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1  | POTA SSIUM NUTRITION IS A MA JOR 
CONCERN FOR OIL PALM AGRICULTURE

Oil palm (Elaeis guineensis Jacq.) is the major oil-producing crop in 
the world, with a global annual production of about 75 Mt (FAO 
2018). Low potassium (K) availability is a major concern on tropi-
cal soils where oil palm is cultivated since they are often naturally 
poor in exchangeable cations such as K+ (Ollagnier & Ochs, 1973). In 
addition, oil palm growth is highly K-demanding. In effect, optimal 
leaflet K elemental content is quite high (≈1%) while N is about 3% 
(Foster, 2003; Ochs, 1965; Ollagnier et al., 1987) although there are 
some variations with seasons, locations and oil palm crosses (Foster 
& Chang, 1977; Ollagnier & Ochs, 1981). Also, fruit bunch harvesting 

removes substantial amounts of K from oil palm agrosystems. For 
example, typical fruit harvesting of 30 tons FFB (fresh fruit bunches) 
ha−1 y−1 represents a loss of up to 160 kg K/ha y−1, that is, 75% of 
K fertilization input (reviewed in (Corley & Tinker, 2016)). Oil palm 
plantations are thus heavily fertilized with K (typically using potas-
sium chloride, KCl) up to 200 kg K/ha y−1, leading to an annual cost 
of about $1 billion at the global scale. However, the efficacy of ap-
plied K depends on leaching, the efficiency of K absorption by roots 
(including the antagonism between K and other cations, mostly Ca 
and Mg), K allocation within the tree and the response of yield to K 
availability in the variety (cross) of interest (Goh et al., 2003). Quite 
understandably, intense efforts have been devoted for decades to im-
prove fertilization strategies and monitor K requirement accurately. 
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Societal Impact Statement
Oil palm is the first oil-producing crop globally, representing nearly 20 million ha. In 
the recent past, oil palm cultivation has been controversial not only because of land 
utilisation at the expense of primary tropical forests or health concerns associated 
with palm oil, but also pollution caused by fertilization (including CO2 produced to 
synthesise fertilizers). Oil palm fields are heavily fertilized with potassium (K), and 
thus finding better, more parsimonious methods to monitor K nutrition is more im-
portant than ever. Here, we suggest that metabolomics and subsequent machine 
learning of metabolic signatures represent a promising tool to probe K requirements, 
opening avenues for precision agriculture in oil palm industry.
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Presently, K fertilization is based on either agrosystem nutrient bal-
ance (Henson, 1999), leaf diagnostic (French method, which relies on 
critical %K in tissues (Caliman et al., 1994)), response coefficients of 
yield to applied K using differential decomposition (Foster's method, 
(Foster, 2003)), or calculation of K demand (Malaysian method or 
INFERS, (Kee et al., 1994)). However, these techniques rely on prior 
knowledge of oil palm response to K and thus typical quantities of 
fertilizer listed in reference tables. Therefore, the major problem is 
that these methods are semi-empirical and require systematic agro-
nomical trials to document the response to K in the cross of interest, 
under the climatic conditions and soil type considered. That is, their 
implementation requires data from a large number of reliable mul-
tifactorial fertilization experiments. As such, it is very tedious and 
in principle lacks a mechanistic understanding of how K availability 
modulates growth, fruit production and ultimately, yield.

2  | IMPLEMENTATION OF 
METABOLOMIC S IN OIL PALM SAPLINGS

To overcome this problem, the description of metabolic effects of K 
availability offers an excellent perspective, not only to understand 
how K nutrition controls oil palm physiology but also to find typical 
metabolic signatures that can be implemented via machine-learning 
to determine how much fertilization palm trees require. Recently, 
the potential of putrescine as a biomarker of K deficiency in relation 
to K, Mg and Ca balance has been described (Cui et al., 2020). In fact, 
metabolomics is an integrative technology offering practical advan-
tages over other omics (such as transcriptomics): a low cost (typi-
cally $5–10 per sample), simple workflow, and algorithms to extract 
metabolic information, and no need to have the annotated genome 
sequence of the plant line of interest.

Here we examined whether the metabolic signature can be used 
to provide direct indications on the K status and how it relates to 
growth potential (experiments and analysis workflow summarized in 
Figure 1a). To do so, we took advantage of metabolomics data ob-
tained recently (Cui et al., 2019, 2020), where oil palm saplings (aged 
≈1 y) of a commercial cross Deli × LaMé, were grown in a greenhouse 
nursery under controlled K conditions and sampled at 10, 11, and 
12.75 months. Oil palm saplings were cultivated under low (0.2 mM 
KCl in nutrient solution), medium (1 mM), high (4 mM) K, with or with-
out waterlogging, from the 11th month (see Methods S1 for further 
details on experimental design). In the present context, waterlog-
ging is particularly interesting since it is a common stress for oil palm 
plantations next to rivers or installed on peatlands. Waterlogging in-
hibits sap circulation, impacts on catabolism (like K availability) and 
thus interacts with K nutrition (Cui et al., 2020). Some low-K saplings 
were also subjected to K resupply (at 4 mM) for 1 or 2 weeks. In 
doing so, we thus had situations where K provision was continuous 
and situations where it was perturbed. That is, our dataset gathers 
oil palm saplings representative of different life itineraries. We car-
ried out leaflet and rachis GC-MS metabolomics and ICP-OES ion-
omics to quantify metabolites and elements, respectively (data from 

Cui et al., 2019; Cui, Lamade, & Tcherkez, 2020) and deposited on 
Metabolome Express (Carroll et al., 2010) under the accession ref-
erence 2018 oil palm K). We then used the dataset to perform ma-
chine-learning multivariate statistics based on orthogonal projection 
on latent structures (OPLS) (further details on methods for metabo-
lomics are provided in Methods S2).

We first looked at the relationship between leaflet K elemen-
tal content (in mg/g DW) and absolute growth rate (g DW month−1) 
(Figure 1b). Here, the vegetative growth rate was the response vari-
able because the present work deals with saplings, not adult trees. 
Despite a generally positive relationship, there was no simple cor-
relation since as expected, it depended on both age (the older the 
higher the growth rate) and growth conditions (e.g., lower growth 
rate under waterlogging). Data points were comprised between sig-
moid envelope curves, reflecting either a simple Michaelis–Menten 
dependence of growth rate with potassium (curvature α = 1) or a 
cooperative behavior of internal K pools (α = 5). In the latter case, 
K+ compartmentalization within saplings was so that growth-effec-
tive K content in leaflet was observed beyond a threshold (of about 
15 mg/g DW). From this point, multivariate statistics could be used 
with two methods, using the K content as either an input (predict-
ing) variable X or an objective (response) variable Y. The former is 
useful to appreciate the importance of the role of K (amongst other 
metabolites and elements) for growth. The latter (in which elemental 
contents are withdrawn from the dataset to keep only metabolites) 
is the way to go to check whether leaflet metabolome is a good pre-
dictor of K and growth rate, and thus has some potential for utiliza-
tion in nutritional monitoring.

The first method is illustrated in Figure 1c with a volcano plot 
that shows the weight of leaflet compounds in defining the com-
ponent aligned with growth (and independent of age) generated by 
the OPLS (y axis), against the p-value obtained by classical univariate 
statistics using linear multiple regression (x axis). This representation 
is very convenient to locate most important biomarkers of growth 
at the right and left extremities of the volcano plot. Here we con-
firm that K (red arrow) is amongst major factors driving growth in 
addition to carbohydrates (such as glycerol 3-phosphate or fructose 
6-phosphate). By contrast, other cations (Ca, Mg) are anti-correlated 
to growth, reflecting the well-known antagonism between K and 
other cations. However, it is worth noting that although K appears 
to be a strong driver of growth in the volcano plot (Figure 1c), K 
alone is not sufficient to infer the growth rate since similar mineral 
compositions (same K content) can be associated with very different 
growth rates (Figure 1b).

The output of the second method is shown in Figure 1d as a 
bi-plot that represents how growth and K content relate to compo-
nents and what metabolites can explain them. The superimposition 
of samples and metabolites on the same graph allows one to locate 
their position in the multidimensional metabolic space and thus 
understand metabolites that explain response variables (growth, K 
content). The first component (x axis) was driven by both growth rate 
and K, and was closely related to age (time) and metabolites like su-
crose (reflecting the photosynthetic input). The second component 
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F I G U R E  1   Machine-learning analysis of the relationship between potassium nutrition and leaflet metabolome in oil palm saplings 
Deli × LaMé. (a) Adopted experimental design and workflow. R1 and R2 refer to early and late K resupply, respectively. (b) Relationship 
between growth rate and potassium elemental content, with differentiation of age (symbol size) and K conditions (colors). (c) Volcano plot 
(–log(p-value) of univariate analysis against loadings in OPLS multivariate analysis, implemented with Simca®) showing best determinants of 
growth rate independent of tree age. p-values are associated with the relation with growth rate, using multiple linear regression of the form 
lm(Metabolite ~ Growth rate + Age) implemented in R. The dashed red line represent the Bonferroni significance threshold (p = 10−3.54). (d) 
biplot showing the location of K, growth rate and samples in the metabolic multidimensional space. (e) Predicted growth rate and K content 
in extra samples, and their position with respect to the halfway (medium K) decision line. Samples used to draw the figure in panel (b) are 
recalled with empty symbols. (f) Hierarchical classification of samples using components (axes) of the multivariate analysis. (g) Relationship 
between leaflet and rachis K content. Data from 11.5-month-old palms (measured rachis K vs. predicted leaflet K) are shown with empty 
symbols. In both (b) and (g), blue lines stand for sigmoids with curvature (α) as indicated. Abbrevations: 2O(G)A, 2-oxoallonate; αToc, 
α-tocopherol; Asp, aspartate; BEA, benzene ethanamine; βSit, β-sitosterol; Cell, cellobiose (appears two times in the volcano plot since it 
generates two analytes during derivatization prior to GC-MS analyses); F6P, fructose 6-phosphate; G3P, glycerol 3-phosphate; Ita, itaconate; 
Myo, myoinositol; PGA, 3-phosphoglycerate; Put, putrescine; Pyr, pyroglutamate; Suc, sucrose; Succ, succinate; Tym, tyramine; Xyl, xylose
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(y axis) was solely defined by K (the growth rate had nearly no co-
ordinate on this axis). This agrees with the fact that the K content 
co-varied with growth but was also determined by other mecha-
nisms independent of growth and age (Figure 1d). Such mechanisms 
manifested themselves by an increase in some metabolites (glycerol 
3-phosphate and 2-oxoallonate for example) and a decrease in oth-
ers (such as putrescine, aspartate, and myoinositol) when the K con-
tent increased. This response is consistent with documented effects 
of K availability on metabolic pathways in oil palm (Cui et al., 2019; 
Mirande-Ney et al., 2020). Taken as a whole, the statistical model 
was highly explicative (R2 = 0.97), robust (the cross-validated R2, de-
noted as Q2, was 0.93), and highly significant (p = 10–21 for K).

Waterlogging or “resupply” samples were then discarded from 
the dataset and used instead to test prediction capabilities. The 
metabolic signature appeared to be highly predictive, with an av-
erage error of 0.2–0.3 mg/g DW only for the K content and only 
about 2–8 g DW month−1 in growth rate (not shown). Extra samples 
from 11.5 month-old palms cultivated under low or high K, with or 
without waterlogging, were then used to test further the model and 
check whether it could locate samples in the correct region of the 
growth-K space. In fact, all samples appeared in the proper region. 
In addition, when a decision line was drawn halfway between low 
and high K, the model could identify the correct K status in 100% of 
cases (Figure 1e). Also, the metabolomics signature allowed proper 
classification of samples based on OPLS components, as only four 
out of 65 (i.e., 6%) samples were wrongly classified (red arrows), due 
to a confusion between two similar K-sufficient situations: resupply 
and high K oil palms (which were both under 4 mM KCl at the time 
of sampling) (Figure 1f).

The present analysis shown for leaflets in Figure 1a–f has also 
been carried out in rachis samples. Under our conditions, there was 
a less strong response of rachis K content to K availability under high 
K (plateauing, Figure 1g). Therefore, the multivariate analysis gave 
similar results although being slightly less predictive with rachis (not 
shown).

3  | PRESENT PERSPEC TIVES OFFERED BY 
METABOLOMIC S FOR K MONITORING

The present metabolomics tool was implemented in saplings and is 
thus relevant to plants grown in greenhouses and nurseries. As such, 
we used vegetative growth rate as a response variable. Future stud-
ies are warranted to test the performance of metabolomics in adult 
trees grown in plantation, with yield as a response variable. This will 
require a strict control of fertilization, soil composition and inter-tree 
heterogeneity, and will involve a work over several years. A recent 
analysis of metabolic properties of adult trees in the field has shown 
that 2 years are necessary to observe significant effects after the 
arrest of K fertilization (Mirande-Ney et al., 2020).

Still, our study shows that leaflet metabolome seems to be an 
excellent tool to monitor K nutrition in oil palm, allowing proper 
diagnostic in the growth-K space, which is essential to take 

fertilization decisions. Oil palm is currently a major oil-producing 
crop and its global cultivation area is 19 million ha (FAO 2018), 
representing about 2.5 billion trees. Oil palm cultivation is thus a 
strategic economic sector in tropical countries such as Indonesia 
or Malaysia, where its expansion must be sustainable. In partic-
ular, amongst criteria given by RSPO (Roundtable on Sustainable 
Palm Oil, www.rspo.org), fertilization must follow best agricultural 
practices including nutrient monitoring by sampling, avoidance of 
excessive inputs and nutrient recycling practices. Here new tech-
nologies such as metabolomics can play a role to provide optimal 
guidance for K fertilization.
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