data as presented in the histograms and modelled the
resulting counts with a Poisson distribution, whose mean varied either as an
exponential (Lynch and Conery, 2000) or a Weibull (Hughes and Liberles,
2007). The original data and its truncation were ignored, and measurement
error was not acknowledged. In our analysis, our first step is to fit a mixture
distribution to the original dS values accounting for the heterogeneity and
truncation, as well as accounting for the zero values in the data. Our next
step is to begin to account for some measurement error by incorporating the
likelihood-based standard errors for the dS values as produced by PAML.

3 Model and Data Analysis

3.1 Addressing truncation and heterogeneity with original data

For modeling dS on a continuous scale, we explored various candidate sur-
vival distributions. As the support of most survival distributions does not
include zero, we used a mixture of a discrete component at dS = 0, com-
bined with a continuous component for dS > 0. The final model is a 3
component finite mixture of the discrete component, with a mixture of 2
truncated Weibull distributions. The discrete component is modelled by
defining a Bernoulli variable Z(ds) ∼ Ber(w1) at dS = 0 and heterogene-
ity in dS > 0 is modelled with a mixture of 2 Weibull distributions, each
truncated at 0.3; resulting in the following mixture distribution for dS,

fdS(ds|w, κ, λ) = w
z(ds)
1 [(1− w1)(w2gdS(ds|κ1, λ1) + (1− w2)gdS(ds|κ2, λ2))]

1−z(ds)

(1)
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where w2 is the probability corresponding to the mixture of two Weibull
distributions. In eq(1) gdS(ds|κi, λi) is a truncated Weibull distribution
given by,

gdS(ds|κi, λi) =
κids

κi−1e(λi−eλidsκi )

1− e−eλi0.3κi
for 0 < dS < 0.3, where κi > 0 is the shape parameter and λi > 0 is the
scale parameter, for i = 1, 2. For θ2 = (w1, w2, κ1, λ1, κ2, λ2), the likeli-
hood function based on eq(1), combined with the following priors, P (wi) ∼
Beta(1, 1), P (κi) ∼ Gamma(1, 0.001), and P (λi) ∼ Gamma(1, 0.001) for
i = 1, 2 was used to obtain posteriors for components of θ.
In simulating the posterior distributions, all the parameters were updated
using a Metropolis Hastings random walk algorithm with a truncated nor-
mal proposal density. The MCMC algorithm was run with 3 independent
chains for 2 million iterations, discarding the first 50,000 as burn-in. Trace
plots showed good mixing, and standard convergence diagnostics indicated
convergence for all the chains. Posterior modes and intervals for the pa-
rameters for the Oikopleura dioca data are displayed in Table 1.

3.2 Incorporating Measurement Error

The estimated dS values obtained from PAML are MLEs, and estimates
of their standard errors are available. A plot of the SE(dS) versus dS val-
ues shows a curvilinear relationship where the scatter in the SE values
increases with increasing dS values. We modelled this relationship using
a non-linear model of the form SE(dS) = β0 + β1(dS)β2 + ε, with ε ∼
N(0, σ2) and using WinBUGS obtained posterior distributions for the pa-
rameters β0, β1, β2. The posteriors were then parameterized using Gamma
distributions, β0 ∼ Gamma(30, 14553), β1 ∼ Gamma(3745, 28969), β2 ∼
Gamma(2040, 2768), which were used as informative priors for the mea-
surement error component of our data model. The resulting hierarchical
model for dS is as follows. We denote Y as the observed data (time since
genes were duplicated), X as the data generating mechanism (mixture
model) defined in eq(1), and θ = (θ1, θ2) as the parameters. Then our
data model has the following components: 1. Observed data (measurement
error) model: [Y |X, θ1] ∼ NT (X,β0 +β1(dS)β2), truncated at [0, 0.3] where
[θ1] = [β0, β1, β2]., 2. Data generating mechanism model: [X|θ2] ∼Mixture
distribution, from eq(1)., 3. Parameter model (priors): [θ] = [θ1] [θ2], with
priors as stated above.
The results are sumarized in Table 1 for the Oikopleura Dioca data. Ac-
counting for measurement error changes yields narrower posterior intervals
but also yields greater separation of the two Weibull distributions. The re-
sults presented here only use the measurement error model for the dS > 0
data. Work in progress includes incorporating PAML SE information for
dS = 0, and future work will include a biological process model.
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TABLE 1. Posterior Distribution Summaries: with & without measurement error

Without ME With ME
Mode (5th, 95th) Mode (5th, 95th)

w1 0.067 (0.05,0.08) 0.067 (0.056,0.08
w2 0.58 (0.38, 0.70) 0.49 (0.43,0.55)
κ1 0.75 (0.65,0.83) 0.58 (0.54,0.63)
λ1 0.37 (0.043 0.98) 0.31 (0.26,0.37)
κ2 1.37 (1.24,1.46) 1.92 (1.86,1.97)
λ2 2.6 (2.29,2.63) 3.33 (3.25,3.35)
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Abstract: A random effects model for functional data based on continuous
wavelet expansions is proposed. It incorporates phase variation without the use
of warping functions. Both coarse-scale features and fine-scale information are
modelled parsimoniously, yet flexible. The regularity of the estimated function
can be controlled, creating a joint framework for Bayesian estimation of smooth
as well as spiky and possibly sparse functional data.
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1 Introduction

While functional data have been around for a long time, the availabil-
ity of methodology recognizing their functional nature and corresponding
features has blossomed more recently. For an overview see Ramsey and
Silverman (2006). Samples ynj = yn(tj) are often encountered when ob-
serving a process over a certain time interval (at discrete time points tj ,
j = 1, . . . , Tn) for several subjects or instances n = 1, . . . , N . A key element
of the functional data framework is the recognition of phase variation (vari-
ation in timing of features) as a source of variability in the data, in addition
to amplitude variation (variation in amplitude of features). A monotone in-
creasing function transforming the time-axis, called a warping function, is
typically used to take phase variation into account, prior to or joint with
the analysis of the amplitude. These warping functions behave differently
than the actual curves in the sample, complicating a combined analysis and
a proper understanding of the total variation as a mixture of the two. With
clustering in mind, Liu and Yang (2009) circumvented the warping func-
tion by representing the curves as B-splines with randomly shifted basis
functions. Along that line we introduce a model which incorporates phase
variation in a natural and intuitive way, by avoiding the use of warping
functions, while still offering a good and controllable degree of complexity
and flexibility. By building a model around wavelet transformations, we
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use the location and scale notion of wavelet functions to model phase vari-
ation. The wavelet coefficients represent amplitude. Wavelets have already
greatly shown their efficiency for the representation of single functions, and
it are exactly those strengths that we aim to generalize towards samples of
curves. Our methodology differs from that of Morris and Carroll (2006), in
that they generalize a classic mixed effects model towards functional data.
The discrete wavelet transformation is used to fit their proposed model.
Our goal is to use wavelet functions for a direct modelling of the data,
not to fit general functional mixed effects models. An additional advantage
of using wavelets is that by choosing an appropriate wavelet many types
of data can be analyzed, ranging from smooth processes to spiky spectra.
The proposed model serves as a basis for a variety of applications, such as
(graphical) exploration and representation, clustering and regression with
functional responses.

2 Modelling Functional Data by means of Continuous
Wavelet Dictionaries

The proposed model is built around a scaling function φ and a wavelet func-
tion ψ, the latter often forms an orthonormal basis ψjk, j, k ∈ Z, by shift-
ing and rescaling the mother wavelet ψ, subject to the dyadic constraints:
ψjk(t) = 2j/2ψ

(
2jt− k

)
. A downside of obtaining orthonormality, is the

fact that the functions need to be observed on an equidistant grid of time
points. Therefore continuous wavelet transformations, using an overcom-
plete set of wavelet functions with arbitrary locations and scales, continue
to gain popularity. In a functional setting, an overcomplete wavelet dictio-
nary can represent the sample of curves in the following way:

yn(tj) =

M∑
m=1

cn,m
√
an,mφ (an,m(tn,j − bn,m))

+

M+K∑
k=M+1

cn,k
√
an,kψ (an,k(tn,j − bn,k)) + en,j , (1)

with random scales an,m,an,k, random shifts bn,m, bn,k, random amplitudes
cn,m,cn,k and independent random errors en,j . Also an,k ≥ an,m, ∀m =
1, . . . ,M, k = M + 1, . . . ,K. Denote

an,M = (an,1, an,2, . . . , an,M ), an,K = (an,M+1, an,M+2, . . . , an,M+K),

bn,M = (bn,1, bn,2, . . . , bn,M ), bn,K = (bn,M+1, bn,M+2, . . . , bn,M+K),

cn,M = (cn,1, cn,2, . . . , cn,M ), cn,K = (cn,M+1, cn,M+2, . . . , cn,M+K),

with the following random effects distributions:

(an,M ,bn,M , cn,M ) ∼ NK(µM ,ΣM ), for n = 1, . . . , N

(an,K ,bn,K , cn,K) ∼ NK(µK ,ΣK), for n = 1, . . . , N
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FIGURE 1. (a): Simulated data according to model (1). (b): Sum of scale and
wavelet functions corresponding to µM and µK (bold line), separate scale func-
tions (normal lines) and wavelet functions (dashed lines).

en,j ∼ N (0, σ2), for n = 1, . . . , N and j = 1, . . . , Tn,

with µK = (αK ,βK ,γK) = (α1, α2, . . . , αK , β1, β2, . . . , βK , γ1, γ2, . . . , γK)
and likewise for M . The index K (and M) refers to the dimensionality
of the vector which depends on the number of wavelet functions K (or
scale functions M) in expansion (1). While M is a fixed constant, K is
a parameter in the model. Figure 1 shows a simulated data example cor-
responding to model (1) with spline wavelets. It illustrates the intuition
behind the model by means of a sample of 10 curves, with M = 5 scaling
functions, K = 3 wavelet functions and a positive correlation between the
location of the first scale function and the amplitude of the last scale func-
tion. The scale functions corresponding to µM represent the main features
in a homogeneous functional data sample (as shown in Figure 1 (b)). The
random effects an,m, bn,m, cn,m allow for curve-specific deviations in re-
spectively scale, location and amplitude from these average features, while
maintaining parsimoniousness. Phase and amplitude variation are thus be-
ing modelled in an intuitive way, by means of random scale, location (both
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representing phase) and amplitude of the scale functions. The covariance
matrix ΣM explains how the random effects corresponding to a certain
feature relate to others. The bold grey line in 1 (a) corresponds to an ob-
servation with a late occurrence of the first scaling function and which has
a relatively high amplitude of the last scaling function, illustrating the pos-
itive correlation. These kind of patterns are often impossible to detect by
eye or by more simple methods. In this model there is no need for a fixed
or equispaced grid of time points, as continuous wavelets are being used
and information is borrowed within and across curves by means of the ran-
dom wavelet functions. This makes the method suitable for the analysis of
sparse data as well. For a single curve y (N = 1), model (1) fits the frame-
work introduced in Abramovich et al (1999). They established conditions
on the model parameters under which the smoothness of the expansion can
be controlled. In the Bayesian framework, Chu et al (2009) do so by an
appropriate choice of priors on the model parameters. For the estimation
they use a reversible jump Markov chain Monte Carlo algorithm to improve
computational efficiency. The ideas in both papers are used here. In case
the data are heterogeneous, the model can be used for a clustering proce-
dure following a k-centers type algorithm. The model can also be extended
by incorporating additional covariates, giving rise to a regression model
with functional responses. In summary, we create a framework to analyze
many different types of functional data (smooth, spiky, sparse), while still
being flexible and easy to understand, estimate and use.
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1 Introduction

3D images captured by stereo-photogrammetry sometimes contain areas of
the surface that are not required for analysis, therefore it can be useful
to find a means to extract only the area which contains the feature of
interest. Our data consists of a set of such images from 44 women, who
have all undergone a unilateral mastectomy and reconstruction procedure.
It is of interest to determine whether the asymmetry between the two
breasts is more severe than would normally be seen in the wider population.
However, the images all include varying amounts of chest wall as well as
the breast tissue itself, so it is necessary to find where the boundary of each
breast lies in order to extract it from the rest of the image and analyse it
independently.

2 Examining Surface Curvature

A first step in doing so is to examine the curvature of the surfaces, by cal-
culating the principal curvature scores at each point. It was found that the
boundary of the breast is characterised by high values of minimum curva-
ture, due to the concavity of the surface where the breast tissue meets the
chest wall. The aim is to use this information to try to extract the breasts
from the remainder of the surface, by means of a radial line algorithm.

3 Calculating the boundary

3.1 Fitting the principal curve

Although our surface is a 2-dimensional manifold, it is possible to simplify
the problem and work in lower dimensions. We can do so by taking tran-
sects in various directions across the surface to give us a series of plane
curves - curves which are contained in a two-dimensional plane. It is then
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a far simpler calculation to analyse the curvature of these plane curves, as
opposed to the curvature of the surface.
To find these curves, the first step was to calculate a local axes system at
prom, the most prominent point on each breast surface, and use this to
find the strip of points which lie in a certain given direction (i.e. points
lying along the x-axis). We could then examine the curvature of this set
of points by fitting a principal curve to them. Principal curves are defined
by Hastie and Stuetzle (1989) as smooth one-dimensional curves that pass
through the middle of a data set. They minimise the orthogonal distance to
all points subject to certain smoothing constraints, and are self-consistent,
meaning that each point on the curve is the average of all the points that
project there.
Due to the way in which our strip of points is found, there is very little
variation in one direction (as all points were within a very small threshold
distance on the y-axis). This means that we can simplify the calculation
by considering the points in two dimensions only and fit a principal curve
using the x and z coordinates alone.

3.2 Calculating the Curvature

We can now calculate the curvature at each point on this curve in order
to determine where the boundary may lie. As the principal curve is pa-
rameterised by arc length s, the curvature κ(s) can be calculated using the
standard formula

κ(s) =
x′y′′ − x′′y′

(x′2 + y′2)3/2
, (1)

where x′ = dx(s)
ds and y′ = dy(s)

ds . The calculated curvature scores for our
strip of points can be seen in Figure 1. As we are interested in finding areas
where the surface is concave and has a high minimum curvature, we wish
to look for peaks in the curvature function.
As can be seen in Figure 1(a), it is possible for there to be more than
one peak in the curvature. This occurs when there are other concave ar-
eas on the strip, for example if there are ridges or dents on the breast
surface. Once the peaks in curvature have been found, the corresponding
three-dimensional points can be taken to be candidate points for where the
boundary may lie, as shown in Figure 1(b).
This process can then be repeated to find strips in different directions,
and subsequently the potential boundary points lying on them, simply by
rotating the local-axes system. Repeating this process through 2π radians
gives us a set of candidate points all around the perimeter of the breast.

3.3 Point Selection

As mentioned previously, there is not always just one possible point found
on each strip. Therefore it is necessary to find a way in which to select
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FIGURE 1. (a) Plot of curvature scores against arc length, with peaks in curva-
ture shown by dashed lines. (b) The corresponding points on the surface, along
with the strip of points to which the curve was fitted.

the correct points to use. We have several criteria to help us assess which
points should be included and excluded from our boundary. Firstly, we
can exclude any points which lie too close to prom. We can also use the
knowledge that the boundary will lie reasonably close to the chest wall,
and therefore remove points that lie too far away from this plane.
At this stage it is possible that we will have a combination of strips with
multiple points and strips with single points, as well as having some strips
with no candidate points at all (if the only candidate found was too close to
prom, for example). We now need to produce a boundary from these sets of
points. To do so, a principal curve was fitted to the single points only and
this curve was used to assess which of the points should be included from the
other strips (by assessing which points most retained the smoothness of the
curve). The curve was also interpolated to find where the boundary should
lie in missing positions, where necessary. An example of the boundaries
found for two of our images can be seen in Figure 2.

4 Creating a surface model

Once these boundaries have been found, it is desirable to create a set of
corresponding points across all breasts in order to make them more easily
comparable. We wish to have the same number of points which are in
corresponding positions across all surfaces, and this was done using the
radial lines that had been calculated for finding the boundary. As there
were a variety of shapes and sizes of breasts, it was thought that taking
points at proportionally equal distances along these lines would give us a set
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FIGURE 2. The calculated boundaries for two of our patients

of correspondingly placed points on all breasts. As all lines converge at the
most prominent point, it was necessary to select points more sparsely at this
end of the strip to achieve a more regular spacing. This was done by using
a sequence constructed from equally spaced quantiles of the exponential
distribution, in order to ensure an increasing distance between points as
you progressed along the strip. A smoothing spline was then used to fit a
smooth curve to the observed points, and this allowed us to predict the
coordinates at these set distances along the curve. An example can be seen
in Figure 3. The process was repeated across all strips in order to obtain
a representation of the entire breast surface, an example of which can be
seen in Figure 4.

5 Discussion

The algorithm can detect the boundary very well in many cases and works
particularly well in larger chests where the curvature around the edge of the
breast is very strongly defined. However, there are several cases which are
more problematic. In smaller breasted women the surface is much flatter
and the curvature information sometimes simply isn’t there. This can lead
to a lack of fixed points and a greater amount of predictions, which aren’t
necessarily reliable when based on a small number of points. Due to the
fact that the shapes of the breasts are so varied, it is difficult to build a
fully automated system for detecting the boundary. However, by manually
adjusting various thresholds where necessary we were able to produce a set
of boundaries which we feel are acceptable for all patients and capture the
outline of the breasts well.
As our surface representations consist of a smaller number of points than
the original surface the ease of analysis is improved. The corresponding
nature of the points is also useful. For example, we can treat these points
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FIGURE 3. The strip of points in a particular direction (grey) and the selected
points at standardised distances along the curve (black), in both a 2-dimensional
representation (a) and on the original 3-dimensional image (b). (c) The represen-
tative surface points selected for our patient.

FIGURE 4. An example of the set of points taken to be representative of the
breast surfaces.

as landmarks (points on each object which match between and within pop-
ulations) and go on to investigate the asymmetry of the surfaces using our
existing landmark methods.



570 Boundary identification in 3D images
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Abstract: While a simple mean regression attempts to describe the expectation
of a response as a function of the covariates, the results of a quantile or expectile
regression offer a much broader view. In principle, a dense set of expectiles or
quantiles allows for an analysis of the complete conditional distribution of the
response. This can lead to new insight into the dependency between the response
and its covariates. In our work, we allow for additive regression models with non-
linear as well as spatial effects. Further, we aim to construct pointwise confidence
intervals for each fitted expectile. These shall return a clue about the precision of
the estimated expectile curve and therefore into the amount of information that
can be drawn from the expectiles. The methodological results are then applied
to data about childhood malnutrition in India.
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1 Introduction

Quantile regression has emerged into one of the standard tools for regres-
sion analysis that enables a proper assessment of the complete conditional
distribution of responses even in the presence of heteroscedastic errors.
Quantile regression estimates are obtained by minimising an asymmetri-
cally weighted sum of absolute deviations from the regression line, a deci-
sion theoretic formulation of the estimation problem that avoids a full spec-
ification of the error term distribution (Koenker, 2005). Recent advances
in mean regression have concentrated on making the regression structure
more flexible by including nonlinear effects of continuous covariates, ran-
dom effects or spatial effects. These extensions often rely on penalised least
squares or penalised likelihood estimation with quadratic penalties and may
therefore be difficult to combine with the linear programming approaches
often considered in quantile regression. As a consequence, geoadditive ex-
pectile regression based on minimising an asymmetrically weighted sum of
squared residuals was introduced. Different estimation procedures are avail-
able including least asymmetrically weighted squares, boosting (Sobotka
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and Kneib, 2010) or restricted expectile regression (Schnabel and Eilers,
2010). We propose to investigate these point estimators by constructing
pointwise confidence intervals to each expectile regression curve. For the
construction of the confidence intervals we use a nonparametric bootstrap
or the asymptotic normality of the regression coefficients.

2 LAWS

The results of a quantile regression can be acquired by minimising the
asymmetrically weighted sum of the absolute residuals and in analogy an
expectile regression is computed from the least asymmetrically weighted
squares (LAWS) of the residuals. LAWS minimises

S =

n∑
i=1

wτ (yi)(yi − µi(τ))2 (1)

with weights

wτ (yi) =

{
τ if yi > µi(τ)
1− τ if yi < µi(τ)

(2)

where yi is a continuous response and µi(τ) is the estimated expectile for
different values of the asymmetry parameter τ ∈ (0, 1). Hence the com-
putation of expectile regression is much easier, since it avoids the non-
differentiable absolute value criterion, but expectiles lack the intuitive in-
terpretation of quantiles. While the quantile of a random variable Z imme-
diately depicts the amount probability that lies below it, the τ -expectile
µ(τ) can only be defined imlicitely:

τ =

∫ µ(τ)

−∞ |z − µ(τ)|fZ(z)dz∫∞
−∞ |z − µ(τ)|fZ(z)dz

=
G(µ(τ))− µ(τ)F (µ(τ))

2(G(µ(τ))− µ(τ)F (µ(τ))) + (µ(τ)− µ(0.5))

where G(m) =
m∫
−∞

zfZ(z)dz and G(∞) = µ(0.5) is the expectation of Z.

On the other hand and in addition to the computational advantages, one
can build additive models that contain different kinds of effects. We por-
tray these effects by design matrices B(j) and assign a vector of regression
coefficients βj to each effect. We can then create the following additive
expectile regression model:

µ(τ) = 1β0 +B(1)β1 + . . .+B(r)βr + ετ .

For continuous univariate covariates, smooth expectile curves can be fitted
using penalised splines (see Schnabel and Eilers, 2009, 2010). Additionally
the model can include spatial effects based on either Markov random fields
or tensor product splines (see Sobotka and Kneib, 2010). The smoothing
can be induced by a quadratic penalty on the regression coefficients:

pen(βj,τ ) = λjβ
′
j,τKjβj,τ

with adaptable smoothing parameter λ and penalty matrix K.
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3 Asymptotics

For the resulting estimated regression coefficients of the LAWS method (1)
we derived asymptotic normality:

β̂τ
a∼ N(β0

τ ,Cov(β̂τ ))

with

Cov(β̂τ ) = (B′WB +K)−1B′W 2diag(yi −Biβ̂τ )2B(B′WB +K)−1

where W = diag(wτ (y1), . . . , wτ (yn)) and B = (1, B(1), . . . , B(r)).
From mean regression we already know that without further assumptions
for the distribution of the residuals we have

Var
{(
yi −Biβ̂0

τ

)}
= Var

{(
yi −B′iβ0

τ

)}
(1− hii) (3)

with hii being the ith diagonal element of the hat matrix H. For expectile
regression we obtain a generalised hat matrix Hw with

hwii = w0
i,τB

′
i

 n∑
j=1

w0
j,τBjB

′
j +K

−1

Bi (4)

that we can use to improve our estimation of Cov(β̂τ ).
Now we can compute the estimated variance of the unknown true expectile
µτ for covariates xi, i = 1, . . . , n as

Cov(µ̂τ ) = BCov(β̂τ )B′.

With the knowledge of the asymptotic normality we can derive a confidence
interval for the true expectile at covariate value xi[

µ̂τ,i ± z1−α2

√
Var(µ̂τ,i)

]
with z1−α2 = Φ−1(1− α

2 ) the 1− α
2 -quantile of the standard normal distri-

bution.
We compare this method to the results of bootstrap percentile intervals,
which in general need a large number of bootstrap replications to be accu-
rate.

4 Simulation

After introducing this new method for expectile regression confidence inter-
vals, its merits and disadvantages are investigated in terms of a simulation
study. The method is compared with the results of bootstrap percentile
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intervals as a reference method. The data structures considered in the sim-
ulation study are linear on the one hand and additive nonlinear on the
other in order to simulate different data scenarios. Using different error
distributions we generate data situations with several properties like high
probability for outliers or heteroscedasticity.
From the results we can see that the confidence level will not be met for
extreme asymmetries ( τ → 0, τ → 1). Especially for growing sample sizes
the asymptotic intervals will deliver a smooth result and increase in preci-
sion, but all that depends on the available data. For example, at the edge
of the covariate support with less observations available, the width of the
intervals increases strongly.
In general we can observe nice attributes for confidence intervals like a de-
creasing width for larger samples. The performance of the asymptotic confi-
dence intervals can outperform the numerical alternative in many scenarios.
Therefore we will from here on refrain from using the computationally far
more challenging bootstrap.

5 Application: Childhood Malnutrition in India

Finally we apply our methods to a data set from the MEASURE Demo-
graphic and Health Surveys (DHS) that provides national studies on health
and population development. In our case we use data on childhood malnu-
trition in India from the year 2001. We attempt to model a malnutrition
score in a geoadditive specification that allows for an analysis of parametric
as well as nonlinear effects of the age and BMI of the mother and the spa-
tial distribution of malnutrition simultaneously. The regression predictor
can then be calculated as

ητ = xβτ + fτ,1(age of child) + fτ,2(duration of breastfeeding) (5)

+fτ,3(BMI of mother) + fτ,4(age of mother)

+fτ,5(education years of mother) + fτ,6(education years of partner)

+fτ,spat(district).

For each effect we are now also able to provide confidence intervals as shown
in Figure 1. For the nonlinear effects we can mainly observe homoscedas-
ticity while there are larger differences for parametric effects. We can also
observe the influence of the observation density on the confidence inter-
val width. Further Figure 2 indicates a positive or negative effect of the
districts of India on the nutritional status for several expectiles.
The analyses are done using our R–package “expectreg” (Sobotka, Schn-
abel, Schulze Waltrup, 2011).

Acknowledgments: Special Thanks to Sabine Schnabel, Paul Eilers and
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FIGURE 1. The two figures depict the estimated nonlinear effect for BMI of the
mother and the age of the child. A 0.95 confidence interval for each expectile is
marked with dashed lines.
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FIGURE 2. The figures show if the influence of a district is positive (white),
negative (black) or insignificant for the 0.05, 0.20, 0.80 and 0.95-expectiles.
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Measuring Efficiency of Trial Designs with
Unreplicated or Partially Replicated Test
Lines

Katia Stefanova1
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Abstract: In this paper efficiency measure for optimal design is presented and
illustrated on the example of unreplicated field trials laid out on plots with spatial
errors defined by uniformity trials. A simulation study is conducted by random-
izing the allocation of genotypes to the plots of four uniformity trials.

Keywords: Efficiency Factor; Linear Mixed Models; Unreplicated Trials Design.

1 Introduction

Unreplicated trials in early generation plant breeding enable breeders to
select material from a large number of genotypes with limited quantities of
seed. The greater the number of genotypes grown, the greater will be the
probability of detecting superior plants. Traditionally, a small number of
control varieties are planted in a systematic pattern across the trial and test
lines randomly allocated to the intervening plots. Kempton (1984) gives an
excellent historical account of such unreplicated trials. Optimal design, par-
ticularly the spatial arrangement of control plots and their number forms
the central question addressed in this paper.
Unreplicated trial designs fall into three categories. Firstly, the most widely
used designs, with systematic control plot arrangements in a diagonal or
knight’s move pattern. Secondly, the “augmented designs” introduced by
Federer (1961) and later developed and improved (Lin & Poushinsky, 1983;
Reynolds & Crossa, 2001; Williams & John, 2003). The experimental area
is split into blocks and control varieties randomly arranged in each block
in accordance with some incomplete or complete block design. The third
type of design is the “partially replicated design”, where some proportion
of the test lines is replicated (Cullis et al., 2006).
The analysis of the unreplicated trial has evolved and now a linear mixed
model is most commonly used. In this paper our simulated data are anal-
ysed using spatial mixed models with REML estimation of variance compo-
nents (Gilmour et al., 1997 and Stefanova et al., 2009). Also we have chosen
to compare designs using an “efficiency factor”, which is the standard error
of the comparison between test line and control as a ratio of that standard
error in a completely randomized trial.
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2 Simulation and modelling

2.1 Description of the uniformity trials and choice of designs

Uniformity trials data has been used in an extensive simulation study to
compare trial designs. At each of 4 locations in Western Australia (Katan-
ning, Merredin, Newdegate and Wongan Hills), a rectangle of 60m×37.5m
was marked out on a field with 300 plots in 12 columns and 25 rows. At each
plot single wheat variety was grown and harvested and it’s yield was indi-
vidually recorded. Spatial mixed models were fitted to each data set. The
analyses were performed using ASREML R (Butler et al., 2007). A total
of 34 different trial designs were used in the simulation study, representing
designs from the three categories described in the Introduction.

2.2 The simulation process and fitting of mixed models

Let ut={u1, u2 ...unt} denote true, known fixed effects for nt test varieties
and uc = {uc1, uc2...ucnc} denote the effects for nc controls. In the simu-
lation exercise, ut and uc are fixed and unchanged. The field experiment
which we emulate has 300 plots and consequently nt+ rnc = 300 where the
controls are each replicated r times. The parameters nt , nc and r change
according to the particular design being investigated.
Let z = {z1, z2 ...z300} denote the known plot yields from a uniformity trial.
Simulated yields are obtained by randomizing the test and control variety
labels to the plots in accordance with the design rule in question. If the
ith plot is allocated to test variety m , the simulated yield for that plot is
yi = zi +um , and likewise for all plots, thus generating y = {y1, y2 ..., y300}.
We fit a mixed model to y and hence calculate estimates of all test line
effects ût and control variety effects ûc. For a given design, given uniformity
trial and given true variety effects u = {ut,uc}, one randomization of plot
labels results in one data vector of yields y and fitting a specified linear
mixed model to this data gives one set of parameter estimates û = {ût, ûc}.
An entire simulation procedure entails repeating this cycle of randomization
and estimation many times. The values of u are defined as Normal deviates
from a population with mean 0 and variance σ2

g . The controls comprising
uc50, uc70 and uc90 are defined such that 50%, 70% and 90% respectively
of the ut values are less than the control values.

3 Results and Discussion

As explained earlier, each model fit to a particular data set is summarized
by one efficiency factor, κ . We might interpret κ as the standard error
(SE) of the contrast between a test line mean and a control mean in the
design under study, as a percentage of that standard error with completely
randomized plots. More specifically,

κ = 100(SE(ût − ûc)/
√
σ2(1 + 1/r)) (1)
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FIGURE 1. Efficiency factor κ graphed against Error DF. The symbols denote
the type of design, a=augmented, d=diagonal, k=knight’s move, b=partial rep,
w=WA p=LP.

where σ2 is the plot error variance and r is the number of replications of
the control. The adjustment for r ensures that when comparing designs
on the basis of their κ’s such comparisons are unconfounded with changed
values of r. In Figure 1 κ is graphed against log(Error DF); a linear model
fits this data very well. The results show that by increasing the Error DF
in any design, we reduce κ. However, increasing Error DF comes at the
cost of reducing the number of test lines that can be accommodated in an
experiment of fixed size. We look at this question in two ways, namely at
maximizing expected genetic gain and assessing the overall probability of
making successful selections. The dual problem is firstly to have sufficient
test lines in a trial to ensure a reasonable probability that at least some
superior lines are present in that trial (the inclusion probability Pp) and
secondly to have a trial design which has sufficient Error DF to ensure
that there is a reasonable probability that the superior lines will be cor-
rectly identified (the selection probabilityPs). Use Pps to denote the joint
probability of a superior line being included and selected. To illustrate the
calculations, define

Ps(ui) = prob(ûi > ûc|ui, uc) = Φ((ui − uc)/
√
σ2(1 + 1/r)), (2)

Pps =

∫ ∞
u∗σg

Ps(x)φ(xσg)σgdx, (3)
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and

Pr(x ormore successful selections) = 1−
x−1∑
i=0

nt!

i!(nt − i)!
P ips(1− Pps)nt−i

(4)
where Φ(.) denotes the cumulative Normal distribution function and φ(.)
the density function. In these formulae uc denotes the genetic effect of that
control used to identify apparently superior lines based on their phenotype,
whilst u∗ denotes the genetic effect in the infinite population above which
a test line is genuinely superior. These effects, uc and u∗ need not be equal.
The critical factor in defining a good design for unreplicated trial, is the
number of Error DF. By calculating expected genetic gain, we have deter-
mined a reasonable compromise to be about 50 Error DF, greater than 50
leads to a decline in expected genetic gain. The most important finding has
been the marked superiority of the partially replicated designs. Finally, the
benefit of analysing unreplicated trials by fitting a spatial mixed model has
been shown to be very substantial, where fitting variety as random or fixed
depends on the aim of the analysis.

Acknowledgments: The study was done in collaboration with Emeritus
Professor G. P. Y. Clarke and some of the results are presented here.
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Abstract: Regular vine (R-vine) copulas, which are entirely constructed from
bivariate copulas as building blocks, constitute a flexible class of high dimensional
dependency models. In this paper we introduce a Markov switching R-vine copula
model, combining the flexibility of general R-vine copulas with the possibility for
dependence structures to change over time. Bayesian parameter estimation in
this context is discussed and we apply the newly proposed model to examine the
dependence of exchange rates during times of crisis.
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1 Introduction

The recent financial crisis demonstrated that there are two key features
of financial time series that have not been adequately addressed in risk
modeling: extremal dependencies and sudden changes in behavior.
While recent developments in the area of multivariate dependence modeling
tend towards flexible copula structures which are able to cover extremal
dependence properties, the second feature is more difficult to deal with.
As risk modeling is always based on experiences of the past, mathematical
models cannot take new types of behavior, which have never been observed
before, into consideration. While we cannot predict new types of behavior
we can use Markov switching (MS) models to account for changes to more
extreme types of behavior during times of crisis.
This paper presents an MS model for regular vine (R-vine) copulas and a
Bayesian procedure for estimating its parameters to address the aforemen-
tioned problems. Our contribution is twofold: First, we extend the Bayesian
estimation procedure of Min and Czado (2010) for Student-t copulas on
drawable (D-)vines, which constitute a subclass of R-vines, to general R-
vines and arbitrary bivariate copulas. Furthermore, we combine it with a
Bayesian estimation procedure for the underlying MS model as it has been
developed by Kim and Nelson (1998).

2 Markov switching regular vine copulas

In the following, we briefly recall both components of our model.
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2.1 Regular Vines

One of the most promising structures for multivariate modeling is the hier-
archical R-vine structure which has first been used by Joe (1996) and been
formally introduced by Bedford and Cooke (2001). They define a regular
vine V on d variables as a sequence of connected trees (undirected, acyclic
graphs) T1, . . . , Td−1, with nodes Ni and edges Ei, 1 ≤ i ≤ d − 1, which
satisfy the following properties:

1. T1 is a tree with nodes N1 = {1, . . . , d} and a set of edges E1.
2. For i ≥ 2, Ti is a tree with nodes Ni = Ei−1 and edges Ei.
3. If two nodes in Ti+1 are joined by an edge, the corresponding,

edges in Ti must share a common node.
A five-dimensional R-vine is shown in Figure 1. The notation we employ
throughout our paper follows Czado (2010).

1 3 4

2 5

1,3 3,4

1,2

1,5
T1

1,2 1,3 3,4

1,5

2,3|1 1,4|3

3,5|1

T2

2,3|1 1,4|3 3,5|1
2,4|13 5,4|13

T3

2,4|13 5,4|13
5,2|134

T4

FIGURE 1. An R-vine tree sequence in five dimensions with edge indices.

Since Aas et al. (2009) considered vine copulas in an inferential context,
there is increasing interest in developing estimation methods and their ap-
plications. To build up a statistical model on the graph theoretic object of a
(d-dimensional) R-vine, a bivariate copula is associated to each edge of the
vine. In particular, the bivariate copula Cj(e),k(e)|D(e) corresponding to edge
e=̂j(e), k(e)|D(e) is the copula corresponding to the conditional bivariate
distribution of Xj(e) and Xk(e) given XD(e) = xD(e). This construction
uniquely determines the density of the joint distribution of a d-dimensional
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random vector, whose conditional copulas correspond to the copulas on
the vine. A detailed treatment of R-vine copulas can be found in Kurow-
icka and Cooke (2006) and parameter estimation is considered in Dißmann
(2010). We will denote the density of an R-vine copula corresponding to a
vine V with set of copulas B and parameters θ as c(.|V,B,θ).

2.2 Markov switching model

An MS model is a nonlinear specification, in which different states of the
world or the economy affect the development of a time series. Assuming
the densities c(.|Vk,Bk,θk) of n R-vine copulas to be given, we want to
combine them in an MS model such that at each point in time the present
regime determines the dependence structure.
For this, let (St) be a Markov chain with states {1, . . . , n}. For simplicity,
we assume it to be of first order such that it can be completely characterized
by its transition matrix P (St = i|St−1 = j) = Pi,j . In a general setting,
the probabilities in this matrix may change over time and depend on other
internal or external variables of the model.
Given the Markov chain (St), the simplest MS vine copula model for a time
series (ut) is characterized by the conditional densities

c(ut|St, (Vk,Bk,θk)k=1,...,n) =

n∑
k=1

1{St=k} · c(ut|Vk,Bk,θk).

Here, the specification Vk and Bk is assumed to be given while θk needs
to be estimated.

2.3 Estimation

For computational reasons, parameter estimation for copula structures is
usually performed in a two-step approach as described by Joe and Xu
(1996). Marginal structures are fitted first and posterior mode or posterior
mean estimates for their parameters are chosen to convert the residuals to
uniform data by applying the probability integral transform. As our main
interest lies in developing methods for describing and estimating the copula
structure we will assume for the remainder of this paper that estimation
uncertainties for the marginal models can be neglected when examining the
copula for the uniform data.
Estimation of the parameters θ1, . . . ,θn and P in the MS vine copula model
is performed by a Gibbs sampler with three main steps:

1. Sample P conditional on the states St.
2. Sample the states St conditional on θ1, . . . ,θn and P .
3. Sample θ1, . . . ,θn conditional on the states St.

For Steps 1. and 2. we apply the procedure of Kim and Nelsen (1998). Step
3. is done by our extension of the algorithm in Min and Czado (2010). As
the set of parameters is augmented by the hidden state variables for the
purpose of estimation, we also obtain posterior estimates for the probability
that the economy is in state k at time t.



584 Markov switching vine copulas

3 Application

The dataset we use consists of 9 exchange rates against the US dollar,
namely Euro, British pound, Canadian dollar, Australian dollar, Brazil-
ian real, Japanese yen, Chinese yuan, Swiss franc and Indian rupee. We
consider 1007 daily observations from July 22, 2005 to July 17, 2009. An
extensive analysis of the dataset including the fitting of marginal structures
and the conversion to copula data on the unit interval has been performed
by Czado et al. (2010).

FIGURE 2. Smoothed probability that the state variable in the first model in-
dicates the crisis regime. The annotations highlight important events during the
financial crisis.

For our application, we assume two regimes to be present: one describing
”normal” dependencies and one describing the dependencies in times of
crisis. We consider two different sets of R-vine structures V. In the first
case, we assume that the same copula structure is present in addition to the
same vine structure (V1 = . . . = Vn,B1 = . . . = Bn) in the whole dataset
and that only the parameters do vary over time following the underlying
Markov chain. For the second case, we do also allow for the R-vine structure
V and copula structure B to change during times of crisis.
Using methods described by Dißmann (2010), we select an appropriate R-
vine structure covering the average dependence in the long run. Conducting
a rolling window analysis, we further select an R-vine structure describing
the dependence during peak times of the financial crisis. In this second
case, where we have a different ”crisis” structure, the bivariate copulas
in the ”normal” regime are assumed to be Gaussian. For the bivariate
copulas in the ”crisis” regime we select rotated Gumbel copulas. All R-
vine structures are truncated after the second tree, i.e. we assume that
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the copulas corresponding to bivariate conditional marginal distributions
conditioning on more than one variable are independence copulas. Given
this setup, the estimation procedures outlined in Section 2.3 can be applied.
The probabilities for the hidden state variable to indicate the presence of
the crisis regime are plotted in Figures 2 and 3. They illustrate our finding
that the times where the crisis regime is predominant correspond to events
of high impact during the financial crisis.

FIGURE 3. Smoothed probability that the state variable in the second model
indicates the crisis regime. Again, annotations are made to highlight important
events during the financial crisis.

Comparing Figure 2 to Figure 3 it shows that MS-models which allow for a
change of the R-vine and copula structure are more successful in detecting
a financial crisis regime than models in which regimes differ only by their
parameter values.

4 Conclusion

The model presented in this paper enables us to flexibly analyze dependence
structures varying over time. Applying it to exchange rates, we discover
that their dependence was similar during all peaks of the recent financial
crisis. This supports the use of MS vine copula models to account for be-
havioral changes in these times.
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Abstract: In recent times, the use of Bayesian methods has become more
widespread in regression problems where complex noisy data is a frequent occur-
rence. In using a Bayesian approach however, data and model criticism methods
generally do not take the form of those of classical residual analysis. In this paper
we seek to bring together both approaches when considering some Poisson count
data. We address the problem in a Bayesian manner using Gaussian random ef-
fect terms to model potential overdispersion of the Poisson counts. The posterior
random effects are used as a “surrogate” for classical residuals to aid in outlier
detection and model criticism. We apply the proposed approach to the palaeo-
climate dataset of Huntley et al, and use some exploratory tools from classical
residual analysis to gain an extra insight into underlying model dynamics from
the posterior random effect terms.
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1 Introduction

In this paper we propose a novel approach for the Bayesian analysis of
residuals in settings where the response variable is non-Gaussian and dis-
crete. In the interest of brevity however, we will constrain our discussion
to the specific scenario where the response variable consists of (assumed)
Poisson distributed counts. Our aim is to create an automatic Bayesian
approach for outlier detection and model criticism in studies where the
data is non-Gaussian in nature and we have no recourse to conventional
Gaussian residual theory.
Chaloner & Brant (1988) proposed a simple Bayesian approach for the
detection of outliers in Gaussian linear regression models. A priori, a model
residual, εi, is distributed N(0, σ2). A posteriori, the residual is considered
“outlying” if the posterior distribution of a given εi is located far from zero.
The posterior probability of such an event is Pri = Pr(|εi| > kσ|Y ) and
values of Pri > 2Φ(−k) may be regarded as suspicious; k is available from
standard Gaussian residual theory and values of k = 1.96, 2Φ(−1.96) = .05
are typically used.
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Albert and Chib (1995) provided a method for Bayesian residual analy-
sis in the presence of binary counts. Given the binary regression model
E(yi) = pi = F (xiβ), a model residual is specified as ri = yi − pi; ri is
a continuous valued random variable under the Bayesian framework. Each
posterior ri has support on the interval (yi−1, yi) and outlier detection in-
volves the identification of residuals which tend towards the “extremes” of
their respective support region. Souza (2010) promoted the inclusion of ran-
dom effect terms in binary regression models for outlier detection purposes.
The prior distribution for each random effect term is specified as a two-
component scale mixture of normals; γi|ki ∼ N(0, [(1−ki)σ2+ckiσ

2]), c > 1
and ki|π ∼ Bern(π); outlier detection involves the identification of obser-
vations with large pki = Pr(ki = 1).
Our proposed approach is similarly built upon the use of Gaussian random
effect terms to accommodate potential overdispersion of the observed count
data. We propose to utilise these posterior random effects, defined on a con-
tinuous scale, as a “surrogate” for classical residuals. We approximate each
posterior random effect as a weighed mixture of Gaussians; this provides
access to standard Gaussian residual theory and thus an automatic and
efficient tool for outlier detection. We also aim to use the posterior random
effects in a “classical fashion” as a tool for model criticism. We make use
of diagnostic tools such as Q-Q plots and use simple plots of the posterior
random effects to provide extra insight into underlying model dynamics.
The motivating application for our work is the palaeoclimate dataset of
Huntley et al (1993). Conventional Bayesian investigation of each available
datum would require the visual analysis of simulated posterior probabil-
ity distributions for 7742 × 28 observations (≈ 200, 000 in total) which is
infeasible with regard to time constraints.

2 Bayesian outlier detection and exploratory residual
analysis.

In this section we present a step by step description of our proposed ap-
proach in the context of a simple Poisson linear regression problem. Po-
tential overdispersion of the Poisson counts is accounted for by the ad-
dition of (mean zero) Gaussian random effect components to the linear
predictor. In the following let Y = {y1, .., yn} represent the observed data,
X = {x1, ..., xn} the observed predictor variables and β some regression
coefficients. We specify a mean zero normal random effects model as the
prior for each random effect term, ui ∼ N(0, σ2), where σ2 is a model hy-
perparameter representing the global variance of the random effect terms.

yi|wi ∼ Poisson(ewi) (1)

wi = xiβ + ui (2)

ui ∼ N(0, σ2) (3)
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We adopt a Bayesian hierarchical model for the inference task; if the model
under consideration is more complex than the presented example, the addi-
tion of extra stages to the model hierarchy is simple and easy to implement.

π(U, β, σ2|Y ) ∝ π(Y |β, U, σ2)π(U, β|σ2)π(σ2) (4)

=

n∏
i=1

π(yi|ui, β, σ2)π(U, β|σ2)π(σ2) (5)

The use of random effect terms for capturing extra Poisson variation can be
computationally burdensome; a posterior random effect must be inferred
for each datum. Furthermore, the joint posterior distribution in (4) is not
known in closed form as it is not possible to analytically integrate out
the latent ui’s. As numerical algorithms are infeasible given even moderate
amounts of data, simulation based algorithms such as MCMC can be used
to provide samples from the posterior distributions of interest. However,
we must then address the usual issues regarding convergence and mixing of
the Markov chains. To sidestep these issues, we make use of some recent ad-
vances in approximate Bayesian computation, namely the INLA algorithm
of Rue (2009). For W = Xβ + U :

π(σ2|Y ) ≈ π(Y,W, σ2)

π̃G(W |σ2, Y )

∣∣∣∣
W=W∗(σ2)

(6)

π̃G(W |σ2, Y ) is the Gaussian approximation to the full conditional of W
and W (σ2) is the mode of the full conditional for W for a given value of σ2.
In most cases such an approximation is nearly exact. If the posterior for σ2

is computed on an (arbitrarily fine) discrete grid, probability weights can
then be calculated which enable representation of the posterior distribution
for each random effect, π(ui|Y ), as a weighed mixture of Gaussians.

π(ui|Y ) =
∑
k

π̃G(ui|σ2
k, Y )× π(σ2

k|Y )×4k (7)

π̃G(ui|σ2
k, Y ) is available from π̃G(wi|σ2

k, Y ) and 4k are area weights which
ensure the posterior probability distributions for each random effect sum
to one. The posterior random effects in (7) can be used visually, to identify
patterns within the data or alternatively to pinpoint suspicious observa-
tions. Consider the problem of outlier detection: suppose we say the ith

observation is an outlier if Pri = Pr(|ui| > kσ|Y ) is sufficiently “large”.

Pr(|ui| > kσ|Y ) =

∫
Pr(|ui| > kσ)π(σ2|Y )dσ2 (8)

= Eσ2 [1− Pr(ui(σ) < kσ|Y ) +
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Pr(−ui(σ) < −kσ|Y )] (9)

The probability that a given ui is “outlying” is efficiently calculated from
the Gaussian approximation to the full conditional; Pr(ui < kσ|Y ) =
Φ(kσ, µi, τ

2
i ) where π(ui|σ2, Y ) ≈ N(µi(σ

2), τ2(σ2)) and k is available from
standard Gaussian residual theory. This probability can be compared to
2Φ(−k) to identify “suspicious” observations.
The posterior random effects are used as a surrogate for classical residuals
to aid with outlier detection. However, they may additionally be used in
an exploratory fashion (as in classical residual analysis) for model criticism
purposes. In the following sections we illustrate how the examination of
mean posterior random effects (E(U |Y )) may help identify patterns within
the data masked by the discrete nature of the response variable or even
provide an informative insight into underlying model dynamics.

2.1 Toy Problem.

We create a simple toy problem to highlight one of the model criticism
features of our proposed approach. Data is simulated from the the Poisson
regression model yi ∼ Pois(ewi), wi = 2 + 2xi + ui, where ui is simulated
from (a) ui ∼ N(0, 1) and (b) ui ∼ Γ(1, 1). We proceed to infer model
parameters as presented in section 2. Our interest lies in determining if
examination of the posterior random effects indicates possible misspecifi-
cation of the model. In figure (1b) we see that our incorrect specification
of the random effects as a-priori Gaussian is detected.

FIGURE 1. Q-Q plot of E(U |Y ) where (a) ui ∼ N(0, 1) & (b) ui ∼ Γ(1, 1).

3 Palaeoclimate application.

We apply our proposed approach to a subset (400 counts) of the data of
the Alnus (common alder) taxon considering only one climate predictor
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variable, GDD5. We model the latent response surface of the pollen counts
as a smooth nonparameteric function (f) of the GDD5 predictor variables
(see Haslett(2006) for further details) and account for overdispersion in the
pollen counts via Gaussian random effect terms as previously. Our interest
lies in detecting potentially “outlying” observations and validating our a-
priori distributional assumptions for the random effects. We specify a vague
Γ(1, .001) prior for each model hyperparameter.

yi|wi ∼ Poisson(ewi) (10)

wi = f(xi) + ui (11)

ui ∼ N(0, σ2) (12)

FIGURE 2. (a) Pollen counts vs GDD5 (E(f) (−), counts (◦), outliers (•)) & (b)
Observed counts (◦) and suggested outliers (•) on a map of Europe.

4 Results & Conclusions

The examination of the posterior random effect terms proved to be ex-
tremely efficient at identifying potential outliers in the Alnus data subset.
In figure (3), we plot a Q-Q plot of the mean posterior random effects
(E(U |Y )); this allows us to confirm the a-priori belief that the random ef-
fects are approximately Gaussian. Figure (2(b)) illustrates how the use of
the posterior random effects as an exploratory tool can provide additional
insight into underlying model dynamics. Count observations and outliers
are plotted on a map of Europe and we observe that there appear to be a
large number of outliers around the Mediterranean region. Further investi-
gation reveals that each of the outliers are recorded at high altitudes where
there is more moisture available to the Alnus plant and hence more pollen
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is produced than would generally be expected at this particular world lat-
itude.

FIGURE 3. Q-Q plot mean posterior random effects (E(U |Y )).

References

Albert, J. and Chib, S. (1995). Bayesian residual analysis for binary re-
sponse regression models, Biometrika, 82, 747 - 759.

Chaloner, K. and Brant, R. (1988). A Bayesian approach to outlier detec-
tion and residual analysis, Biometrika, 75, 651-9.

Haslett, J., Bhattacharya, S., Whiley, M., Salter-Townshend, M., Wilson, S.
(2006). Bayesian Palaeoclimate Reconstruction J. R. Statist. Soc. A.,
169, Part 3, 1-36.

Huntley, B (1993). The use of climate response surfaces to reconstruct
palaeoclimate from quartenary pollen and plant macro-fossil data.
Philosophical Transactions of the Royal Society of London, Series B
- Biological Sciences, 341, 215-233.

Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian infer-
ence for latent Gaussian models using Integrated Nested Laplace Ap-
proximations. Journal of the Royal Statistical Society: Series B, 71,
319-392.

Souza, A.D.P. and Migon, H. S. (2010). Bayesian outlier analysis in binary
regression. Journal of Applied Statistics, Vol 37, No. 8, 1355-1368.



Prediction for an observation in a new cluster
for Multilevel Logistic Regression considering
k random coefficients

Karin Ayumi Tamura 1, Viviana Giampaoli2

1 Departamento de Estat́ıstica, IME-USP, Rua do Matão, 1010, Cidade Universi-
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Abstract: This article addresses the problem of predicting the outcome variable
for an observation in a new group, using the multilevel logistic regression model
(MLRM) with k random effects. We fitted the MLRM considering the random
intercept and one random slope, nonetheless the method can be implemented for
k random effects. With this objective, we used two estimation methods in the
multilevel models: Penalized Quasi-Likelihood (PQL) and Laplace Approxima-
tion. The prediction multilevel approach was applied to a set of data related to
nutritional status of children.
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1 Introduction

This paper presents a novel approach to predict the outcome variable of an
observation in a new cluster using the Multilevel Generalized Linear Model
(MGLM) considering k random effects. In this case, it is not possible to
predict the outcome using the traditional method, because the estimates
of the random effects there are not available for the new groups. Extending
the method presented in Tamura and Giampaoli (2010), our proposal is to
predict the outcome using the MLRM with k random effects.

2 Prediction

Let a MGLM with 2 levels and yij be the outcome for the j-th observation
in the i-th cluster, in which i = 1, . . ., q and j = 1, . . ., ni. Let the density
function be defined by

f(yij |αi) = exp

[(
aij
φ

)
(yijγij − b (γij)) + c

(
yij ,

(
aij
φ

))]
, (1)

where aij is a weight, b(·) and c(·, ·) are known functions associated with
the exponential family and φ is the dispersion parameter. γij is associated
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with µij = E(yij |α), which in turn is associated with a linear function
through a link function g(·). Besides, g(µij) = ηij = xtijβ + ztijαi, where
xij is a vector of known independent variables (p × 1) associated with β,
β is a vector of fixed effects (p × 1), zij is a vector of known independent
variables associated with αi (k×1) and αi is a vector of the random effects
(k× 1) of the i-th cluster, i = 1, . . . , q. The vector ztij is defined by ztij=(1,
z1ij , z2ij , . . ., z(k−1)ij). In particular, under the so called canonical link,
γij = ηij . Furthermore, α1, . . . ,αq are i.i.d. with αi ∼ Nk(0, Σ), in which
Σ is the unknown covariance matrix of the random effects.

2.1 Prediction Function for k random effects

Consider the prediction problem as ς̃ = ς(β,αS), in which S is a subset
of {1, . . ., q} and αS = (αi∈S). Let yS = (yi)i∈S , where yi = (yij)1≤j≤ni .
Under the above model, in sense of minimum MSPE (Mean Squared Pre-
diction Error), the BP (Best Predictor) of ς for S = {i} is given by
ς̃i = E(ςi|yi) = E(ςi(β,αS |yS)).
Tamura and Giampaoli (2010), based on Jiang and Lahiri (2006), presented
a method to predict the outcome variable of an observation in a new cluster,
considering only the random intercept. This method was extended to k
random effects in this work. In order to predict the outcome variable for a
new cluster, we considered the distribution of αi, where αi ∼ Nk(0, Σ),
by the assumption of the model. To predict αi, for i /∈ S, as we do not

know its value, we used the multivariate linear transformation αi=Σ1/2ξ,
with ξ ∼ Nk(0, I). Furthermore, we denoted αi =u to explicitly indicate
the prediction as follows

u1

u2

...
uk

 =


ξ1v11 + ξ2v12 + · · ·+ ξkv1k

ξ1v21 + ξ2v22 + · · ·+ ξkv2k

...
ξ1vk1 + ξ2vk2 + · · ·+ ξkvkk

 .

Thus, the BP prediction function, based on (1), can be written as

ς̃ij(β, ξ) =

∫
ξ1

. . .
∫
ξk

(ς(β, (ξ1, . . . , ξk)) · exp(φ−1Si(β, (ξ1, . . . , ξk))))f(ξ1, . . . , ξk)dξ1 . . . dξk∫
ξ1

. . .
∫
ξk

exp(φ−1Si(β, (ξ1, . . . , ξk)))f(ξ1, . . . , ξk)dξ1 . . . dξk
,

(2)

where f(ξ1, . . . , ξk) = f(ξ1) · · · f(ξk) with f (ξm) defined by the univariate

standard normal density, withm = 1, . . . , k, and Si(·) =
ni∑
j=1

aij(yijγij − b(γij)).

2.2 Prediction: Multilevel Logistic Regression Model

Consider the MLRM with the binary response yij . This model can be de-
fined by g(µij) = logit(P (yij = 1|αi)) = logit(pij) = xtijβ + ztijαi. The
Binomial distribution belongs to the exponential family and based on (1),
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b(γij) = log(1 + exp(γij)) and φ = ni. As logit function is a canonical link,
then γij = ηij . This paper particularized the BP function presented in (2)
for MLRM. Lets define ς̃(β,αi) = p̃ij . Since ς̃ is usually unknown, we re-

place ς̃ by an estimator ς̂. Then, ς̂ = ς(β̂,Σ̂ξ) = p̂ij is denominated EBP
(Empirical Best Predictor) and is given by

exp(xtij β̂)
∫
ξ1

. . .
∫
ξk

exp((yi.+1)ztijû)

1+exp(xt
ij
β̂+zt

ij
û)
·
∏ni
l=1

1

1+exp(xt
il
β̂+zt

il
û)
f(ξ1, . . . , ξk)dξ1 . . . dξk∫

ξ1

. . .
∫
ξk

exp(yi.ztijû) ·
∏ni
l=1

1

1+exp(xt
il
β̂+zt

il
û)
f(ξ1, . . . , ξk)dξ1 . . . dξk

,

where ztijû = (ξ1v̂11 + . . . + ξkv̂1k) + . . . + (ξ1v̂k1 + . . . + ξkv̂kk)zt(k−1)ij .

Note that, since we do not know yi. and aij , we assumed that yi. = ni./2

and
ni∑
j=1

aij = ni..

3 Application

In order to evaluate the nutritional condition of the newborn children, we
considered a longitudinal data including 241 newborn males. The informa-
tion of each child was observed 2, 4, 6, 9, 12, 15 and 18 months after birth.
HAZ-score is a nutritional classification based on the height of the children,
which was collected at each observation time. The outcome of the problem
is the HAZ-score, classified two categories: 1 - heavy unnourished and 0 -
otherwise.
To illustrate the procedure, we considered a random sample of 50% of the
clusters (120 children) in the training data set. The remaining groups, 121
children, were considered in the validation data set. The training data set
was used to fit the models. The validation data set was assessed to predict
the outcome, based on the parameters estimate of the model provided by
the training data set. The independent variable associated with the fixed
effect was ln(weight of the newborn child). In the multilevel model, we
considered as independent variable associated with the random slope: the
deviation from the child’s weight expected for the period. This variable was
calculated as zij = weightij − (w.j − σ.j), in which w.j =

∑q
i=1 weightij/q,

σ2
.j =

∑q
i=1(weightij − w.j)2/q, where i indexes the children in the j-th

observation months.
In Table 1, we can observe the parameters estimate of each model. An-
alyzing the fixed effects, in all models, the intercept and the slope were
significant. Comparing the estimation methods in multilevel model, one
possible reason for the differences between the parameters estimate can be
explained by the fact that the PQL produces biased estimates (see, Cole et
al., 2003), although the PQL is more efficient than Laplace regarding the
estimate of the standard error. The values presented in Table 2 were based
on the cut off which maximized the KS = |Sensibility−(1−Specificity)|.
In both data sets, the KS measure outperformed in the multilevel models
in comparison to the traditional logistic regression.
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TABLE 1. Usual and multilevel models fitted with PQL and Laplace methods.

Estimate SE P-value SE/Estimate

Usual Estimation

Intercept 7.011 0.736 <0.00 10.50%
Ln(Weight of the newborn child) -6.939 0.663 <0.00 -9.55%

PQL Method

Intercept 9.877 2.624 <0.00 26.57%
Ln(Weight of the newborn child) -10.671 2.314 <0.00 -21.68%

Standard Deviation of the Random Effects (σ1, σ2) (4.36, 2.97)

Intraclass correlation (-0.82)

Laplace Method

Intercept 6.830 2.441 0.005 35.40%
Ln(Weight of the newborn child) -8.418 2.142 <0.00 -25.44%

Standard Deviation of the Random Effects (σ1, σ2) (4.50, 2.17)

Intraclass correlation (-0.92)

TABLE 2. KS for the usual and multilevel models.
Performance Measures Usual Model PQL Method Laplace Method

KS for Training data set 44.3 83.2 81.0
KS for Validation data set 43.5 49.5 57.9

4 Conclusions

The main advantage of the proposed methodology is the possibility to pre-
dict the outcome variable in MLRM with k random effects. For a future
work, it is interesting to apply the EBP methodology in others distributions
belonging to exponential family.

Acknowledgments: This work received partial financial support from
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Abstract: We consider multivariate regression smoothing through a conditional
mean shift procedure. By computing local conditional means iteratively over a
set or grid of target points, at each iteration a “net” is formed which gently drifts
towards the data cloud, until it settles at the conditional modes of the response
distribution. The method is edge-preserving and allows for multi–valued response.
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1 Methodology

Given d-variate covariates Xi = (Xi1, ..., Xid)
T and scalar response values

Yi where i = 1, ..., n, we find the regression surface via the conditional
modes of Y given X = x. These are determined by the conditional density
function, f(y|x), which can be estimated through

f̂(y|x) =
f̂(x, y)

f̂(x)
=

∑n
i=1G

(
Yi−y
b

)∏d
j=1K

(
Xij−xj
hj

)
b
∑n
i=1

∏d
j=1K

(
Xij−xj
hj

) , (1)

where G and K are univariate (e.g. Gaussian) kernels, and the subscript
j denotes the j−th component of the corresponding vector. The values b
and hj are bandwidth parameters to be selected. At each x there may be

more than one conditional mode since f̂(y|x) can have several maxima.

By setting ∂f̂(y|x)
∂y = 0, one obtains a conditional mode ym (argument x

omitted for ease of notation) as the solution to the estimation equation
ym = µ(ym), with

µ(ym) =

∑n
i=1G

(
Yi−ym

b

)∏d
j=1K

(
Xij−xj
hj

)
Yi∑n

i=1G
(
Yi−ym

b

)∏d
j=1K

(
Xij−xj
hj

) . (2)

Since this cannot be solved analytically, we solve it iteratively using the
result by Cheng (1995) that, starting from any y0 ∈ IR, the mean shift
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procedure y`+1 = µ(y`) converges to a nearby conditional mode. In order
to detect more than one mode for each x it is necessary to specify more than
one starting point for the mean shift, typically two. For bivariate predictors,
if y0 is (for all x) set greater than all Yi, the simultaneous iterative execution
of the mean shift resembles visually a net falling onto the data and forming
a surface. Of course, if y0 is below rather than above all Yi, we would talk
about a “rising” net. We emphasize that the techniques proposed in this
section do neither require the estimation of any density function, nor the
solution of any optimization problem (such as least squares) at any stage;
all computational work is carried out by the mean shift.

2 Examples

Figure 1 (left) shows data from a wheat yield trial, where latitude and lon-
gitude serve as covariates (the data are part of R package nlme, Pinheiro et
al. (2008)). Figure 1 (right) provides the surface formed after 30 iterations
of the mean shift process on the dataset. Here h1 = 3.18, h2 = 3.18 and
b = 5.61 after using the bandwidth selection methods described in Section
4.
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FIGURE 1. The procedure applied to the wheat yield dataset.

Figure 2 illustrates the characteristics of this smoothing technique through
simulated data sets of size n = 200. Data set A is simulated from the uni-
variate function y = sin(0.2x1) + cos(x2) and subjected to Gaussian error
with standard deviation 0.05. Data set B has a partially bimodal response,
which splits for x1 ≥ 0.5 into two branches. For x1 < 0.5 the response is
simulated from the univariate function y = 1.5 + 3x1 with Gaussian error
of standard deviation 0.4. For x1 ≥ 0.5, the upper plane is centered at
y = 3 and the lower plane at y = 1; the error standard deviation is 0.2
each. One observes from Figure 2 how the estimated surfaces develop after
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different numbers of iterations, `, with starting points positioned above (up-
per estimated surface) and below (lower estimated surface) all responses.
The right hand column of Figure 2 demonstrates clearly that the proce-
dure is edge-preserving, and able to identify multiple branches when the
underlying conditional distribution is multimodal, where other regression
techniques could not successfully describe it.

3 Relevance of a mode

When there exist more than one mode of the conditional response distribu-
tion for a given x, it is interesting to evaluate the relevance of the different
modes. To estimate the probability associated with a conditional mode, one
integrates numerically over the part of the estimated conditional density
which forms that modal peak. The search for the minimum and the inte-
gration can be done simultaneously by descending in small steps from the
modes and increasing the integral until either the boundary or the next dip
separating the modes is reached (Einbeck and Tutz, 2006). For the simu-
lated data from the right hand column of Figure 2, Figure 3 (left) shows
a surface of probabilities, calculated as described, showing the probability
of data being present in the mode captured by the “falling net”. Figure
3 (right) shows the same for the “rising net.” For this data set, the plots
show a probability of 1 for about half of all values of x; this is expected
since the response is unimodal for these x.

4 Bandwidth selection

In the case of multivariate predictors, the problem of bandwidth selec-
tion is more challenging than in the univariate case, since values must
be selected for all the hj as well as for b. For the selection of bandwidth
b, one can resort to univariate conditional density bandwidth selectors,
such as cde.bandwidths in the package hdrcde, Hyndman (2010), since
this bandwidth does not directly depend on d. Performing this for each
covariate separately and then taking the mean as b is effective here. Given
b, the hj are successfully selected by adapting Bashtannyk and Hyndman’s
(2001) univariate regression-based bandwidth selector for use with multi-
variate covariates, as the authors themselves suggest doing. Therefore we
standardize the covariates and search for an optimal h = h1 = ... = hd.
The extended regression-based bandwidth selector minimizes the penalized
average squared prediction error Q(h) with respect to h, for a fixed b, where
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Q(h) =
∆

n

N∑
k=1

n∑
i=1

{
1

b
G

(
Yi − y′k

b

)
− f̂(y′k|Xi)

}2

×p

 (K(0))d∑n
l=1

∏d
j=1K

(
Xij−Xlj

h

)
 (3)

where {y′1, ..., y′N} are equally spaced over the sample space Y with y′i+1 −
y′i = ∆ and where p(u) = (1 − u)−2 is a penalty function. This p(u) is
identical to that used in generalized cross-validation, but differs from the
one used typically in the univariate case for this technique, since this was
found to perform badly in the multivariate setting. Once h has been found,
it is unstandardized and the modal regression is then carried out with
unstandardized covariates and bandwidths. Following this procedure for
the wheat yield data gives the bandwidths stated in Section 2.

5 Discussion

This work constitutes essentially a multivariate extension of the multimodal
regression technique introduced in the context of traffic data modelling in
Einbeck and Tutz (2006). The problem of bandwidth selection has been
addressed by appropriately extending bandwidth selectors which were de-
veloped for conditional density estimation with univariate predictors by
Bashtannyk and Hyndman (2001).
Attractive features of the technique are the computational simplicity, the
edge-preserving property, and the visual appeal. Moreover, the method is
able to deal with multi–valued response, though it should be admitted
that data of this type are relatively rare, and that multiple modes in the
response distribution may be an indicator that important covariates have
been omitted from the model. Nevertheless, the presented approach may
still serve to detect and visualize situations of this type.
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FIGURE 2. The left column displays the surfaces for simulation A, for
` = 1, 2, 3, 15 (from top to bottom). The right column shows the same for simu-
lation B.
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FIGURE 3. Left: Bivariate probability plot for the “falling net” (left) and the
“rising net” (right); each for the fitted surface from Figure 2 (bottom right).
Note that the orientation is rotated in order to allow for a better view of the
probability surfaces.
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Abstract: This paper studies model selection strategies for semiparametric ad-
ditive models fit with penalized regression splines. This estimation method is
attractive because of its link to mixed models. We work specifically with outlier
robust versions. In the context of mixed models there exist two different forms
of AIC. The marginal AIC (MAIC) is used for selecting covariates in the model,
and is based on the marginal likelihood. The conditional AIC (CAIC) is based
on the conditional likelihood given the random effects, and is used for estimating
smoothing parameters as well as for selecting covariates in the parametric part
of the model. Our proposal leads to robust versions of the MAIC and CAIC that
are based on S-estimators. Simulated data and real data examples are used to
illustrate the effectiveness of the proposed method.

Keywords: Additive model; Linear mixed model; Penalized regression spline;
S-estimator.

1 Introduction

Additive penalized regression spline models have found many applications
in the last few years. Variable selection in these models is challenging. We
need to select variables in the nonparametric component as well as iden-
tify significant variables in the parametric component. An AIC based on
the marginal likelihood is generally used in linear mixed models (marginal
AIC) and returned by standard statistical software. The paper by Vaida
and Blanchard (2005) focuses on model selection for linear mixed models
using the conditional Akaike information criterion and shows that the clas-
sical AIC is not appropriate for conditional inference to take into account
both the fixed and random parts of linear mixed models. Liang et al (2008)
propose the corrected conditional AIC that accounts for the estimation of
the variance parameters. Greven and Kneib (2010) study the theoretical
properties of both the marginal and the conditional AIC. All of these vari-
able selection procedures need special care in the presence of outliers in
the data. The main purpose of this paper is to study robust versions of
the marginal and conditional AIC in linear mixed models obtained from
additive semiparametric regression splines.
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2 Methodology

Consider the semiparametric additive regression model

Yi =

p∑
j=1

βjXji +

q∑
j=p+1

mj(Xji) + εi, i = 1, · · · , n. (1)

where the functions mj are smooth, but not specified. Model (1) is written
using matrix notation as y = Xγ + Zu + ε. where y is a (n × 1) response
vector, γ and u are, respectively, fixed and random effects, X and Z are
design matrices for, respectively, fixed and random effects; ε is the error
term. We assume u ∼ NqK(0, G), ε ∼ Nn(0, R) where G = σ2

uIqK and
R = σ2In. We define λ = σ2/σ2

u. Estimation of the parameters γ and
prediction of u leads to minimize the penalized least squares criterion

‖ Y −Xγ − Zu ‖2 +λutDu.

Copt and Victoria-Feser (2006) compute the S-estimators of the marginal
model Y ∼ N(Xγ, V ), where V = (ZtGZ + R). Instead, we consider the
conditional model Y |u ∼ N(Xγ+Zu,R). Assume the use of normal random
effects. We consider the joint density of y and u, f(y, u) = f(y|u) f(u). The
constraint of the S-estimators corresponding to the conditional model is,

1

n

n∑
i=1

ρ
(√

(Yi −Xiγ − Ziu)tR−1(Yi −Xiγ − Ziu)
)

= b0. (2)

The lagrangian Ljoint is as follows,

Ljoint = log |R|+ c

[
1

n

n∑
i=1

ρ(di)− b0
]
− 1

2
log |G| − 1

2
utG−1u+K, (3)

where di =
√

(Yi −Xiγ − Ziu)tR−1(Yi −Xiγ − Ziu) and c, b0 and K are

constants. Robust estimators γ̂, û, R̂ and Ĝ are computed by minimizing
(3) and solving (2).

2.1 Marginal and Conditional AIC in additive models

The marginal AIC comes from the marginal model Y ∼ N(Xγ, V ),

MAIC = −2 log{f(y|γ̂, V̂ )}+ 2 (p+ v + 1),

where f(y|γ̂, V̂ ) is the maximized marginal likelihood and (p+v+ 1) is the
number of parameters in the marginal model. The corrected conditional
AIC comes from the conditional model Y |u ∼ N(Xγ + Zu,R),

CCAIC = −2 log{f(y|γ̂, û, R̂)}+ 2 (φ0 + 1),

where f(y|γ̂, û, R̂) is the maximized conditional likelihood and φ0 represents
the bias corrected form of the effective degrees of freedom as proposed in
Greven and Kneib (2010) for unknown variance components.
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2.2 AIC based on S-estimators in additive models

Based on the results in Tharmaratnam and Claeskens (2010), we can write
the form of the AIC based on S-estimators in additive models as,

AIC.S = 2 log |Σ̂s|+ 2 penalty

where Σ̂s is the covariance matrix of the S-estimator. A robust version of
the marginal AIC is

MAIC.S = 2 log |V̂s|+ 2 (p+ v + 1),

where V̂s is the S-estimator of V from the marginal model Y ∼ N(Xγ, V ),
p is the number of columns of X and v + 1 is the number of variance
components. A robust version of the corrected conditional AIC is

CCAIC.S = 2 log |R̂s|+ 2φs,

where R̂s is the S-estimator of R from the conditional model Y ∼ N(Xγ+
Zu,R), φs is the trace of (∂ŷ/∂y) with all variance components unknown,
ŷ = Xγ̂s + Zûs, with γ̂s and ûs the S-estimators from the conditional
model.

3 Results and Conclusion

We conduct a simulation study to select a best model using marginal and
conditional AIC based on ML- and S-estimators.

3.1 Simulation results

We consider the non-linear function m1(x) = 1 + x + 2d(0.3 − x)2, the
covariate values x ∼ U(0, 1). In the model, d is a constant and increasing
values of d correspond to the increased non-linearity. We generate 11 dif-
ferent models corresponding to d = (0, 5, 10, . . . , 50). The model is linear
in x when d = 0. In the case of no outliers, the error terms ε ∼ N(0, 1).
For each value of the constant d, for each simulated data set, we use the
MAIC, CCAIC, MAIC.S and CCAIC.S to decide on either the linear model
or the more complex model. To assess the performance of the marginal
and the conditional AIC for distinguishing between linear and non-linear
models, we compute the frequency of selecting the nonlinear model for each
d value. We use 1000 simulated data sets for both cases with (a) no outliers
and (b) 20% outliers on the error terms, generated from a N(100, 0.52)
distribution for the sample size n = 100.
From Figure 1 we observe that the CCAIC selects a larger proportion
of nonlinear models than the MAIC (which is the true model when d 6=
0). This holds for both maximum likelihood estimators and S-estimators.
In these penalized spline models, the random effects correspond to the
spline coefficients. The CCAIC is better suited to decide on the inclusion
of random effects (i.e. nonlinear effects in this setup) than the MAIC. The
results do not change much for different values of d.
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FIGURE 1. Proportion of selected larger models from MAIC (solid line), CCAIC
(dashed line), MAIC.S (dotted line) and CCAIC.S (dot-dashed line) with mean
function m1(x) (a) no outliers, (b) 20% of outliers in the data.

3.2 Conclusion

Robust versions of marginal and conditional AIC are needed for the data
with outliers on the response variable in additive penalized regression splines
models. The CCAIC selects higher proportions of more complex models
than the MAIC, with or without outliers in the data.
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Statistical modeling of geographic risks for
very low birth weights near Texas superfund
sites

James A. Thompson1
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Abstract: The first step for investigating potential geographic disease clusters
has commonly been to use registry health data to assess the statistical probability
of an elevated risk within some arbitrary boundary. Most investigations fail to
demonstrate a statistically significant risk and the investigations are often ended.
Recent advances in the statistical modeling of geographic risks offer potential to
increase the sensitivity of this initial assessment. We propose statistical modeling
of an exceedance probability based on geographic coordinates as an alternative
to evaluating arbitrary locations. The current study mapped risks for very low
birth weights using an Intrinsic Conditional Autoregressive (ICAR) model. The
data were adapted to apply to a 20 by 20 grid of pixels centered at each of the
57 listed and recently de-listed federal superfund sites in Texas. A Geographical
Information System (GIS) evaluation of the risk estimates and the exceedance
probabilities was performed. The study identified several locations of high risk
for births with very low birth weight.

Keywords: VLBW; disease mapping; statistical model.

1 Introduction

1.1 Very Low Birth Weight

Fetuses are known to be especially susceptible to environmental toxins and
investigations of potential geographic clusters of adverse birth disorders
including very low birth weights (VLBW; birth weight < 1500 g) are com-
mon (Maisonet et al., 2004). The National Center for Environmental Health
(NCEH) defines a cluster as a greater-than-expected number of cases that
occurs within a group of people in a geographic area over a defined period
of time. The Centers for Disease Control and Prevention (CDC) provide
guidelines for investigation of potential clusters but, in the United States,
the investigation usually falls to the state health department (Kingsley et
al., 2007). Commonly the state health agency examines its health registry
data and performs statistical testing comparing incidence rates among ar-
bitrary geographic areas (Wheeler, 2007). Most investigations of potential
clusters fail to demonstrate statistical significance at a small p-value. Sev-
eral developments in the statistical modeling of geographic risk provide
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potential to increase the sensitivity of this initial evaluation. Collectively,
these advances address multiple aspects of statistical precision, enable flex-
ible cluster shapes and sizes and enable the direct modeling of the ex-
ceedance probability.

1.2 Modeling needs

The size and shape of potential clusters need to be flexible (Wheeler, 2007).
Investigators typically use chi-square tests of differences in expected and
observed case counts in census or political units. This approach does not
consider if areas with significantly more cases than expected are close to-
gether or scattered across a larger map. Furthermore, when a point source
is suspected, there should be a gradient of risk away from the source. Mul-
tiple point sources should demonstrate a more complex risk surface with
multiple peaks and valleys. It is now possible to directly model the posterior
probability that the standardized morbidity rate (SMR) estimate is greater
than one (Richardson et al., 2004). This is often called the exceedance prob-
ability. This parameter is affected by both the magnitude and the precision
of the SMR. We propose a statistical modeling of the exceedance probabil-
ity, based on the risk at geographic coordinates. The objective of this study
was to apply and evaluate small-scale Intrinsic Conditional Autoregressive
(ICAR) modeling of VLBW near 57 listed and recently de-listed federal
superfund sites in Texas.

2 Data

2.1 Registry health data

A database was created to evaluate the geographic risks according to the
mother’s living location at the time of childbirth as determined from birth
certificate data. Briefly, the creation of the database involved the retrieval
of all Texas birth records from January 1, 1990 to December 31, 2002 from
the Texas Department of State Health Services (TDSHS). Geocoding was
performed by the TDSHS, based on street addresses, and was 87 percent
complete. The latitude and longitude of birth locations were projected into
Universal Transverse Mercator 1983 (UTM83), Zone 14 units. All births
were located within a pixel using the mother’s address at birth and then
using GIS analysis. All birth weights less than 1500 g were classified as very
low birth weights.

2.2 Superfund sites

The identities and locations of the 57 listed and recently delisted superfund
sites were first identified using latitude and longitude given on the Texas
Site Status Summaries on the EPA Program Region 6 Superfund website
(http://www.epa.gov/earth1r6/6sf/6sf-tx.htm). The superfund sites
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were then visually identified on satellite imagery and the apparent centroid
was used as the location. The latitude and longitude of toxic site locations
were projected into Universal Transverse Mercator 1983 (UTM83), Zone
14 units.

3 Modeling

3.1 Intrinsic conditional autoregressive (ICAR)

We specified a convolution prior for the area-specific random effects using
the BYM model which partitions the overall random effect for each area
into the sum of a structured or spatial component plus an unstructured
or non-spatial component (Besag et al., 1991). The original BYM model
applied to continuous data that could be assumed to be normally distri-
bution. In disease mapping studies, this has been adapted to incorporate
normally distributed spatially correlated random effects into Poisson mod-
els for disease counts. This adaptation usually models the SMR, which is
defined as the number of cases / number of expected cases. We used the
UTM83 coordinates with a distance scale of 1 km between coordinates and
modelled the 20 x 20 grid surrounding each of the superfund sites. Each x,y
coordinate then represented the centroid of a 1 km x 1 km location that
we call a pixel. For each of the 400 pixels, the number of cases was counted
and the expected number of cases was the sum of individual expectations
accounting for individual risk factors. All models employed Bayesian infer-
ence, with vague or flexible prior beliefs and an MCMC implementation.
The MCMC implementation was performed by use of WinBUGS version
3.1.1 (Spiegelhalter et al., 2003). The initial 5,000 iterations were discarded
to allow for convergence and every hundredth of the following 1,000,000 it-
erations were sampled for the posterior distribution. Observing convergence
of two chains with widely different initial values checked convergence to the
posterior distribution.

3.2 DIC evaluation

To evaluate the spatial variance component, the full model was compared to
a reduced model using the Deviance Information Criterion (Spiegelhalter et
al., 2002). For the reduced model, spatial covariance was removed from the
model and random covariance retained. The DIC was modified to use half
the variance of the Deviance (var(D)/2) as the measure of model complexity
(Gelman et al., 2004).

3.3 GIS evaluation

When the DIC comparison supported the spatial modeling (i.e., the DIC
for the convolution model was lower than the DIC for the random model),
a GIS was used to evaluate SMR The parameterization used for GIS eval-
uation was the posterior probability that the spatial SMR estimate was
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greater than one and were taken directly from the full posterior distribu-
tions. We chose to report maps that identified at least 1 pixel with ex-
ceedance probability greater than 0.95 and we also identified the number
of maps that had adjacent pixels with exceedance probability greater than
0.95.

4 Main results

The areas around 57 federal superfund sites in Texas were evaluated for
incidence of very low birth weights. The incidence data were fit better
by a convolution model than the random model in 53 percent of the lo-
cations (30/57). Spatial covariance should be considered dependent upon
the existence of one or more spatially oriented causes. The search for lo-
cal cancer clusters, based on local spatial covariance, is considered both
more useful and also more specifically addresses public concerns The cur-
rent study deals with local spatial covariance by restricting the modeling of
spatial covariance to locations very near the putative toxic source and not
statewide. Of these superfund site locations 30 percent (17/57) had one
or more pixel, each representing a square kilometer, with an exceedance
probability of greater than 95 percent. Many of the locations had single
or multiple but isolated high-risk pixel locations. When the map of risks
shows isolated pixels with high exceedance probabilities, it indicates that
the random component of the convolution model is important. For loca-
tions with this finding, the possibility that there is a spatial pattern within
a 1 km x 1 km location exists and our study did not evaluate this possi-
bility. Our objective was to increase the sensitivity of the initial evaluation
of registry data. The current study was successful in identifying high-risk
locations. Lower exceedance probabilities will also generate considerable
interest and could be used to justify further investigation. Twelve percent
of the locations (7/57) had at least two neighboring pixels with exceedance
probabilities of greater than 95 percent. Evaluation of these maps was very
subjective and each of these maps will be presented. It is difficult to gain
causal inference from these maps because there very often are multiple
known point-sources near the cluster and that the exact size and shape of
the cluster varies with the choice of the center of the mapping location.
Furthermore, the issue of confounding will be very difficult to deal with,
especially with small numbers of cases.

5 Conclusions

The study identified several locations of high risk for births with very low
birth weight. These findings support a more vigilant approach of risk as-
sessment before investigators dismiss public concerns regarding a potential
disease cluster.
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Spatio-temporal risk smoothing and
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Abstract:
To study the evolution of geographical patterns of mortality or incidence risks
is very useful for epidemiologists and public health researchers to have a full
picture of the disease in space and time. However, official figures about mor-
tality/incidence up to a certain year are only available after a few years later.
This is why predicting mortality risks/incidence for future years is a necessary
task. These predictions are very valuable for health agencies to plan and co-
ordinate public health programs and clinical services. In this work, a P-spline
spatio-temporal model is considered for smoothing and forecasting space-time
risks. The mean squared error of the forecast values will be also derived. Results
are illustrated with prostate cancer data in Spain from 1975 to 2008. Forecast
values will be provided up to 2011.

Keywords: prostate cancer; mortality risk prediction; mean squared error.

1 Introduction

Epidemiologists are interested in studying the spatio-temporal distribution
of mortality/incidence risks to find some clues about the disease etiology.
It is also of great interest to make risk predictions for future years because
official figures about mortality/incidence up to a certain year are only avail-
able after a few years later, and this information is extremely valuable to
plan and coordinate public health programs, clinical services, and manage-
ment strategies. There are some work on prediction in disease mapping.
Clements et al. (2005) consider generalized additive models for cancer rate
predictions and compare them with Bayesian age-period-cohort models, but
they do not consider the spatial dimension. Malvezzi et al. (2011) simply
use joint point regression models to forecast cancer rates in the European
Union and they do not include the spatial component either.
In this work, a spatio-temporal P-spline model is considered to model the
spatio-temporal distribution of risks and to forecast risk values for future
years. This model incorporates spatio-temporal interactions. P-spline mod-
els have been used in the literature for forecasting purposes. For example,
in the context of insurance and pensions industry, Currie et al. (2004)
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propose a method for fitting and forecasting simultaneously when the co-
efficients are estimated using the expressions dependent on the B-splines
basis. Ugarte et al. (2009) consider a semiparametric longitudinal model to
smooth and forecast dwelling prices in several neighborhoods (small areas)
of a Spanish city. They also derive the prediction MSE of both fitted and
forecast values, as well as estimators of those quantities.
Very recently Ugarte et al. (2010) use a spatio-temporal P-spline model in-
corporating space-time interactions to smooth risks. These authors exploit
the mixed model representation of the P-spline model and use the well
known penalized quasi-likelihood technique (PQL)(Breslow and Clayton,
1993) for model estimation. The authors also provide the mean squared
error of the log risk predictor. In this work, this model is considered, and
attention is focussed on predicting risks for future years. Using the mixed
model reformulation of the P-spline model, forecasting will be carried out
by extending the B-spline basis in the time dimension.
The methodology will be used to analyze male prostate mortality cancer
data for 50 Spanish provinces (excluding Ceuta and Melilla) in the period
1975-2008. Risks predictions for future years will be also provided.

2 Spatio-temporal P-spline model

In this section, a spatio-temporal P-spline model (Ugarte et al., 2010) is
described. This model depends on a B-spline basis and on a penalty matrix
to control function wiggliness.
Let us consider n adjacent regions labelled i = 1, . . . , n, and T time periods
denoted by t = 1, . . . , T . Then, conditional on the relative risks rit, the
number of deaths from a rare disease in each area and time period, Cit, is
assumed to be Poisson distributed with mean µit = eitrit, that is

Cit|rit ∼ Poisson(µit = eitrit), logµit = log eit + log rit. (1)

Then, the log rit is modeled as

uit = log rit = f(x1i, x2i, t) = θ1B1(x1i, x2i, t) + . . .+ θKBK(x1i, x2i, t),

where x1i and x2i are the coordinates of the centroid of the ith small
area (longitude and latitude respectively), t is the time, f is a smooth
function to be estimated using P-splines with B-spline bases, θk are the
model coefficients, and Bk are the elements of the B-spline basis defined
as B = B3 ⊗ Bs. Here, B3, is the marginal B-spline basis for time and
Bs is the “row-wise” Kronecker product of the marginal B-spline bases for
latitude and longitud (see Eilers et al., 2006).
To control function wiggliness, the P-spline approach places penalties on
the coefficients . If P1, P2, and P3 are penalties for the marginal basis the
following penalty is considered

P = λ1Ic3 ⊗ Ic2 ⊗P1 + λ2Ic3 ⊗P2 ⊗ Ic1 + λ3P3 ⊗ Ic2 ⊗ Ic1 (2)
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where λi and ci, i = 1, 2, 3 are smoothing parameters and the number
of columns of the marginal B-spline bases respectively, Pi = D′iDi, and
the matrices Di are difference matrices to impose smoothing over adjacent
coefficients.
One of the most interesting aspects of the P-spline models is that they can
be reformulated as linear mixed models (in our case, as generalized linear
mixed models) using a one-to-one (orthogonal) transformation. Hence, the
P-spline model can be represented as

u = Bθ = Xβ + Zα, α ∼ N(0,F−1), (3)

where X and Z are the fixed and random effects matrices, and F−1 is the
diagonal covariance matrix for the random effects α derived from the mixed
model representation of the P-spline model (see Ugarte et al., 2010 for more
details).

3 Illustration

To illustrate the methodology, Figure 1 displays relative risks estimates
(1975-2008) and predictions (2009-2011) for six selected Spanish provinces,
together with 95% confidence bands. A decreasing trend in mortality can
be observed.
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FIGURE 1. Smoothed prostate cancer mortality risks estimations and predictions
with 95% confidence bands.
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Abstract: In fitting dose-response models to entomological data it is often nec-
essary to take account of natural mortality and/or overdispersion. The stan-
dard approach to handle natural mortality is to use Abbott’s formula. Standard
overdispersion models include beta-binomial models, logistic-normal, and discrete
mixtures. Here we consider combining these two aspects with extensions that al-
low for the modelling of the natural mortality and overdispersion. Two models
are developed: one including a random effect in the linear predictor and other
including a random effect in the natural mortality. We consider the application of
these models to data from an experiment on the use of a virus (PhopGV) for the
biological control of worm larvae (Phthorimaea operculella) in potatoes. Using
the models with random effects, we obtained a better fit than that provided by
the standard model.

Keywords: Bioassay; Natural mortality; Overdispersion; Random effects.

1 Introduction

Models for binary and binomial response grew out of the needs of a type
of experimental investigation known as bioassay. In a typical bioassay, dif-
ferent concentrations of a chemical compound are applied to batches of ex-
perimental subjects and the number of subjects in each batch that respond
to the chemical is then recorded. These values are regarded as observations
on a binomial response variable. Some experiments in entomology exhibit
evidence that responses can occur even at zero dose; here the response of
interest is death and this phenomenon is referred to as natural mortality.
Also the variation of the data may be greater than that predicted by the
model, commonly described as overdispersion.

1.1 Natural mortality and overdispersion

Among the available methods for the analysis of data with natural mortal-
ity, only a few can also handle overdispersion. According to Collet (2002),
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this additional variation can be attributed to relevant explanatory variables
that have not been adequately measured or controlled. This situation can
be modeled by the inclusion of a random effect and so a mixed model can
be used in modelling overdispersion. We modified the usual model, first
proposed by Abbott (1925), and considered two other models: one with
a random effect in the linear predictor of the dose levels, and another in
which the natural mortality was taken to be random.

1.2 Description of the dataset

The application here is to an experiment in which potatoes (Solanum
tuberosum L.) were each infected with mij = 30 larvae of Phthorimaea
operculella, and then, D different concentrations of a virus (PhopGV ) were
applied to samples of ni potatoes (observations are indexed by i = 1, . . . , D
and j = 1, . . . , ni). There was also a control sample (no virus, i = 0) with
n0 = 9 potatoes. The experiment was conducted at 18oC, and after 60 days
the numbers of dead larvae yij were counted.

2 Methodology

In modeling the observed proportions yij/mij , the yij can be assumed
to have a B(mij , π

∗
ij) distribution, where π∗ij the probability of response

depends on the natural mortality and the dose-response relationship.
A model for π∗ij (Morgan, 1992) is therefore

π∗ij = ωij + (1− ωij)πij , j = 1, ..., ni and i = 0, ..., D (1)

where πij is given by the tolerance distribution (normal, logistic or extreme
value), and ωij is the natural response probability. In general, we can model
πij and ωij as function of covariates and parameters defining three different
models:

Model (a) - Standard model

log

(
ωij

1− ωij

)
= γ′uij and log

(
πij

1− πij

)
= β′xij .

Model (b) - Random effect in the linear predictor of the dose levels

log

(
ωij

1− ωij

)
= γ′uij and log

(
πij

1− πij

)
= β′xij + σzi.

Model (c) - Random effect in natural mortality

log

(
ωij

1− ωij

)
= γ′uij + τvi and log

(
πij

1− πij

)
= β′xij ,
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where zi and vi are random effects with standard normal distribution.
If were possible to label the subjects who responded due to the applied dose
as yijd and those who responded naturally as yijc then the total number of
dead at dose dij would be

yij = yijc + yijd.

In the control group the number of larvae that died of a total of m0j that
did not receive the virus is y0j = y0jc.
The likelihood of Models (a), (b) and (c) is given by

L(ωij , πij ; yij) ∝
D∏
i=1

ni∏
j=1

[(1− ωij)(1− πij)]mij−yij [(1− ωij)πij ]yijdωyijcij

×
ni∏
j=1

ω
y0j

ij (1− ωij)m0j−yoj . (2)

The log-likelihood of (2) is given by

l(ωij , πij ; yij) ∝
D∑
i=1

ni∑
j=1

{(mij − yij) log [(1− πij)] + yijd log (πij)

+ (mij − yij) log (1− ωij) + yijd log (1− ωij)
+ yijc log (ωij)}

+

n0∑
j=1

[y0j log (ωij) + (m0j − y0j) log (1− ωij)]

= l(πij ; yij) + l(ωij ; yij). (3)

This log-likelihood is easy to maximize, because l(πij ; yij) + l(ωij ; yij) can
be maximized separately. The approach used to estimate the parameters
was the EM algorithm (Dempster et al., 1977), as also used in bioassays
with natural mortality by Hasselblad (1980). With the EM algorithm, the
complete log-likelihood (3) is maximized iteratively by alternating between
estimating yijc by its expectation under the current estimates of πij and
ωij (E step) and then, with the yijc’s fixed at their expected values from
the E step, maximizing l(ωij , πij ; yij) (M-step).
Let ψ=(γ,β, σ) be the combined parameter vector. The likelihood of Model
(b) is given by

L(ψ; y) =

D∏
i=0


∫ +∞

−∞

 ni∏
j=1

P (yij |ψ)

φ(zi)dzi

 . (4)

The integral in the likelihood (4) does not have a closed form except for Y
normal, and so for other response models it is approximated by a Gaussian
quadrature: the integral is replaced over the normal Zi by the finite sum
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over K Gaussian quadrature mass points zk with masses αk (Aitkin et al.
2009). The likelihood is then

L(ψ; y) =

D∏
i=0


K∑
k=1

 ni∏
j=1

P (yij |ψ)

αk
 ,

where P (yij |ψ) =
(
mij
yij

)
(π∗ij)

yij (1− π∗ij)mij−yij .
The likelihood is thus (approximately) the likelihood of a finite mixture
of exponential families density with known mixture proportions αk at
know mass-points zk, thus zk becomes another observable variable in the
regression, with regression coefficient σ. The log-likelihood is l(ψ; y) =
D∑
i=0

log

(
K∑
k=1

αkρik

)
, with ρik =

∏ni
j=1 P (yij |ψ).

Then

∂l

∂β
=

D∑
i=0

∑K
k=1 αkρik

∂ log ρik
∂β∑K

k=1 αkρik
=

D∑
i=0

ni∑
j=1

K∑
k=1

wiksijk(β),

where wik is the posterior probability that observation yij comes from
component k,

wik =
αkρik∑K
l=1 αkρil

and sijk(β) is the β-component of the score function for observation (ij)
in component k,

sijk(β) =
(yij − µijk)xij(
miµ−µ2

mi

)
g′ijk

.

Following Anderson and Hinde (1988), the estimate of σ can be found by
regarding Zi as an additional covariate and σ as an extra parameter in
the linear predictor. Estimation proceeds by fitting a weighted generalized
linear model using wik as additional weights. These weights are functions
of Zi, Yi, σ and β and must themselves be estimated iteratively.
The steps of the EM algorithm for models (a) (b) and (c) are the following:

E− Step : Estimate E(yijc|yij) under the current π
(k)
ij and ω

(k)
ij

y
(k)
ijc = E(yijc|yij , π(k)

ij , ω
(k)
ij ) =

{
ωijyij

ωij + (1− ωij)πij
for i = 1, ..., D;

M− Step for πij : Find π
(k+1)
ij by maximizing l(πij ; y

(k)
ijc |yij): π

(k+1)
ij

can be found from a binomial logistic regression of the responses

y
(k)
ijd = yij − y(k)

ijc with binomial denominator mij − y(k)
ijc and different

design matrix for models (a), (b) and (c):
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Model (a) - design matrix X;

Model (b) - with weights wik for a design matrix X augmented
by a vector z of the k Gaussian quadrature points;

Model (c) - design matrix X;

M− Step for ωij : Find ω
(k+1)
ij by maximizing l(ωij ; y

(k)
ijc |yij):

using a binomial logistic regression of the responses y0j and y
(k)
ijc

with binomial denominators m0j and mij and different design
matrix for models (a), (b) and (c):

Model (a) - design matrix U;

Model (b) - design matrix U;

Model (c) - with weights wik for a design matrix U augmented
by a vector z of the k Gaussian quadrature points.

In models (b) and (c) 20 quadrature points were used and the procedures
were implemented in the R package.

3 Main Results and Conclusions

We included in the standard model for natural mortality random effects,
with the aim to provide a better fit when the dataset exhibits overdisper-
sion. We concluded that data from biological assays that present natural
mortality and overdispersion can be more realistically modelled when a
random effect is included to account for variability in the larvae that re-
ceived the same dose. Table 1 presents the fit statistics (-2 Log Likelihood,
AIC, and BIC) for models (a), (b) and (c). For these three statistics, the

TABLE 1. Fit Statistics: −2 Log Likelihood, AIC, and BIC for models (a), (b)
and (c)

Fit Statistics Model (a) Model (b) Model (c)

−2 Log Likelihood 394.30 355.20 356.30
AIC 400.30 363.20 364.30
BIC 399.47 362.09 363.19

smaller the value the better is the fit. Can conclude that the model with
random effect in the linear predictor of the dose levels provides a better fit
than the model without the random effect in the linear predictor .
In Figure 1 is the plot of model (b) with equation given by

π̂ij = 0.32 + (0.68)
exp[−7.61 + 1.66 log10(dij) + 0.74zj ]

1 + exp[−7.61 + 1.66 log10(dij) + 0.74zj ]
.
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(b)
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Abstract: This work presents a study to compare the goodness of fit of linear
mixed models for some families of distributions through hierarchical generalised
linear model (HGLM) and generalized linear additive model for location, scale
and shape (GAMLSS). Simulations were used and the measure of goodness of
fit considered was the average of mean squared error (MSE) . According to the
simulations results it was found that two models showed similar results.

Keywords: Generalized linear additive model for location, shape and scale; Hie-
rarchical generalized linear model; Linear mixed model.

1 Hierarchical generalized linear model

Lee and Nelder (1996) originally defined HGLM as follows:

1. Conditional on random effects u, the responses y follow a generalized
linear model (GLM) family, satisfying

E(y|u) = µ, V ar(y|u) = φV (u).

The linear predictor takes the form

η = g(µ) = Xβ + Zυ

where υ = υ(u) for some monotone function υ(), are the random
effects and β are the fixed effects.

2. The random component u follows a distribution conjugate to a GLM
family of distributions with parameters λ.

2 Generalized linear additive model for location,
shape and scale

The generalized linear additive models for location, shape and scale (GAMLSS)
introduced by Rigby and Stasinopoulos (2005) are defined as follows:
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Let yT = (y1, . . . , yn) be the vector of the response variable observations.
Also, for k = 1, . . . , 4 let gk(·) be a known monotonic link function relating
the parameters (µi, σi, νi, τi) to explanatory variables and random effects
through an additive model given by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Zjkγjk

where θk and ηk are vectors of length n, Xk is a known design matrix of
order n×J ′k, βk is a vector of parameters of length J

′

k, Zjk is a fixed known
n × qjk design matrix and γjk is a qjk-dimensional random variable with

independent normal distributions γjk ∼ Nqjk(0,G−1
jk ), where G−1

jk is the

inverse of qjk × qjk symmetric matrix Gjk = Gjk(λjk), which may depend
on a vector of hyperparameters λjk.

3 Results and discussion

3.1 Poisson-Gamma model

The model structure is based on an example presented by Ronnegard et. al
(2011).Let yij be the jth response variable on the ith group (i = 1, . . . , n,
j = 1, . . . ,m), where yij follows a distribution Poisson and g(µi) = log(µi)
is the link function relating the parameter µ with the explanatory variable
and random effect through

η = log(µi) = Xiβ + Ziυ (1)

where Xi is an m×2 design matrix for the fixed component, β is the vector
of unknown parameters, Zi is anm×n design matrix for the random compo-
nent and υ is an n random vector, where v = log(u) and u ∼ gama(1/λ, λ).
The first column of Xi is represented by 1s and the second column is
represented by the random sample of the Poisson distribution with mean
2. The values for the parameters considered were λ ∈ {0.01, 0.05, 0.1, 1.0},
m = 5, 10, 15, 20, 25 observations by group, n = 5, 10, 15 groups, and β =
(−1.5, 0.5) fixed.
For each combination of the parameters was generated the matrix Xi, the
matrix Zi and the mean of yi through the equation (1), then was estimated

the vector of fixed effects β̂ through the HGLM and the GAMLSS. To
evaluate the performance of the two models was calculate the multivariate
Mean Square Error (MSE) de β̂ given by

MSE(β̂) = tr(Σ(β̂)) + (β̂ − β)T (β̂ − β) (2)

where tr represents the trace of the covariance matrix Σ of β̂. This proce-
dure was repeated 10000 times.
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FIGURE 1. Mean MSE for the estimators obtained for the Poisson-gamma model
with 5 groups

In Figure 1, the solid lines correspond to the mean of MSE of the model
GAMLSS and the dashed ones to the mean of MSE of the model HGLM
with n = 5. As seen on the graph, the two models presents similar mean
MSE and the model HGLM has mean MSE larger than GAMLSS when
n = 5. Were also performed simulations with number of groups of n = 10, 15
and the results showed the same pattern.

3.2 Poisson-normal model

In this model the response variable follow the Poisson distribution and the
link function is given in equation (1), where υ is an n random vector with
v = u and u ∼ Normal(0, σ2

u).
The values for the parameters considered were: σ2

u ∈ {0.1, 0.5, 1.0, 2.0},
m = 5, 10, 15, 20, 25 observations by group, n = 5, 10, 15 groups and β =
(−1.5, 0.5) fixed.
For each combination of the parameters was generated the matrix Xi, the
matrix Zi and the mean of yi through the equation (1), then was estimated

the vector of fixed effects β̂ through the HGLM and the GAMLSS. To
evaluate the performance of the two models was calculate the multivariate

MSE de β̂ given by equation (2). This procedure was repeated 10000 times.
In Figure 2, the solid lines correspond to the mean of MSE of the model
GAMLSS and the dashed ones to the mean of MSE of the model HGLM
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FIGURE 2. Mean MSE for the estimators obtained for the Poisson-normal model
with 5 groups

with n = 5. Were also performed simulations with number of groups of
n = 10, 15. As seen on the graph, the mean MSE decreases as the number
of observations by group increase. Also, the model HGLM has mean MSE
larger than GAMLSS when the number of observations by group is small.

4 Conclusions

In the Poisson-gamma and the Poisson-normal model was obtained similar
results on the mean MSE for the models HGLM and GAMLSS. The mean
MSE decreases as the number of observations by group increases.
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Abstract: A random-effects change point model is formulated to describe cog-
nitive decline in the older population in the years before death. Cognitive ability
is measured using the sum score of the Mini-Mental State Examination with in-
teger range 0-30. For the conditional distribution of the response variable the
binomial and the beta-binomial distributions are used. To acknowledge the pos-
sibility that not everyone in the population experiences a change in cognition,
two latent class are distinguished, namely one with change and one without.
Estimation is by marginal maximum likelihood where a parametric population
distribution for the random change point is combined with a non-parametric mix-
ing distribution for other random effects. The approach is illustrated using data
from a longitudinal study of ageing in Sweden.

Keywords: beta-binomial distribution, cognitive decline, mini-mental state ex-
amination, non-parametric maximum likelihood

1 Introduction

The scale of a cognitive test is often discrete. A typical example is the
Mini-Mental State Examination (MMSE, Folstein et al. 1975) which has
an integer scoring. The MMSE is a questionnaire for screening cognitive
impairment and has items on, for instance, language, orientation, and mem-
ory. Scores for each of the questions are added up to obtain a final sum
score ranging from 0 to 30.
We are interested in cognitive decline in the years before death. In case
there is a change in the rate of decline, we estimate how many years before
death this change takes place. Longitudinal MMSE data are available from
the Swedish OCTO-twin study (McClearn et al. 1997). All the death times
of the 656 individuals in our data are available and this allows years-to-
death as the time scale in our model.
To acknowledge the discrete nature of MMSE data, we propose a change
point model using discrete probability distributions for the response. De-
pendencies between the repeated measurements of an individual are dealt
with by using random effects. A common assumption for the distribution of
random effects is that these effects are multivariate-normally distributed.
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Our model relaxes this assumption partly by using a non-parametric dis-
tribution for some of the random effects. To take into account that not
everyone in the population experiences a change in cognition, two latent
classes (one with change and one without) are distinguished in the model.

2 Methods

2.1 Model

Given response variable Y , predictor η, link function h, and time t as ex-
planatory variable, the location is given by E[Y |t] = h(η) and η = f(t, β, τ),
where β = (β0, β1, β2) is the vector with the regression coefficients, and τ
is the change point. The broken-stick change point model is defined by

η = f(t, β, τ) =

{
β0 + β1t t < τ
β0 + β1τ + β2(t− τ) t ≥ τ, (1)

where the change is sudden and the function has no derivative at τ . The
model is readily extended to a random-effects model by assuming that
regression coefficients and the change point are individual-specific and fol-
low a population distribution. A parametric distribution is, for example,
(βi0, βi1, βi2, τi) ∼ MVN(µ,Σ) for individual i, where MVN denotes the
multivariate normal distribution with unknown mean µ and covariance ma-
trix Σ.
For the conditional distribution of the response, we discuss two discrete
distributions. The first is the well-known binomial distribution with the
logit link π = h(η) = exp(η)/(1 + exp(η)). This distribution is denoted by
Y | t ∼ B(π, n), where n is the maximum score (n = 30 for the MMSE).
The second is the beta-binomial distribution which is a mixture of two
distributions. Assume, firstly, that Y | t ∼ B(π, n), and, secondly, that π
has a beta distribution with parameters ν1, ν2 > 0. Then the marginal
probability distribution function for Y is given by

P (Y = y|n, ν1, ν2) =

(
n
y

)
B(ν1 + y, n+ ν2 − y)

B(ν1, ν2)
,

where B(ν1, ν2) is the beta function. Given definitions µ = ν1/(ν1 + ν2)
and φ = 1/(ν1 + ν2), the beta-binomial has E[Y |t] = nµ and Var[Y |t] =
nµ(1− µ)[1 + (n− 1)φ/(1 + φ)].

2.2 Semi-parametric maximum likelihood

Longitudinal data are given by y = (y1, ..., yN ), where N is the number of
individuals in the sample. For each individual i, we have yi = (yi1, ..., yini),
where ni is the number of observations for individual i. We assume condi-
tional independence in the sense that p(y|β, τ) =

∏N
i=1 p(yi|βi, τi), where

τ = (τ1, ..., τN ), β = (β1, ..., βN ), and βi = (βi0, βi1, βi2).
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For a random-effects model with regard to parameter β, a marginal like-
lihood can be formulated by integrating out βi using a parametric multi-
variate population distribution. As an alternative, we use non-parametric
maximum likelihood (NPML) estimation where the distribution for βi is a
discrete distribution on a finite number K of mass points zk, with masses
πk. The number of components K, the mass points and the masses are
unknown and are estimated by maximum likelihood (Aitkin 1999). The
likelihood conditional on τ is given by

p(y|τ, π, z,K) =

N∏
i=1

K∑
k=1

πkp(yi|τi, zk).

For the change point, we assume a parametric random-effects structure to
allow for heterogeneity across individuals. The likelihood is thus given by

p1(y|π, z,K, τ0, σ) =

N∏
i=1

∫ K∑
k=1

πkp(yi|τi, zk)p(τi|τ0, σ)dτi, (2)

where τ0 and σ are parameters for the distribution of the random change
point τi. The distribution of τi is a truncated normal distribution (trN)
with upper bound U equal to zero (death time) and lower bound L equal
to a fixed number of years before death. That is, τi ∼ trN(mean = τ0, sd =
σ, lower = L,upper = U).
For the mixture model with a class in which there is change over time, and
a class in which there is no change over time, assume that the parameter
vectors are given by Θ1 and Θ2 respectively. Then the likelihood of the
mixture model is given by

L(θ,Θ1,Θ2) =

N∏
i=1

θp1(yi|Θ1) + (1− θ)p2(yi|Θ2), (3)

where 0 < θ < 1 is the mixture proportion such that θ is the probability
to be in the class with the change, and p1(yi|Θ1) is given by (2). For
the stable class, and corresponding p2(yi|Θ2), we assume an intercept-only
logistic regression model, where the intercept is a random effect with K∗

components for the NPML.

3 Analysis

For one-class NPML models with K = 4 and linear predictors, good results
are obtained for the model with the beta-binomial distribution for the
response. This is a GAMLSS model (Rigby and Stasinopoulos 2005) and
can be fitted using the R package gamlss. With random intercept and slope
for t, and a fixed-effect for t2, we get -2Loglik = 10456 and AIC = 10482.
For comparison, we also fitted this model with the normal distribution for
the MMSE ceteris paribus. Although the conditional distribution of the
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FIGURE 1. Quantile residuals for GAMLSS. Left panel for model with normal
distribution, right panel for beta-binomial model.

MMSE is clearly not normal, this distribution is often chosen in linear
mixed models for longitudinal MMSE data, see, e.g., Laukka et al. (2006).
Quantile residuals (Dunn and Smythe 1996) for both models are depicted
in Figure 1. Randomisation is applied for the residuals in case the fitted
distribution is discrete (ibid.). Clearly, using the normal distribution for
the MMSE is not wise: there is a strong dependence between fitted values
and residuals. The AIC for the normal model is 12244.
Yet another alternative is using the binomial distribution in the GAMLSS
model. This choice yields an AIC of 11851. From this we infer that the
beta-binomial is the best choice to describe the change in the MMSE and
we will use this distribution in what follows.
The results from fitting models in gamlss are used to determine starting
values for the maximisation of the likelihood for the change point mod-
els. This maximisation is undertaken by using the multi-purpose optimiser
optim in R.
In the latent-class model (3), the non-linear broken-stick predictor is used
for the change class, and a linear predictor is used for the stable class. The
distribution for the response is the beta-binomial for the change class, and
the binomial for the stable class. We use K = 4 NPML components for β
in (1), and K∗ = 2 components for the intercept-only model for the stable
class. The truncation of the normal distribution for the random change
point is at -12 years and at zero. This model has -2Loglik = 10180, and
AIC = 10224.
The mean and the variance of the truncated normal for the change point
(and standard errors) are estimated as -5.07 (0.62) and 2.40 (0.24), respec-
tively. This means that if there is a change in the cognitive decline, then
in expectation this change will take place 5 years before death. The prob-
ability to be in the change class is estimated to be 0.63 (0.03). The left
panel in Figure 2 depicts the marginal means for the four components in
the change class. Parameters estimates can be found in Table 1.
Model validation was undertaken by looking at quantile residuals. First,
class membership was estimated, and individual change points were esti-
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FIGURE 2. Marginal means for the K = 4 components in the change class (left
panel, with masses in the legend and grey line for the overall mean trend. Quantile
residuals for the broken-stick model (right panel, with + for change class).

mated for those allocated to the change class. Secondly, given this infor-
mation, quantile residuals were assessed, see right panel of Figure 2.

TABLE 1. Parameters for the latent-class broken-stick model with K = 4 and
K∗ = 2. Standard errors in parentheses.

Latent-class mixture proportion θ 0.63 (0.03)

Change point model for change class
Mass points

β0 -3.24 (0.56) -0.02 (0.58) 1.18 (0.54) 2.52 (0.45)
β1 -0.29 (0.05) -0.12 (0.05) -0.13 (0.06) -0.06 (0.06)
β2 -2.26 (1.39) -0.47 (0.09) -0.30 (0.05) -0.87 (0.14)

Masses
0.09 (0.03) 0.17 (0.08) 0.41 (0.11) 0.33 (0.14)

µ -5.07 (0.62) σ 2.40 (0.24)
φ 0.05 (0.01)

Linear model for stable class
Mass points

α 2.00 (0.09) 3.28 (0.08)
Masses
0.38 (0.06) 0.62 (0.06)

4 Conclusion

A change point model with a discrete distribution for the response describes
the OCTO data better than models with linear predictors. A latent class
framework further improves statistical inference as it explicitly takes into
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account that not all individuals in the data experience a change in cognition
in the years before death.
In the analysis we have used the AIC to select between models. In general,
model selection should be undertaken with care. Large sample properties
of the likelihood ratio test statistic are violated in mixture models, see,
e.g., Aitkin et al. (2009). In addition, a model with a linear predictor is not
nested within a model with a (non-linear) change point predictor. Given
the large differences in the reported AICs and the model validation in the
current analysis, we are confident that the change point model in our data
analysis outperforms the other models.
Currently we are looking into extensions of the model using smooth change
point models and/or an increased number of NPML components.

Acknowledgments: The authors would like to thank Professor Boo Jo-
hanson, Department of Psychology, Göteborg University, Sweden, for the
OCTO data.
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Measuring the Brier score for frailty models
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Abstract: We apply the estimation technique of Graf et al. (1999) and Gerds
and Schumacher (2006) in estimating the Brier score for frailty models. We ex-
ploid the conditional and marginal model formulations of a frailty model, result-
ing in two different definitions of the Brier score: the ‘conditional Brier score’
which measures the joint predictive contribution of the covariates and clustering
effects, and the ‘marginal Brier score’ which measures the predictive ability of
the covariate effects only. These two measures are computed using a Bayesian
approach and both measures are applied to a dental data set.

Keywords: Brier score; frailty models; clustered data, survival.

1 Introduction

The Brier score of the survival curve is a well-developed measure of the
predictive ability of a survival model. An estimator has been formulated
that does not assume a certain class of survival models (Graf et al., 1999)
and that is shown to be consistent under independent censoring (Gerds and
Schumacher, 2006). An adaptation to clustered data however, as developed
for the concordance probability (Van Oirbeek and Lesaffre, 2010), is cur-
rently lacking. Therefore, we will adapt the Brier score to the frailty model
and apply it to our motivating data set.

2 Motivating Data Set

Factors that influence amalgam restoration longevity were investigated in a
clinical study (Kreulen et al., 1998). 183 patients were recruited during the
period 1977-1978 implying in total 1429 amalgam restorations. Patients
were followed up for maximally 16 years and 189 amalgam restorations
were replaced leading to a censoring percentage of 86.8 %. The clustered
data structure is unbalanced, with 4, 8 and 12 restorations seen in 41,
97 and 35 patients, respectively. The primary covariates were 4 cavity wall
treatments and the alloy of the amalgam. Of interest is the predictive ability
of these covariates and how the predictive ability of the model changes when
clustering effects are considered on top of covariate effects.
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3 Brier score for frailty models

In the presence of clustering, frailty models can be used as a modeling tool.
A frailty model accounts for clustering by introducing a frailty term wq for
each cluster q. The frailty term wq is the realization of a positive random
variable sampled from the frailty distribution f(w|ζ).
Two model formulations can be proposed for a frailty model: a conditional
frailty model that explicitly contains the frailty terms w in its formula-
tion and a marginal frailty model that is constructed by integrating out
w from the conditional frailty model (Duchateau and Janssen, 2008). For
both model formulations, two different types of survival curves can be con-
structed, i.e. the conditional survival curve SC(t|X,w) and the marginal
survival curve SM (t|X) with covariates X. The Brier score BS(t) consists
of comparing the event status of a given subject to its predicted survival
probability at a given time point t. Two different versions of BS(t) can be
defined for a frailty survival model, i.e. the conditional Brier score BSC(t):

BSC(t) = EX,T,W {I(T > t)− SC(t|X,w)}2. (1)

which compares for each subject the event status with the conditional sur-
vival curve and the marginal Brier score BSM (t):

BSM (t) = EX,T,W {I(T > t)− SM (t|X)}2. (2)

which compares the event status with the marginal survival curve. There-
fore, BSC(t) evaluates the predictive effect of the frailty model by explicitly
correcting for both covariate and clustering effects, while BSM (t) evaluates
the predictive effect of the covariate effects only. As such, the comparison
of BSM (t) with BSC(t) expresses the added (predictive) value of consid-
ering clustering effects on top of covariate effects. In case that the model is
correctly specified, it can be shown that BSM (t) ≥ BSC(t) for each time
point t. By comparing BSM (t) and BSC(t) with the Brier score of a non-
informative model BS0(t) such as the Kaplan-Meier model, a measure of
explained variance can be constructed (Graf et al., 1999).

4 Estimating BSC(t) and BSM(t) for frailty models

For univariate data, an uniformly consistent estimator has been provided
for the Brier score (Graf et al., 1999), even when censoring and failure
times are only conditionally independent given the covariates (Gerds and
Schumacher, 2006). Consider ti as the observed failure time of subjects i
such that ti = min(Ti, Tc,i) corresponds to the observed failure time with
Tc,i the right censoring time and Ti the true failure time. If ti = Ti then ti
is a true failure time and the censoring indicator δi equals to 1. If ti = Tc,i
then ti is a censoring time and the censoring indicator δi equals to 0. For a
sample i = 1, . . . , n, Gerds and Schumacher propose to estimate the Brier
score as:
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B̂S(t) =
1

n

n∑
i=1

{I(ti > t)− Ŝ(t|X)}2 ω(t, Ĝ(t|Xi)) (3)

with Ĝ(t|Xi) as the estimator of the conditional survival function of the
censoring times G(Tc > t|Xi). The estimated weights ω correspond to:

ω(t, Ĝ(t|Xi)) =
I{ti ≤ t} δi
Ĝ(ti − |Xi)

+
I{ti > t}
Ĝ(t|Xi)

. (4)

with ti− is the time point just before ti. BSC(t) and BSM (t) are estimated

by plugging in the conditional ŜC(t|X,w) and marginal survival curves

ŜM (t|X) respectively in (3). Note that B̂S(t) is a consistent estimator of

the Brier score only when Ĝ(t|X) is a consistent estimator of G(t|X).
We estimate BSC(t) and BSM (t) with a Bayesian approach and point es-
timates are obtained by taking the posterior median of the posterior distri-
bution of each separate Brier score. In our simulation study, this approach
resulted in well-performing point estimates. Since the point estimate of the
Kaplan-Meier model is consistent in the presence of clustering, this model
is used to calculate a point estimate of BS0(t).

5 Application

A Bayesian proportional hazards (PH) gamma frailty model with a gamma
independent increments baseline hazard function was fitted in WinBUGS
to the motivating data set. All the primary covariates were included in the
model and the PH assumption was found to be acceptable for each. Con-
vergence of the Markov chain was attained quickly, i.e. within the first 5000
iterations, such that a posterior sample of size 15000 was generated, dis-
carding the first 5000 samples as burn-in. The BS0(t), BSC(t) and BSM (t)
estimates are shown in Figure 1.

We see that for each time point B̂S0(t) ≥ B̂SM (t) implying a satisfactory
performance of the marginal model, since the inclusion of the primary co-

variates reduces the prediction error at all times. The behaviour of B̂SC(t)
is more peculiar, since at some time points, it performs worse than the
null and the marginal model. This indicates that the frailty distribution
might be misspecified since BSM (t) ≥ BSC(t) when the model is correctly
specified.

6 Conclusion

The conditional and marginal Brier score allow to investigate the predictive
ability of covariates and clustering effects separately. Moreover, the effect
of certain model assumptions on the predictive ability of the frailty model
can be quantified.
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FIGURE 1. BS0(t), BSM (t) and BSC(t) estimates for the amalgam data set.
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Abstract: Nonlinear models have been fitted to MEG data in order to improve
understanding of brain activity prior to exposure to a stimulus. Such models can
be used to characterise brain activity using only a few parameters in order to
study within and between subject variability. This knowledge will help to inform
estimation of temporal and spatial locations of brain activation in response to a
particular stimulus.
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1 Introduction

Magnetoencephalography (MEG) measures the electromagnetic activity in
the human brain by recording the magnetic fields outside the head. Data
are acquired by sensitive devices (SQUIDS) embedded in a helmet placed
over the head. The high temporal resolution of MEG is optimal for studying
the transient magnetic fields associated with the highly dynamic processes
of brain activations. Typically experiments consist of recording brain sig-
nals, under some experimental conditions or stimuli, for multiple trials on
each subject. These MEG trials are then averaged to enhance signal iden-
tification and reduce noise. Ventrucci et al. (2010) highlights the benefits
of using smoothing techniques and related statistical inference to estimate
a smooth signal in single trials.
In general, exposure to a stimulus will result in a brain activation which can
be characterised by a dipole (an area of the brain where MEG signals from
the sensors will display high amplitude in two adjacent brain locations that
are out of phase, see Figure 1). This dipole pattern can also have a temporal
dimension (an oscillation with a given frequency). It is of particular interest
to identify the spatial and temporal locations of a dipole effect associated
to the stimulus. A dampened version of this dipole pattern is also evident
in brain activity prior to a stimulus. This is a result of a 10Hz α band
frequency that is believed to be continuously present (see, for example,
Van Dijk et al. 2008; Schnitzler and Gross 2005). It is of interest in this
paper to investigate statistical models for brain activity in the pre-stimulus
period to estimate the location of a dipole and fit a dipole model. This will
enable characterisation of the signal in terms of only a few parameters,
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which can be used to study variability across trials and also estimate the
temporal and spatial location of the post-stimulus dipole.

1.1 The Data

MEG data have been collected from replicates of an experiment conducted
on 19 subjects to study event-related neural response. Each subject un-
dertook 135 trials of the experiment and the MEG signal was recorded on
S = 248 sensors and T = 256 time points which span a time window of
one second with onset stimulus occurring at 500 msecs. For this paper, the
analysis will focus on only one subject from this dataset in the pre-stimulus
period in order to study brain activity prior to a stimulus.

2 Methods

2.1 A Fixed Location Dipole Model

In order to obtain information about the brain location at which a dipole
occurs, Model 1 is fitted to each sensor (s = 1, . . . , S), producing estimates
of the amplitude and phase of the signal measured over time (t = 1, . . . , T ).

yt = αcos(2π(t− β)/f−1) + ε, ε ∼ N(0, σ2) (1)

where α is the amplitude, t is the time point in the pre-stimulus period, f
is fixed equal to 10 (the period f−1 is 0.1 for a 10Hz signal). The estimates
of the parameters from this model can be used to identify the sensors with
the largest amplitude that are out of phase, denoted s1 and s2. These two
sensors indicate the brain location of the two opposite poles of the dipole.
This knowledge can then be used to fit the fixed location dipole Model 2,
to all of the sensors measurements in the pre-stimulus period.

yts = (α1w1 − α1e
α2w2)cos(2π(t− β)/f−1) + ε ε ∼ N(0, σ2) (2)

where for i = {1, 2}, wi = exp(−0.5d2
s,si/h

2), ds,si is the geodesic distance
(see Ventrucci et al. 2010 for further details) between sensor si and sen-
sor s, and h determines the weights assigned to the neighbouring sensor
measurements, controlling the spatial extent of the fitted dipole.

2.2 A Varying Location Dipole Model

In order to estimate the location and orientation of a dipole in any trial,
Model 2 has been extended to Model 3. This model removes the need for
the preliminary search performed by Model 1.

yts = (αw1 − αα0w2)cos(2π(t− β)/f−1) + ε ε ∼ N(0, σ2) (3)
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where:

w1 = exp

(
−0.5

√
(xs − (xd + δcosθ))

2
+ (ys − (yd + δsinθ))

2
/h2

)

w2 = exp

(
−0.5

√
(xs − (xd − δcosθ))

2
+ (ys − (yd − δsinθ))2

/h2

)
where (xs, ys) are the coordinates of sensor s. As in Model 2, w1 and w2

are weights which define a smooth surface representing the spatial pattern
of the dipole. This surface is then assumed to have a temporal oscillating
pattern governed by the cosine component. Model 3 enables estimation of
the following parameters related to the dipole: location coordinates (xd, yd),
orientation θ, oscillating frequency f , phase β, amplitudes α and α0, spatial
extent h, and the distance δ between the two poles. A standard optimization
algorithm available in R (optim()) is used to fit the dipole spatiotemporal
surface to the MEG data.

3 Results

Model 1 and Model 2 have been fitted to MEG data observed from a
single trial of the experiment in a given subject, whereas the varying dipole
location Model 3 has been fitted to each trial.
The brain map in Figure 1 (left panel) displays the amplitude values esti-
mated by Model (1) over space. The circles identify the two marked sensors
s1 (white) and s2 (black) which respectively have the highest positive and
lowest negative amplitude at t = 0, and are out of phase. The raw data time
series at s1 and s2 are also illustrated (top right panel), together with the
signal fitted by Model 1 (bottom right panel). The out-of-phase oscillation
of s1 and s2 provides evidence of a back-front dipole effect, which means
that these two sensors identify the brain location which should be used to
fit the fixed location dipole model.
Model 2 has been fitted using the two marked sensors s1 and s2 by a
standard Newton-based iterative algorithm. The results from fitting this
model are displayed in Figure 2 where the raw signals for each marked
sensor s1 and s2 (plus a few sensors placed in their neighborhood) are
displayed along with the fitted values for each of these sensors. It can be
seen that for the marked sensors and their surrounding area the dipole
model is quite a good representation of the underlying signal.
In order to explore variability of the dipole location and orientation across
trials, Model 3 has been fitted to each trial. Figure 3 (left panel) illustrates
the spatial dipole pattern estimated by Model 3 using the same data ana-
lyzed in Figures 1 and 2. As expected, the dipole location estimate (white
circle) is approximately midway between the marked sensors s1 and s2 of
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FIGURE 1. Results from Model 1 (single sensor sinusoid model). On the left the
amplitude map highlighting s1 and s2 as the possible poles of a dipole effect.
On the right the raw data (top) and fitted values (bottom) at sensors s1 (dotted
lines) and s2 (solid lines) over the pre-stimulus time window. The spatiotemporal
pattern of the fitted values taken at s1 and s2 is an example of a spatiotemporal
dipole.

Figure 1, and the orientation estimate is also consistent with the back-
front dipole. The white line at the dipole location depicts the orientation
of the electrical current responsible for the dipole effect. More interestingly,
the varying dipole location model has been fitted to all of the trials. Esti-
mated locations and orientations for all trials are displayed in the central
and right brain maps, the latter displaying the back-front oriented dipoles
and the former the right-left. Results suggest that in most of the trials a
pre-stimulus dipole occurs in the central lobe of the brain regardless of its
orientation.

4 Current and Future Work

Current work includes extending Model 3 to model dipole effects occurring
in the post-stimulus period. The dipole model will be developed to enable
the frequency and amplitude of the signal to change over time and to allow
the location and orientation of the dipole to vary across trials. It is of
interest to develop a modeling framework able to characterise the signal
using only a few parameters. The variability of these parameters can then
be studied across trials and subjects to help inform the development of a
mixed effects spatio-temporal model for the MEG data.
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FIGURE 2. Results from Model 2 (fixed location dipole model). The raw data
(top) and the fitted values (bottom) for sensors surrounding s1 and s2.
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FIGURE 3. Results from Model 3 (varying location dipole model). On the left
panel the map of the fitted values, with the white circle and white line indicating
the location and orientation of the dipole. The central and right panels display
a brain map of dipole orientations (black lines) for each trial (note that the
estimated dipole location, here not marked, is placed in the middle of the black
line). Central panel: trials with a right-left dipole. Right panel: trials with a
back-front dipole.
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1 Introduction

Let us consider a model with likelihood function L(ψ, λ) = L(ψ, λ; y),
where ψ is a scalar parameter of interest, λ a d-dimensional nuisance pa-
rameter and y = (y1, . . . , yn) a random sample of size n. Standard first-
order methods for inference about ψ are based on the profile likelihood

Lp(ψ) = L(ψ, λ̂ψ), with λ̂ψ maximum likelihood estimator (MLE) of λ for
fixed ψ, and can be seriously inaccurate, in particular when the dimension
of λ is substantial relative to n. Starting from Barndorff-Nielsen (1983),
various modifications of the form Lmp(ψ) = Lp(ψ)M(ψ) have been pro-
posed, for suitably defined correction terms M(ψ); see Barndorff-Nielsen
and Cox (1994, Chap. 8) and Severini (2000, Chap. 9) for detailed accounts.
All the modifications are equivalent to second order and share the common
feature of reducing the score bias to O(n−1). However, the signed likelihood
ratio statistic based on Lmp(ψ) is standard normal only to first order, and
can be inaccurate in models with many nuisance parameters (Sartori et al.,
1999).
In this paper we discuss a modification of Lmp(ψ) from a new perspective
based on recent advances on unified Bayesian and frequentist methods (see
e.g. Ventura et al., 2009, Ventura and Racugno, 2011). More precisely, as
a convenient device to modify Lmp(ψ) we use a suitable default prior on
ψ only, which can be interpreted, from the frequentist point of view, as a
non-negative weight function on ψ. The possibility of adjusting a likelihood
function using priors, even if quite differently motivated, is suggested also
in Efron (1993) and Liseo (1993).
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Here, we focus on the class of strong matching priors for ψ derived from
Lmp(ψ) (Ventura et al., 2009), i.e. priors for which there is an agreement
between frequentist and Bayesian results and which validate the use of
Lmp(ψ) for Bayesian inference in the presence of nuisance parameters. We
then investigate theoretically and numerically the modification of Lmp(ψ)
through the matching prior

π(ψ) ∝ iψψ.λ(ψ, λ̂ψ)1/2 , (1)

where iψψ.λ(ψ, λ) = iψψ(ψ, λ)− iψλ(ψ, λ)iλλ(ψ, λ)−1iλψ(ψ, λ) is the partial
information, with iψψ(·), iψλ(·), iλλ(·), and iλψ(·) blocks of the expected
Fisher information i(ψ, λ). The implied modified profile likelihood is thus
defined as

L∗mp(ψ) = Lmp(ψ) iψψ.λ(ψ, λ̂ψ)1/2 . (2)

In Section 3 we will show that L∗mp(ψ) has better inferential properties
than Lmp(ψ): the signed likelihood ratio statistic based on (2) is standard
normal to second order, and the maximizer of (2) is a refinement of the
MLE of ψ. Finally, two examples are illustrated in Section 4.

2 Background theory

Let us consider the modified profile likelihood of Barndorff-Nielsen (1983),

given by Lmp(ψ) = Lp(ψ)C(ψ), with C(ψ) = (|jλλ(ψ, λ̂ψ)||jλλ(ψ̂, λ̂)|)1/2/

|`λ;λ̂(ψ, λ̂ψ)|, jλλ(·) block (λλ) of the observed information j(ψ, λ), `λ;λ̂(ψ, λ)

= ∂`(ψ, λ)/∂λ∂λ̂T , `(ψ, λ) = logL(ψ, λ), and (ψ̂, λ̂) MLE of (ψ, λ). Since
Lmp(ψ) depends only on y and ψ, it can be used also in the Bayesian
framework as a genuine likelihood (Chang and Mukerjee 2006, Ventura
et al., 2009, Racugno et al., 2010) to obtain the posterior distribution

πmp(ψ|y) ∝ iψψ.λ(ψ, λ̂ψ)1/2 Lmp(ψ).
Following standard Bayesian expansions, for πmp(ψ|y) a tail area approxi-
mation can be derived (Ventura and Racugno, 2011), of the form∫ ψ0

−∞
πmp(ψ|y) dψ =̇ Φ(r∗p) , (3)

where Φ(·) is the standard normal distribution and r∗p(ψ) is the modified

signed likelihood ratio statistic r∗p(ψ) = rp(ψ) + rp(ψ)−1 log(q(ψ)/rp(ψ)),

with rp(ψ) = sign(ψ̂ − ψ)[2(`p(ψ̂)− `p(ψ))]1/2, `p(ψ) = logLp(ψ),

q(ψ) =
`′p(ψ)

|jp(ψ̂)|1/2
|iψψ.λ(ψ̂, λ̂)|1/2
|iψψ.λ(ψ, λ̂ψ)|1/2

|`λ;λ̂(ψ, λ̂ψ)|
|jλλ(ψ, λ̂ψ)|1/2|jλλ(ψ̂, λ̂)|1/2

,

jp(ψ) profile observed information and `′p(ψ) = ∂`p(ψ)/∂ψ. Since r∗p(ψ)
corresponds to the expression derived in Barndorff-Nielsen and Chamberlin
(1994), (1) is a strong matching prior (Fraser and Reid, 2002).
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In view of (3), Hα = {ψ : |r∗p(ψ)| ≤ z1−α/2} is a high posterior density
credible set for ψ with approximate frequentist validity (1 − α), with zα
α-quantile of Φ(·). Note that Hα is also an accurate likelihood-based con-
fidence interval for ψ with approximate level (1 − α) based on r∗p(ψ) (see,
e.g., Severini, 2000, Chap. 7). Moreover, note that the posterior mode of
πmp(ψ|y) can be computed as the solution in ψ of the estimating equa-
tion r∗p(ψ) = 0, i.e. it coincides with the frequentist estimator defined as
the zero-level confidence interval based on r∗p(ψ) (Giummolé and Ventura,
2002).

3 A new modified profile likelihood

The agreement in (3) suggests to modify Lmp(ψ) as in (2) to define L∗mp(ψ).
In this section we illustrate the properties of L∗mp(ψ). In particular, using
results in Sartori et al. (1999), it can be shown that for `∗mp(ψ) = logL∗mp(ψ)
we have

`∗mp(ψ) = −1

2
(r∗p(ψ))2 +O(n−1) . (4)

Indeed

`∗mp(ψ) = `mp(ψ) + log π(ψ)

= −1

2
(rmp(ψ))2 + log π(ψ)

= −1

2
(rp(ψ))2 − rp(ψ)

[
NP +

1

rp(ψ)
log

1

π(ψ)

]
= −1

2
(rp(ψ) + NP + INF)2 +O(n−1)

= −1

2
(r∗p(ψ))2 +O(n−1) ,

where NP is the nuisance parameter adjustment NP= −(1/rp(ψ)) logC(ψ)
and INF is the information adjustment INF= (1/rp(ψ)) log(q(ψ)C(ψ))/rp(ψ)
(Barndorff-Nielsen and Cox, 1994, Sect. 6.6). This shows that `∗mp(ψ) is
equal, to second asymptotic order, to a r∗-type statistics, and the quantity

π(ψ) ∝ iψψ.λ(ψ, λ̂ψ)1/2 can thus be interpreted as a further adjustment to
the profile likelihood.
In view of (4), for the proposed modified profile likelihood (2) we have

that the associated signed likelihood ratio statistic r∗mp(ψ) = sgn(ψ̂∗mp −
ψ)[2(`∗mp(ψ̂

∗
mp)− `∗mp(ψ))]1/2, with ψ̂∗mp maximizer of `∗mp(ψ), corresponds

to r∗p(ψ) and thus is standard normal to second order. Moreover, ψ̂∗mp can
be computed as the solution of the estimating equation r∗p(ψ) = 0, and
thus is a refinement of the MLE, improving its small sample properties.
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(nx, ny) ψ = 0.8 ψ = 0.9 ψ = 0.95

(5,5) L∗mp(ψ) 0.952 0.949 0.949

Lmp(ψ) 0.941 0.944 0.943

(10,10) L∗mp(ψ) 0.948 0.952 0.951

Lmp(ψ) 0.944 0.946 0.947

(20,20) L∗mp(ψ) 0.949 0.949 0.950

Lmp(ψ) 0.949 0.947 0.946

(30,30) L∗mp(ψ) 0.951 0.951 0.950

Lmp(ψ) 0.948 0.949 0.949

TABLE 1. Coverage probabilities of 0.95% confidence intervals.

ψ = 0.8 ψ = 0.9 ψ = 0.95

(nx, ny) bias sd bias sd bias sd

(5,5) ψ̂∗mp 0.012 (0.07) 0.010 (0.04) 0.006 (0.03)

ψ̂mp 0.021 (0.07) 0.017 (0.04) 0.010 (0.04)

(10,10) ψ̂∗mp 0.008 (0.07) 0.006 (0.02) 0.003 (0.02)

ψ̂mp 0.010 (0.07) 0.008 (0.02) 0.005 (0.02)

(20,20) ψ̂∗mp 0.004 (0.05) 0.003 (0.02) 0.001 (0.02)

ψ̂mp 0.005 (0.05) 0.004 (0.02) 0.003 (0.02)

(30,30) ψ̂∗mp 0.002 (0.04) 0.001 (0.02) 0.001 (0.01)

ψ̂mp 0.003 (0.04) 0.002 (0.02) 0.001 (0.01)

TABLE 2. Bias (and standard deviations) of the MLEs of L∗mp(ψ) and of Lmp(ψ).

4 Two examples

Example 1: We provide a simulation study of the proposed modified profile
likelihood in the context of the exponential stress-strength model (Kotz et
al., 2003). In particular, we assume that X and Y are independent and ex-
ponentially distributed, with rates α and β, respectively. In this framework,
the reliability parameter ψ = P (X < Y ) can be written as ψ = α/(α+ β).
Let us consider the one-to-one transformation θ = (ψ, λ), with ψ = α/(α+

β) and λ = α+ β. The profile likelihood for ψ is Lp(ψ) = λ̂
(nx+ny)
ψ ψnx(1−

ψ)ny , with λ̂ψ = (nx + ny)λ̂x̄/(ny(x̄ + ȳ)(1 − Bψ)), ψ̂ = ȳ/(x̄ + ȳ), λ̂ =
(x̄+ȳ)/(x̄ȳ), B = (ny ȳ−nxx̄)/(ny ȳ), and x̄ and ȳ sample means. Moreover,
we have jλλ(ψ, λ) = (nx+ny)/λ2. Simple calculations show that Lmp(ψ) =

Lp(ψ)λ̂2
ψ(nx + ny)−1/2/λ̂ and that iψψ.λ(ψ, λ̂ψ)1/2 = 1/(ψ(1 − ψ)). The

proposed modified profile likelihood is thus

L∗mp(ψ) = ψnx−1(1− ψ)ny−1(1−Bψ)−(nx+ny) .

The behaviour of L∗mp(ψ) is illustrated through a simulation study, based
on 10000 Monte Carlo trials. Table 1 gives the empirical coverages for 95%
confidence intervals from L∗mp(ψ) and from Lmp(ψ). We observe that, even
for small (nx, ny), L∗mp(ψ) has the correct frequentist coverages. Larger
sample sizes (nx, ny > 20) show, as one would expect, rather little differ-
ences between the results of the two procedures. Table 2 gives the bias and
standard deviation of the MLEs of L∗mp(ψ) and Lmp(ψ). It can be noted

that ψ̂∗mp exhibits a smaller bias than the maximum modified profile esti-
mator. This result is due to the fact that maximizer of L∗mp(ψ) is a r∗p-based
estimator.

Example 2: Let us consider the scalar skew-normal model (Azzalini, 1985)
with density function p(y;ψ, µ, σ) = (2/σ)φ((y−µ)/σ)Φ(ψ(y−µ)/σ), where
φ(x) denote the N(0, 1) density. Let ψ be the parameter of interest and
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let λ = (µ, σ), with µ and σ unknown location and scale parameters, be
the nuisance parameter. Estimation of the shape parameter ψ is a quite
challenging problem since Lp(ψ), as well as Lmp(ψ), can be monotone in-
creasing, giving an infinite MLE. Some recent solutions are Sartori (2006),
Liseo and Loperfido (2006), and Cabras et al. (2010). In particluar, Cabras
et al. (2010) give the expressions of the modified profile likelihood Lmp(ψ)
and of π(ψ), which is shown to be proper and independent on λ.
We illustrate our proposal with a quite challenging data set for the esti-
mation of ψ. In particular, consider the Frontier data set, available at the
package sn of the R software, which is a random sample of size n = 50 from
a skew-normal model, with µ = 0, σ = 1 and ψ = 5. This dataset has some
interest and has been analyzed in several papers since it leads to an infinite

ψ̂, with both Lp(ψ) and Lmp(ψ) monotone functions in ψ. Sartori (2006)
obtains a modified maximum likelihood estimate equal to 6.24, while the

maximum likelihood estimate from L∗mp(ψ) is ψ̂∗ = 6.3. Figure 1 shows the
modified profile likelihoods Lmp(ψ) for ψ, which is monotone, and L∗mp(ψ).
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FIGURE 1. Frontier data: Plot of normalized Lmp(ψ) (dashed) and L∗mp(ψ)
(solid).
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Abstract: Since Koenker first suggested using quantile regression in order to
give a more detailled description of the conditional distribution in regression
contexts (Koenker and Bassett (1978)), a lot of expansions to this concept have
been made. By using the Asymmetric Laplace Distribution (ALD) as an error
distribution, quantile regression became accessible to Bayesian inference. A re-
formulation of the ALD using location-scale mixtures of normals transforms the
problem into a Gaussian regression with offset (Yue and Rue (2011)). Based on
these results, we want to explain the possibility to extend linear quantile regres-
sion by adding nonlinear and geoadditive effects to the predictor, the possibil-
ity to use the LASSO for shrinkage and selection and the inclusion of Dirichlet
Process Mixtures (DPM) for random effects and clustering aims. We will present
the idea behind the theoretical calculations leading to the corresponding MCMC
procedure and illustrate these in two different applications.

Keywords: asymmetric Laplace distribution; Bayesian quantile regression; MCMC;
LASSO; Dirichlet process mixtures.

1 Quantile Regression

Quantile regression is a tool used to estimate the influence of a predictor on
the quantiles of the conditional distribution of a dependent variable. One
of the main advantages over mean regression is that this method permits
to supply detailled information about the conditional distribution without
specifying a parametric data distribution. The coefficients of the quan-
tile regression can be estimated by minimizing sums of weighted absolute
residuals, which is a completely nonparametric approach. The changes in
characteristics compared to mean regression are the same as the changes
from looking at the mean of a dataset to taking into account quantiles.
To make quantile regression feasible in the Bayesian context, the idea of
working completely non-parametrically has to be quit. One possibility to
do this is to use an auxiliary error distribution. The distribution we will
use in this context is the asymmetric Laplace distribution (ALD). In order
to make it suitable for MCMC issues we rewrite the ALD using a scale-
location mixture. Datasets with very large covariate vectors are on hand
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in many different fields. For this reason it is necessary to adapt selection
and shrinkage tools to the idea of quantile regression. The most popular
way to combine these both aspects of regularisation is the LASSO. Another
type of data coming up in many cases are time series data or other data
implying dependency. In such applications the idea of quantile regression
has to be expanded by a term of random effects. DPMs are an idea to
handle this kind of data which came up recently and implies the advantage
of databased clustering. We want to show how Bayesian quantile regression
can be made suitable for types of applications in which these influences are
combined with other covariates like nonlinear and geoadditive effects.

2 Analyzed Data

2.1 LASSO in the Munich Rental Guide

The German tenancy law gives restrictions to the increase of rents and
forces the landlords to keep the prize in a range that is common for flats
which are comparable in size, location and quality. To make it easier for
tenants and owners to assess if the rent is appropriate to the flat, Munich
collects every year a big dataset of several flats and a list of characteristics
as well as the price. From this dataset a regression model is generated which
can be used by the inhabitants in order to check if the price of their flat
is in a normal range. The collected data contains 241 covariates: size in
square meters, year of construction, subquarter and a vector of categorical
covariates, which consists of 238 characteristics of the flats, such as garden,
type of kitchen or balcony. The predictor we used is:

η = Xβcat + f1(size) + f2(year) + fspat(region).

Size as well as year of construction are modeled nonlinear using cubic
bayesian P-splines with random walk prior of second order, while subquar-
ter is taken into the model as a spatial effect using a Markov random field
prior. The parameters βi of the influential variables are assigned a Bayesian
LASSO prior.
An interesting question which arises is: will there be a lot of differences
between the covariates which will be selected for the different quantiles?
In fact there are substantial differences between the results for selection as
well as shrinkage behaviour in different quantiles. Furthermore nonlinear
and spatial effects differ between the quantiles, too. As an example, see the
nonlinear effect size of the flat in Figure 1. The picture shows the centralised
curves for four different quantiles in comparison to the posterior interval of
the median regression.

2.2 DPM in the LISA-Data

The following example deals with obesity among children measured in terms
of the BMI. The LISA (Influences of Life-style factors on the development
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FIGURE 1. Solid line: effect of size of the flat on the non central quantiles, dashed
lines: effect of size of the flat on the median and 95%-posterior interval, lightgrey
lines in background: concentration of data

of the Immune System and Allergies in East and West Germany) study
contains longitudinal data collected over 60 months at 9 points in time.
Collected covariates are for example gender, nutrition until the age of 4
months (bottle or breastfed) and maternal smoking during pregnancy. An
appropriate model for this data is:

yij = xTijβ + f(tij) + zTijbi + εij

The first term consists of linear cause variables, while time is modeled
nonlinear using Baysian P-splines again.
As the dataset consists of longitudinal data, a high dependency within data
may be suspected. To allow for this fact we used random effects, denoted
by bi. The above mentioned advantage of being able to consider clustering
seems particularly useful as there might be different types of weight gaining
children.
The results for the median regression are quite similar to these of the mean
regression, with obvious differences in robustness. Figure 2 shows the BMI
for four different individuals in median regression (on the left side) and
95%-quantile regression on the right. While the outliers for two children
are ignored in the median regression they are obviously taken into account
in the curve on the right side.
Comparison via the DIC showed, that the DPMModel performed better,
than a model without the random effects as well as a model with normal
Gaussian mixtures for the random effects.
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FIGURE 2. Effect of the age on the BMI in 50% – quantile (on the left) and 95%
– quantile Regression (on the right), solid line: general effect of age, dashed lines:
four different individual effects

3 Discussion

The gain of information by using quantile regression is obvious and there
has been made much progress in amplifying the concept of Bayesian quan-
tile regression by using the asymmetric Laplace distribution. Even complex
statistical methods like the LASSO and the DPM can be added to the idea.
Yet we have to state that using the ALD is a misspecification and hence we
can only accept the results with reservation. Another task for the future is
to find a way to avoid the high computation times of the MCMC techniques.
One possibility might be the idea of the variational approximations.

Acknowledgments: Special thanks to Felix Heinzl for sharing his DPM-
Code for mean regression and the German National Science Foundation
(DFG) for financial support in the project Structured additive quantile and
expectile regression (KN922/4-1).
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Abstract: Structure is important for the mobilisation of knowledge within net-
works. The implementation of electronic health records provides a motivating
example. One approach to assessing structure is through a position latent cluster
model. This is adopted here and a cluster–classification algorithm is developed
to provide a model at the cluster level rather than for relational ties.

Keywords: Social network analysis, position latent cluster models, knowledge
mobilisation, electronic health records

1 Background

The mobilisation of knowledge through a large institution can have a great
influence on efficiency in terms of getting things done. For example when es-
tablishing the implementation of electronic health records within a health-
care organistion, senior managers will initiate the mobilisation of knowledge
which will progress through middle managers to those directly responsible
for implementation. Formal management structures will influence mobilsa-
tion, Antonelli (1996), but there will also be further reasons for practical
communication and development of knowledge. Informal networks, estab-
lished practically, are of greater interest. Networks in healthcare are likely
to be non-hierarchical because a diverse range of individuals with different
perspectives and levels of responsibility are required to produce a workable
solution to a particular problem.
Networks constrain or facilitate innovation and the spread of ideas by en-
couraging conformism to dominant perceptions of appropriate behaviour.
Therefore likemindedness is a key to understanding the structure of the
informal network, and might be captured by attributes of the network
members (vertices). Considine et al. (2009) comment upon constraining
innovation by encouraging conformism to dominant perceptions of appro-
priate behaviour.
Network data has particular challenges due to the dependence between ties.
Exponential random graph models, Frank and Strauss (1986), are often
employed following the result of Besag (1974). These are key steps in the
development of modelling for networks.
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Relevant to modelling of knowledge mobilisation, is a most interesting de-
velopment provided by Hoff et al. (2002) with the concept of latent social
space. The important concept is that participants are positioned such that
proximity conveys an increased probability of a relational tie (link or edge)
between participants. In practice there may be many potential explanatory
variables for a tie to exist or not but the social space represents the first
few (typically 2 or 3) principal components. Often explanatory variables
are not collected, or an insufficient number are available so that the latent
social space contributes an essential component of the analysis. It is possi-
ble though, and the focus here, that explanatory variables are available as
attributes of the network participants or attributes of the ties.
Of further relevance is the development, recorded in Krivitsky and Hand-
cock (2008), of clustering in latent social space. Here a mixture model ap-
proach is employed and participants are assigned probabilistically to clus-
ters located at different centres within the social space. The existence of
such clusters provide a plausible explanation for the effectiveness of mo-
bilisation within some parts of an organisation as well as difficulties in
mobilisation between those parts. Hence position latent cluster models are
worthy of consideration, revealing potentially important structures within
a network.
Explanation of structures is also desirable. These might be identified through
either participant or tie attributes. Note however that the focus of exponen-
tial random graph models, of which position cluster models are a subset, is
on modelling, thus explaining, the relational ties. The purpose of this work
is to identify attributes of participants and ties that are most strongly as-
sociated with the clusters rather than the ties. Further, there is a method
proposed to check if sufficient explanation has been achieved.

2 Method

The following cluster–classify algorithm for analysis is proposed for a net-
work with vertex attributes:

1. Fit a position latent cluster model without specifying any attributes
for vertices within the model. The number of clusters and the dimen-
sion of the social space are determined by the minimisation of the
Bayesian Information Criterion (BIC).

2. From the best fit, determine a modal assignment of vertices to clus-
ters.

3. Employ a classification tree to ascertain which attributes are associ-
ated with the defined clusters. In particular the first split within the
tree might be taken.

4. Refit the position latent cluster model, using the vertex variables
identified by the classification tree. Once more ascertain the optimum
number of clusters by the minimisation of BIC.
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5. Again use a classification tree and iterate the procedure until the
optimum fit is with a single cluster.

The above algorithm can be modified to model attributes of ties rather
than vertex attributes. In place of clusters of vertices, consider clusters of
ties within clusters. Note that this analysis ignores the ties/edges between
clusters.
It is envisaged that, although iteration is possible, only a few steps only
would be undertaken, perhaps with only one classification. The classifi-
cation step might be simplified by establishing just one attribute which
maximises entropy between the clusters: thus being a single branching, or
split, of the tree.

3 Example: monks

Hoff et al. (2002) and Kritisky and Handcock (2008) have investigated a
subset of the well-known Monk data collected by Sampson (1968). Fitting a
position latent cluster model with two-dimensional social space and without
any attributes yields a three-cluster model which minimises the BIC. The
cluster step is clear. The classification step is also extremely easy. The
commonly available dataset has a single vertex attribute variable: namely
the grouping determined by Sampson. This fits well in a classification tree.
Returning to the position latent cluster model, fitting 2D social space and
Sampson’s groups yields a model for which the BIC is minimised by a single
cluster: that is convergence is reached after a single classification step.
Note to reviewers: this example will almost certainly be replaced in the
final version of this work.

4 Discussion

The modelling strategy expressed here focusses upon modelling at the clus-
ter level rather than at the level of individual ties. In terms of likelihood,
such an approach may not maximise the fit: overall the BIC found in later
iterations may be greater than the BIC obtained at earlier steps. This is
simply due to the model being specified in terms of relational ties rather
than clusters. Nonetheless, network structure expressed here as clusters,
has the greatest relevance to the interpretation of the influence of networks
in knowledge mobilisation.

Acknowledgments: The work undertaken by the authors was supported
by the National Institute for Health Research, grant number SDO EH239.
This support was greatly appreciated.
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Abstract: This paper considers the advantages of using mixtures of distribu-
tions, rather than the standard nonparametric approaches, for estimation in
wildlife studies of home range. Mixtures are only used in a very limited way
currently even though they were first proposed for such modelling in 1983. How-
ever, recent advances in the theory and computational techniques for mixtures of
distributions mean that they may be used to analyse radio telemetry data and
the models used to extract important ecological features of animal behaviour.
We illustrate that robust mixture modelling is necessary as a common feature
of telemetry data sets is that they contain outliers which lead to problems when
determining appropriate mixture models. In particular, we investigate the use of
mixtures of bivariate t distributions to take account of outliers, and study their
properties. An application to brush rabbit telemetry data is used to show the
advantages of using such heavy tailed mixtures.

Keywords: Finite mixture modelling; Robustness; Telemetry data.

1 Introduction

In wildlife studies of the home range behaviour of an animal, radio teleme-
try provides an effective and efficient sampling technique that can be used
to collect large quantities of high quality data (White and Garrott 1990).
This has brought new problems for data analysts involved in such stud-
ies: crude methods that were originally designed to analyze poor quality
data produced by live-trapping often do not provide a sufficiently detailed
summary of data to adequately answer behavioural and ecological ques-
tions of interest in a study. A common objective of home range studies
is to describe an animal’s use of space. It is convenient to consider an
idealized probabilistic model of the way an animal uses its home range,
and assume that the animal’s (x, y)-position has a bivariate distribution
over the plane for a specified time period; this distribution is known as
the utilization distribution. Independent observations on the position of
an animal, x1 = (x1, y1)′, . . . ,xn = (xn, yn)′, which have been collected
by radio-tracking can then be used to estimate the utilization density in
various ways (White and Garrott 1990, Worton 1987),
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2 Robust mixture modelling

Although Don and Rennolls (1983) proposed using finite mixtures of bivari-
ate normal distributions to model locational home range data they have
been little used. Standard methods for analysis of home range data are
to estimate the utilization density by using a kernel-type estimator (Sil-
verman 1986, Worton 1995a), or a convex-hull based estimator (Worton
1995b). However, mixture modelling has some very attractive properties
that were discussed by Don and Rennolls in their paper. For example, Don
and Rennolls did not estimate the means of the mixture components. In-
stead, the means were taken as known drey locations, but as the data sets
were quite small they assumed circular normals which may be too restric-
tive in general.
In this paper we consider more flexible mixture modelling (McLachlan and
Peel 2000), and show that it is fairly easy to fit such models using the R
package MCLUST (Fraley and Raftery 2003). However, in applications to real
locational telemetry data the use of t components in mixtures is advisable
due to the presence of outliers, so here we propose use of the m-component
model

f(x; Ψ) =

m∑
k=1

wkf(x;µk,Σk, νk),

where the kth component is bivariate tνk (µk,Σk) with degrees of freedom
νk. This provides an attractive modelling approach as outliers are found to
be a common feature of data resulting from animals occasionally exploring
areas outside their usual home range to investigate them. This, however,
leads to problems determining the number of components for fairly light-
tailed mixture distributions such as the normal.

3 Simulation study

To investigate the properties of the robust t component mixtures proce-
dures a simulation study was conducted. We present the results for two
particular cases here, with sample size n = 100. In case I, the mixture
density was taken as

1
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with an outlier placed at (12,−3). In case II, the mixture density was taken
as
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Mean BIC values produced are shown in Table 1. Mixtures of ts with ν = 2
degrees of freedom were used, as a way of building in a robust approach
to guard against the influence of outliers. However, we note that mixtures
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TABLE 1. Mean BIC values for cases I and II.

No. comp. m 1 2 3 4 5 6

Case I 1131 1088 1100 1113 1124 1136
Case II 1202 1118 1080 1092 1100 1106

30 40 50 60 70 80 90 100

3
0

4
0

5
0

6
0

7
0

x

y

Classification

FIGURE 1. Best fitted mixture models for locational data on a female brush rab-
bit. Left panel: bivariate normal mixture (3 components); right panel: bivariate
t mixture (2 components).

of ts with variable degrees of freedom produce improved fits, but lead to
the same conclusions. For case I, the BIC identified the correct number of
components using fixed degrees of freedom (ν = 2) modelling in 470 of 500
simulated data sets; allowing for variable degrees of freedom gave 488 of
500.

4 Brush rabbit data analysis

Initially, finite bivariate normal mixture models were fitted to the loca-
tional data on a brush rabbit. However, the outliers in the data set lead
to problems determining a satisfactory model. The left panel of Figure 1
shows the best fit as determined by BIC when using MCLUST. Outliers
lead to problems with determining the number of mixture components in
the normal case, but the right panel shows that a t mixture model has cor-
rectly identified the two clusters, without being unduly influenced by the
outlying points. In each case these were the best models, based on BIC,
over all possible models.

5 Conclusions

It is evident that finite mixture distributions provide very natural ways of
modelling locational data on animals. They are particularly attractive as
it is possible to build in known biological features of the home range, but
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at the same time allow for features which are unknown at the start of the
study. In contrast the standard approach of bivariate kernel smoothing is
only able to highlight features, but does not attempt to model them. One
area of interest would be building models that give descriptions of habitat
and interaction with other animals. Therefore, we hope in the future that
biologists will employ such mixture models more as they have advantages
over nonparametric density estimation in investigating animal behaviour.
With the large data sets it is now possible to collect, we have the oppor-
tunity to make important discoveries with regard to the ways animals use
their environment. Future development of such models can incorporate en-
vironmental and habitat information explicitly into the mixture modelling.

Acknowledgments: CRM is supported by an EPSRC studentship. We
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Abstract: This paper describes a statistical framework and software for fitting
row-column association models (RCAMs) to two-way table responses. We con-
sider some link function applied to the mean (say) of a cell equalling a row effect
plus a column effect plus an interaction term. The interaction term is modelled as
a reduced-rank regression (with complexities ranging from rank-1 and upwards),
while the row and column (main) effects are handled using simple indicator vari-
ables. What sets apart this work from others is that our framework incorporates
a very wide range of statistical models. For example, (i) log-link with Poisson
counts is Goodman’s RC model, (ii) zero-inflated Poisson distribution may be
suitable with a two-way table with lots of zeros, (iii) identity-link with a dou-
ble exponential (Laplace) distribution is akin to median polish, (iv) identity-link
with normal errors is similar to two-way ANOVA with one observation per cell
and allowing for modelling the interactions in a semi-complex manner, (v) log-
link with negative binomial counts may help handle overdispersion relative to the
Poisson model. New software within the first author’s vgam R package makes it
very easy to fit a wide range of RCAMs to data. Altogether, the main result of
this work is that RCAMs facilitates the analysis of two-way tables of many data
types, therefore is potentially very useful in many areas of applied statistics.

Keywords: Main effects and interaction models; Reduced-rank regression; Two-
way table; Vector generalized linear models; vgam R package.

1 Introduction

Yee and Hastie (2003) introduced the class of reduced-rank vector gener-
alized linear models (RR-VGLMs) which apply reduced-rank regression to
the class of VGLMs. VGLMs cover a very wide range of statistical mod-
els, and its central algorithm involves iteratively reweighted least squares
(IRLS) and Fisher scoring. It usually results in maximum likelihood estima-
tion. A nontechnical introduction to VGLMs and RR-VGLMs is Yee (2010).
In this paper we specialize the use of RR-VGLMs to two-way table re-
sponses. This may consist of continuous values, counts, proportions, or
other data types. We wish to facilitate the modelling of main effects (row
and column effects) plus possible interactions, while residing inside a sta-
tistical framework that can handle many data types of the responses. The
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result makes it easy for the user as it provides a lot of flexibility relative to
the slope of the learning curve.

2 RR-VGLM framework

Suppose our data comprises (xi,yi), for i = 1, . . . , n, where xi denotes
the vector of explanatory variables for the ith observation and yi is the
response (possibly a vector). The first value of xi is 1 for the intercept.
VGLMs are similar to ordinary GLMs but allow for multiple linear predic-
tors. VGLMs handle M linear predictors (the dimension M depends on the
model to be fitted) where the jth one is

ηj = ηj(x) = βTj x =

p∑
k=1

β(j)k xk, j = 1, . . . ,M. (1)

The ηj of VGLMs may be applied directly to parameters of a distribution,
θj , rather than just to mean µ = E(Y ) as for GLMs. In general,

ηj = gj(θj) (2)

for some parameter link function gj and parameter θj .
Bundling the linear predictors together gives

η = η(x) =

 η1(x)
...

ηM (x)

 = BTx =

 βT1 x
...

βTMx

 (3)

where B is a p×M matrix of (sometimes too many) regression coefficients.
In many situations the regression coefficients are related to each other. For
example, some of the β(j)k may be equal, set to zero, or add up to a certain
quantity. These situations may be dealt with by use of constraint matrices.
VGLMs in general have

ηj(x) =

p∑
k=1

Hk β
∗
(k) xk, j = 1, . . . ,M, (4)

where H1,H2, . . . ,Hp are known full-column rank constraint matrices, and
β∗(k) are vectors of unknown coefficients. With no constraints at all, H1 =
H2 = · · · = Hp = IM . Then, for VGLMs,

BT =
(
H1β

∗
(1) H2β

∗
(2) · · · Hpβ

∗
(p)

)
. (5)
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2.1 RR-VGLMs

Partition x into (xT1 ,x
T
2 )T (of dimension p1 +p2 = p) and B = (BT

1 BT
2 )T .

If B2 has too many regression coefficients then we can reduce its number
dramatically by a reduced-rank regression. RR-VGLMs then have

η = BT
1 x1 + BT

2 x2 (6)

where we approximate B2 by a reduced-rank regression

B2 = C AT . (7)

Here, C and A are p2 × R and M × R respectively, and they are ‘thin’
because the rank R is low, e.g., R = 1 or 2. Thus

η = BT
1 x1 + Aν (8)

where ν = CTx2 is a vector of R latent variables.
To make the parameters unique, it is common to enforce corner constraints
on A. By default, the top R × R submatrix is fixed to be IR and the
remainder of A is estimated.

3 RCAMs

We initially use Goodman’s RC(r) model to explain what a RCAM is. How
does this model fit within the VGLM framework? Suppose Y = [(yij)], a
n×M matrix of counts. Goodman’s model fits a reduced-rank type model
to Y by firstly assuming Yij ∼ Poisson, and that

log µij = µ+ αi + γj +

R∑
k=1

aik cjk, (9)

where µij = E(Yij) is the mean of the i-j cell. Identifiability constraints
are needed in (9) for the row and column effects αi and γj ; we use cor-
ner constraints α1 = γ1 = 0 here. The parameters aik and cjk also need
constraints, e.g., we use a1k = c1k = 0 for k = 1, . . . , R. Then write (9) as

log µij = µ+ αi + γj + δij ,

where the n×M matrix ∆ = [(δij)] of interaction terms is approximated

by the reduced rank quantity
∑R
k=1 aikcjk.

Goodman’s RC(R) fits within the VGLM framework by letting

ηi = log µi (10)

where µi = E(Y i) is the mean of the ith row of Y. Then the matrix
(η1, . . . ,ηn)T fits into the RR-VGLM framework as follows. From Section 2,

we obtain BT
1 x1i =

(
µ1M α21M · · · αn1M

(
Diag(γ1, . . . , γM )(−1)

)T) 1
e(−1)i

1M−1

 (11)
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TABLE 1. Some vgam family functions useful in conjunction with rcam().
“GRC” stands for Goodman’s RC model.

Family name Comments

alaplace2(0.5) Median polish when rank-0.
normal1() Two-way ANOVA (one observation per cell).
poissonff() GRC model.
negbinomial() GRC with overdispersion wrt Poisson.
zipoissonff() GRC with lots of 0’s and/or structural 0’s.

where a subscript “(−1)” means the first element or row is removed from
the vector or matrix. This shows, for example, that the intercept and row
score variables have 1M as their constraint matrices. Similarly, because
B2 is approximated by CAT , the ith row of ∆ will be approximated by

xT2iCAT , or equivalently, ∆ is approximated by
(
xT21, . . . ,x

T
2n

)T
CAT . The

desired reduced-rank approximation of ∆ can be obtained if x2i = ei so
that Ip2

C AT = C AT . Note that

∆ =

(
0 0T

0 ∆̃

)
≈ C AT =

(
0T

C(−1)

)(
0
(
A(−1)

)T )
,

that is, the first row of A consists of structural zeros which are ‘omitted’
from the reduced rank regression of ∆.

3.1 RCAMs

One could define RCAMs as a RR-VGLM with

η1ij = µ+ αi + γj +

R∑
k=1

aik cjk, (12)

(cf. (9)). Note that (12) applies to the first linear/additive predictor; for
models with M > 1 one can leave η2, . . . , ηM unchanged. Of course, choos-
ing η1 for (12) is only for convenience. The software chooses g−1

1 (η̂1) as the
fitted values of the model and these are returned by fitted(rcamobject)
and the result should be the same dimension as the two-way table.
To summarize, RCAMs in general are RR-VGLMs where the first lin-
ear/additive predictor is modelled as the sum of a row effect, a col effect,
and an interaction effect which is expressed as a reduced-rank regression.
Table 1 summarizes a few possible RCAMs.

4 Data and software

The first author has written rcam() to fit RCAMs within his vgam package.
This function calls vglm() if the rank is zero, otherwise rrvglm(). In both



664 Row-Column Association Models

cases the dummy variables and constraint matrices are set up beforehand,
corresponding to (11). The family argument of rcam() is passed into an
argument of the same name in vglm()/rrvglm() to fit the desired model.
Currently, it is important that the first linear/additive predictor η1 corre-
sponds to the mean or some parameter measuring central location. Con-
sequently, zipoissonff() may be used rather than zipoisson() because
the latter models the probability of a structural zero in η1 whereas the for-
mer models the mean of the Poisson distribution. All other parameters are
generally fitted with intercept-only, for example, the k parameter for the
negative binomial NB(µ, k). And they may all be constrained to be equal
over rows and columns of Y.
In the future, ideally every possible vgam family function will work with
rcam(), however, whether the output makes sense or is sensible is another
story.
The typical call for a median polish-type fit might be of the form

rcam0 <- rcam(auuc, alaplace2(tau = 0.5, intparloc = TRUE))

The software is currently undergoing development, therefore future changes
to what is presented here are possible.

4.1 Crash data

The vgam package has several two-way tables suitable for exploring RCAMs.
These include crashi, crashf, crashp, and alcoff. In general these are a
variety of reported crash data cross-classified by time (hour of the day) and
day of the week, accumulated over 2009. Thus the data frames are 24 × 7
in dimension. The data include fatalities and injuries (by car), trucks, mo-
tor cycles, bicycles and pedestrians. There is some alcohol-related data too
(Special thanks to Warwick Goold for help with the data.)
The matrix alcoff is the number of alcohol offenders caught from breath
screening drivers, during the whole of 2009. Then

> rbind(head(alcoff, 2), tail(alcoff, 2))

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0 121 98 165 324 827 1379 1332

1 97 92 157 278 619 1327 1356

22 90 143 345 765 976 1026 114

23 110 169 363 899 1265 1179 159

Here, the first row is from midnight to 1am, and the last row is for 11pm
to midnight.

5 Example

We fit a rank-0 Goodman’s RC model to alcoff. We preprocess the data
by offsetting the data with respect to the hour. We say the effective day
starts at 6am since partying at late night often spills over to the early
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FIGURE 1. Hourly and effective daily effects of a Goodman’s RC model fitted
to alcoff. This is output from plotrcam0().

morning. Hence effective Monday starts at 6am and finishes on Tuesday at
the same time. The function Rcam() and/or moffset() enables us to create
the effective day.
We fit the GRC model by

fit0 <- rcam(Rcam(moffset(alcoff, "6")), family = poissonff,

rprefix = "Hours.24.", cprefix = "Days.")

Alternatively we could use grc(). Then applying plotrcam() gives Fig. 1
which plots the fitted main effects. The results agree with what is expected:
the greatest number of alcohol-related offences occur on Friday and Satur-
day nights (and their following morning), and there is a gradual increase
from Sunday/Monday to these peak days. Also, they are at their lowest in
the late morning to lunchtime period.
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Abstract: Marginal likelihoods are explored from the point of view of the evi-
dential perspective. Specifically, we consider the case of a multidimensional like-
lihood where we are interested in obtaining evidence about only one parameter
or a single function of parameters with the remaining parameters considered to
be nuisance parameters. Several methods have been proposed to deal with the
situation of nuisance parameters including orthogonal likelihoods, marginal like-
lihoods, conditional likelihoods, in addition to estimated and profile likelihoods.
Using a marginal likelihood when available provides us with a solution to elim-
inating nuisance parameters. Although the marginal likelihood is not the “full”
likelihood, it is a “true” likelihood since it is constructed from actual probability
density or mass functions. Because the marginal likelihood is a true likelihood, as
opposed to a profile or estimated likelihood, evidential properties automatically
hold. In particular, the universal bound on misleading evidence holds.
The non-central t and F distributions are used to obtain marginal likelihoods
for several important parameters including the variance, the effect size for two
groups, the overlapping coefficient, the area under an ROC curve, and the shrink-
age parameter in hierarchical models. These marginal likelihoods are true likeli-
hoods. The probabilities of misleading and weak evidence can be obtained and
the universal bound on the probability of observing misleading evidence applies.
In addition use of reference priors allows for Bayesian analysis. The graphical dis-
play of parameter support and uncertainty provide clean alternatives to typically
computationally intensive confidence interval calculations.

Keywords: Evidence, Marginal Likelihoods, Hierarchical Models

1 Marginal Likelihood for The Variance

One of the most important examples of a marginal likelihood is the likeli-
hood for the variance. Specifically if X1, X2, . . . , Xn are iid each N(µ, σ2)
then it is well known that

U =

∑n
i=1(Xi −X)2

σ2

d∼ Chi-square(n− 1)
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The resulting marginal likelihood is

Lm(σ2; t) =

[
σ̂2
m

σ2
exp

{
1− σ̂2

m

σ2

}]n−1
2

2 Effect Size for Two Groups

Suppose that we have two samples, one from a N(µ1, σ
2) and the other

from a N(µ2, σ
2) with sample sizes n1 and n2 respectively. Define s2, the

pooled estimate of variance by

(n1 + n2 − 2)s2 = (n1 − 1)s2
1 + (n2 − 1)s2

2

If we consider the distribution of

T =
x2 − x1√

s2
(

1
n1

+ 1
n2

)
then T is non-central t with n1+n2−2 degrees of freedom and non-centrality
parameter λ where

λ =

√
n1n2(µ2 − µ1)

σ (n1 + n2)
1/2

=

√
n1n2

n1 + n2

µ2 − µ1

σ

or

λ =

√
n1n2

n1 + n2
δ

and δ is the effect size defined by

δ =
µ2 − µ1

σ

It follows that we may obtain a likelihood for δ using the non-central t
distribution.

3 Overlapping Coefficient

If f and g are two densities then the overlapping coefficient is defined
as

θ =

∫ +∞

−∞
min[f(x), g(x)]dx

If f and g are each normal with common variance then

θ = 2Φ

(
µ1 − µ2

2σ

)
We can use the non-central t distribution to get a marginal likelihood for

µ1 − µ2

σ

and hence a marginal likelihood for θ.
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4 Area under the ROC curve

The area under the ROC curve (AUC ROC) is equivalent to

AUC = P (X < Y ). (1)

For the case where X and Y are independent and normally distributed (the
binormal case) this area simplifies to

AUC = P (X < Y ) = Φ

 µx − µy√
σ2
x + σ2

y

 (2)

Using the marginal likelihood for the two sample effect size and equation
2 we obtain a marginal likelihood for the area under the ROC curve.

5 “Evidence” in Hierarchical Models

Assume that we have p samples yi = yi1,yi2, . . . ,yir each of which is a
realized value of Yi = (Yi1,Yi2, . . . ,Yir) where Yi is N (1rµi, Irσ

2) and
σ2 is known. Assume that the Yi are independent and also assume that
the µi are independent each N(µ, σ2

µ) where µ and σ2
µ are both known. This

is the one-way random effects model with balanced data or equivalently a
one level hierarchical model. The number of clusters is p and there are r
observations per cluster.
Of interest is the evidence for Hi1 : µi = µi1 vs H2i : µi = µi2 and a
likelihood for µi.
The evidence for µi1 vs µi2 is given by

exp

{
−
∑r
j=1(yij−µi2)2

2σ2 − (µi2−µ)2

2σ2
µ

}
exp

{
−
∑r
j=1(yij−µi1)2

2σ2 − (µi1−µ)2

2σ2
µ

}
which may be rewritten as

exp

{
r(µi2 − µi1)

σ2

[
yi+ −

µi2 + µi1
2

]
+

(µi2 − µi1)

σ2
µ

[
µ− µi2 + µi1

2

]}
This expression is the product of two factors. The first,

exp

{
r(µi2 − µi1)

σ2

[
yi+ −

µi2 + µi1
2

]}
represents the evidence supplied by the data. It is exactly the evidence for
µi2 vs µi1 supplied by a random sample of size r from a normal distribution
with known variance.
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The second,

exp

{
(µi2 − µi1)

σ2
µ

[
µ− µi2 + µi1

2

]}
represents what we might call ‘model’ or ‘prior’ evidence.
The ‘likelihood’ for µi which is proportional to

exp

{−2ryi+µi + rµ2
i

2σ2
− −2µµi + µ2

i

2σ2
µ

}
or

exp

{
−µ

2
i

2

(
r

σ2
+

1

σ2
µ

)
− 2µi

2

(
ryi+
σ2

+
µ

σ2
µ

)}
If we define

µ̃i =

ryi+
σ2 + µ

σ2
µ

r
σ2 + 1

σ2
µ

Then the likelihood may be written as

Lik = exp

{
− (µi − µ̃i)2

2σ̃2

}
where

σ̃2 =
1

r
σ2 + 1

σ2
µ

Thus the ‘likelihood’ of µi is that of a normal distribution centered at µ̃i
with scale parameter σ̃. Note that

µ̃i = yi+ − γ(yi+ − µ)

where

γ =

1
σ2
µ

r
σ2 + 1

σ2
µ

=
1

rσ2
µ

σ2 + 1
=

σ2

σ2 + rσ2
µ

represents a “shrinkage factor”.
The amount of shrinkage is determined by γ. Under the model assumed
here it is known that

MSB/(σ2 + rσ2
µ)

MSE/σ2
=

MSB

MSE

σ2

σ2 + rσ2
µ

= γ
MSB

MSE

has a central F distribution with p− 1 and p(r − 1) degrees of freedom.
Building on the above we can obtain a likelihood for the shrinkage factor
using the central F distribution. Since

Y = γ
MSB

MSE
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is F with p− 1 and p(r − 1) degrees of freedom it follows that the density
function of

X =
MSB

MSE
= Y/γ

is given by

f(x; γ) =
mm/2nn/2

B(m/2, n/2)

(γx)
m
2

(n+mγx)(m+n)/2

The maximum occurs when

γ̃ =
1

x
.

The likelihood for γ can therefore be obtained using the F distribution.
Note that a γ of 1 implies that there is complete shrinkage i.e. every sample
mean is estimated by the population mean while small values of γ indicate
lack of shrinkage.
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Saez, M., 287

Samaran, F., 494

Sanahuja, M. J., 53

Sánchez, X., 57

Sánchez-Rubio, J., 472

Sandoval, M. C., 468



Index 675
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