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Summary. How does the genetic architecture of quantitative traits evolve over time? An-16

swering this question is crucial for many applied fields such as human genetics and plant17

or animal breeding. In the last decades, high-throughput genome techniques have been18

used to better understand links between genetic information and quantitative traits. Re-19

cently, high-throughput phenotyping methods are also being used to provide huge infor-20

mation at a phenotypic scale. In particular, these methods allow traits to be measured21

over time, and this, for a large number of individuals. Combining both information might22

provide evidence on how genetic architecture evolves over time. However, such data raise23

new statistical challenges related to, among others, high dimensionality, time dependen-24

cies, time varying effects. In this work, we propose a Bayesian varying coefficient model25

allowing, in a single step, the identification of genetic markers involved in the variability of26

phenotypic traits and the estimation of their dynamic effects. We evaluate the use of spike-27

and-slab priors for the variable selection with either P-spline interpolation or non-functional28

techniques to model the dynamic effects. Numerical results are shown on simulations and29

on a functional mapping study performed on an Arabidopsis thaliana (L. Heynh) data which30

motivated these developments.31

Keywords: Arabidopsis thaliana (L. Heynh); Functional mapping; Group Spike-and-32

Slab; P-Splines; Time Varying Parameters; Variable selection; Varying coefficient33

models.34

1. Introduction35

Genetic architecture controls part of the variational properties of a phenotype. It has36

been treated as constant over time while most biological processes of interest are dynamic37
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by nature (Hansen, 2006). In agronomy, traits such as yield, quality or disease resis-38

tance vary over seasons, age of individuals or various environmental conditions. Such39

variations, so-called phenotypic plasticity, reflect the phenotypic responses of a given40

genotype to a changing environment and may constitute adaptative processes. Until41

recently, most analyses of dynamic traits have been based on mapping quantitative trait42

loci (QTL) at each time point separately. Such analysis does not allow to take into43

account dependencies between successive measures and can be less powerful to select44

QTL. It also does not allow the inclusion of external information such as environmental45

variables in case of identical conditions for all individuals at a given time. To overcome46

these limitations, new classes of statistical models have been developed to analyze such47

data. In particular, functional mapping (FM) has been proposed for QTL identification48

associated with dynamic traits (Ma et al., 2002; Wu et al., 2003; Li and Sillanpää, 2015).49

FM is based on simultaneously modeling the dynamic relationship between quanti-50

tative traits and genotype information, and the residuals covariance matrix (Li and Wu,51

2010). FM relied initially on the assumption that genetic effects are continuous functions52

(Li and Sillanpää, 2013) and thus appear as a special case of varying coefficient (VC)53

models (Hastie and Tibshirani, 1993). VC models encompass a broad class of statistical54

approaches such as generalized additive models (Hastie and Tibshirani, 1986), structured55

additive regression (STAR) models (Fahrmeir et al., 2004) or time varying parameters56

(Bitto and Frühwirth-Schnatter, 2019). Parametric methods based on biological knowl-57

edge have been initially developed using sigmoid or logistic functions to model the QTL58

dynamic effects (Ma et al., 2002; Wu et al., 2003). But such assumptions limit the curve59

flexibility and are restrictive to reflect the underlying processes. To overcome this re-60

striction, non-parametric functional methods have been proposed such as those based61

on Legendre polynomial (Min et al., 2011; Li et al., 2015), or B-spline (Wang et al.,62

2008; Gong and Zou, 2012) interpolation techniques. While Legendre polynomial inter-63

polation relies on global function bases that may lead to a decrease of goodness-of-fit64

when the order of polynomials increases, especially at both ends of the curve, B-splines65

use local function bases which greatly depend on the number of knots and their posi-66

tions. Few knots do not provide enough flexibility to capture the variability in the data,67

while many knots may lead to overfitting. To overcome such limitation, penalization68

is usually applied to guarantee smoothness of the fitted curves and to limit overfitting69

(O’Sullivan, 1986, 1988). In particular, P-spline interpolation (Eilers and Marx, 1996)70

consisting in constraining the coefficients finite differences of adjacent B-splines, has71

been widely advocated in the FM context (Li and Sillanpää, 2013; Ni et al., 2019). In72

these previously mentioned approaches, FM was mainly based on the decomposition of a73

particular functional basis. However, in the VC model context, non-functional methods74

are an alternative approach consisting in directly modeling the varying coefficients (one75

parameter per time point without assuming a decomposition in a given functional basis).76

Such non-functional methods are widely used (Hastie and Tibshirani, 1993; Frühwirth-77

Schnatter and Wagner, 2010), but an unrestricted estimation does not insure smoothness78

and leads to overfitting problems (Bitto and Frühwirth-Schnatter, 2019; Franco-Villoria79

et al., 2019). To overcome these limitations, as mentionned for P-splines, penalization80

techniques are used. For example, the `2- or the `1-norm of the second differences has81

been proposed to model trends in time series (Kim et al., 2009). From a Bayesian per-82
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spective, such penalizations are equivalent to defining Gaussian prior distributions (Rue83

and Held, 2005; Rasmussen and Williams, 2006). For example, the `2-norm of the first84

or second differences correspond to first or second order random walk process priors, re-85

spectively (Lang and Brezger, 2004). In a genetic context, non-functional methods have86

been sparsely applied and compared to functional approaches (Li and Sillanpää, 2013;87

Vanhatalo et al., 2019). In this paper, we propose to evaluate, in a Bayesian frame-88

work, the impact of modeling choices focusing either on functional or non-functional89

approaches, each combined with first or second random walk process priors to model90

genetic effects over time.91

With current technologies, such as high-throughput genotyping, the number of ge-92

netic markers may be huge leading to a large set of time varying parameters. To simul-93

taneously analyze all markers and phenotypes observed along time, variable selection94

methods need to be performed in a FM context. In animal or plant genetics, selection is95

also crucial to improve breeding programs. Classical variable selection methods focus on96

a single coefficient. In FM, strategies are slightly different because all the sequences of97

coefficients associated to a genetic information have to be selected simultaneously. Group98

variables selection have been developed in such a context. Wang et al. (2008) extended99

the SCAD penalized approach to grouped longitudinal data and (Li and Sillanpää, 2013;100

Vanhatalo et al., 2019) adapted stepwise algorithms. In a Bayesian regression model,101

various variable selection approaches have been proposed. In particular, the Bayesian102

group LASSO with Legendre interpolation has been investigated by Li et al. (2015).103

However, in high-dimensional data, this type of approach which shrinks towards zero104

the effects of irrelevant variables without putting them exactly to zero, leads to biased105

estimation (Fan and Li, 2001; Kyung et al., 2010) and requires fitting the model in106

two steps. In time varying parameters, double Gamma prior is advocated (Bitto and107

Frühwirth-Schnatter, 2019) as proposed by Pérez et al. (2017) in a linear mixed context.108

In STAR models, Scheipl et al. (2012) proposed the use of a spike-and-slab prior based on109

mixture of inverse gamma distributions (Ishwaran and Rao, 2005). The spike-and-slab110

prior is a discrete mixture of two distributions (George and McCulloch, 1993, 1997). The111

spike distribution is concentrated around zero and models coefficients associated to irrel-112

evant variables while the slab distribution is flat and allows to describe the coefficients of113

relevant variables (Ishwaran and Rao, 2005; Frühwirth-Schnatter and Wagner, 2010). In114

this paper, we propose a group spike-and-slab prior with Dirac mass at zero allowing to115

set to zero non relevant genetic information as proposed in Ghosh and Ghattas (2015);116

Yang and Narisetty (2020).117

To sum up, we propose to use a Bayesian P-spline interpolation or a direct approach118

with first or second random walk process priors for the functional estimation of ge-119

netic and environmental dynamic effects. Both methods are combined with a group120

spike-and-slab prior for selection of time varying coefficients (functional effects). Our121

approach allows, in a single step, to estimate complex functions associated to varying122

coefficients and to select time-varying QTLs associated to phenotypic traits. Section123

2 presents the full hierarchical Bayesian models. In section 3, model performances are124

tested on simulations. Numerical results show that combining penalised functional or125

non-functional method with a group spike-and-slab prior outperforms existing methods126

such as B-splines or Legendre interpolation combined with group-LASSO or even with127
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group spike-and-slab prior. Our approach compared to that of Vanhatalo et al.’, also128

show better performances notably in terms of selection. Finally, section 4 is dedicated to129

a real case study, investigating the dynamic genetic architecture of shoot growth natural130

variations for Arabidopsis thaliana (L. Heynh) under two water availability conditions.131

2. Statistical Models132

Let yitk be the phenotype of individual i = 1, . . . , n at time tk (k = 1, . . . , T ). Let133

t = (t1, . . . , tT )′ the time vector and el =
(
elt1 , . . . , e

l
tk , . . . , e

l
tT

)′
be L known environ-134

mental variables varying over time but common to all individuals at any given time tk.135

Finally let us assume that genotype information, xij , j = 1, . . . , J , is available for each136

individual at each of J loci. J is potentially much larger than n. Note that markers are137

constant over time but vary between individuals. We propose to model the phenotypes138

according to environmental conditions and genotypes using the following multivariate139

varying coefficient (VC) model:140

yitk = α+ µ(tk) +

L∑
l=1

fl(e
l
tk) +

J∑
j=1

xijβj(tk) + εitk . (1)

α is the intercept, µ and fl are real smooth functions of time and of the lth environmental141

variable respectively. Note that for the model to be identifiable (Hastie and Tibshirani,142

1986), µ and fl have to be centered. The effect βj of the jth marker is assumed to143

be an unknown real smooth function of time. εi = (εit1 , . . . , εitT )′ is a T -dimensional144

vector of residuals associated to individual i assumed to follow a multivariate Gaussian145

distribution, N (0, σ2Γ), with σ2 the residual variance and Γ the T×T correlation matrix146

defined by a first-order autoregressive (AR(1)) structure with unknown parameter ρ147

(Fahrmeir and Kneib, 2011).148

Several functional methods have been proposed to approximate unknown functions149

(De Boor et al., 1978). Among them, B-spline interpolation is widely used. It consists150

of writing an unknown function h as a linear combination of B-spline basis functions:151

h(x) =

df∑
r=1

Br(x, ν) cr

where (B1(., ν), . . . , Bdf (., ν)) is the collection of the νth-degree B-spline basis functions152

defined using K knots leading to (K − 1) ordered subintervals on the x-domain and153

c = (c1, . . . , cdf )′ is a vector of unknown B-spline coefficients. df is equal to K + ν and154

is called the degree of freedom of the B-spline basis. In the following ν and K will be155

assumed to be equal for all bases. Let us denote Bx the T ×df dimensional matrix where156

Bx
i,r = Br(xi, ν). For h(.) functions to be centered, Bx and c require to be reparametrized157

(see appendix A.1). In the following, B̃x and c̃ denote the re-parametrized versions of158

Bx and c. An accurate use of the B-spline approach strongly depends on the number of159

knots and the choice of their positions (Eilers and Marx, 1996). A misspecification may160

lead to over- or under- fits. To overcome these limitations and to introduce smoothness,161

penalized B-splines (P-splines) have been developed (Eilers and Marx, 1996). The idea162
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is to penalize the first or second order finite differences in adjacent spline regression163

coefficients.164

Non-functional method presents an alternative to B-spline interpolation. It consists165

in the discretization of coefficient functions (β1(t), . . . , βJ(t)) leading to the estimation166

of T × J parameters as in a standard multivariate regression model (Li and Sillanpää,167

2013). For smoothness reasons and due to the huge number of parameters, penalized168

least squares methods have been proposed consisting, as already used in P-spline context,169

to constrain the first or second differences of successive time regression parameters (Kim170

et al., 2009; Bruder et al., 2011; Bitto and Frühwirth-Schnatter, 2019; Franco-Villoria171

et al., 2019).172

Finally, using either functional or non-functional methods, equation (1) can be written173

for individual i over time as174

yi = α1 + B̃tm̃+

L∑
l=1

B̃el ãl +

J∑
j=1

xijZbj + εi, εi ∼ N (0, σ2Γ) (2)

where yi = (yit1 , . . . , yitT )′ corresponds to the T -dimensional vector of phenotypic values175

for individual i, m̃ and ãl are the (df − 1)-dimensional vectors of B-spline coefficients176

associated to the smooth functions of time and of the lth environmental variable.177

In case of B-spline or P-spline approaches, Z is then equal to Bt and bj are the178

df -dimensional vectors of coefficients associated to the jth marker. Otherwise, Z ≡ IdT179

where IdT is the T × T identity matrix and bj = (βjt1 , . . . , βjtT )′.180

From a Bayesian perspective, penalties based on the first or second order finite differ-181

ences on adjacent coefficients correspond to a multivariate first or second order random182

walk prior (Lang and Brezger, 2004). In the following, prior distribution for m̃, ãl or bj183

will be assumed to be:184

N
(
0, τu(K)−1

)
(3)

where τu is a variance parameter specific for each group of unknown parameters: τm for185

m̃, τal for ãl, l = 1, . . . , L, and τbj for bj , j = 1, . . . , J . K is equal to D̃′mD̃m, D̃′alD̃al ,186

l = 1, . . . , L, or D′D, where D is the matrix representation of the first and second order187

finite differentiating operator, D̃m and D̃al are the associated re-parametrized versions188

of D (see appendix A.1 for more details).189

In order to simultaneously select relevant markers j and estimate their associated190

effects bj , group variable selection has to be performed. In a Bayesian regression model,191

various variable selection approaches have been proposed (O’Hara et al., 2009). In192

particular, the spike-and-slab prior has been widely and efficiently used (Malsiner-Walli193

and Wagner, 2011; Ghosh and Ghattas, 2015). The spike-and-slab prior is a discrete194

mixture of two distributions (George and McCulloch, 1993, 1997). The allocation to195

both components is controlled by a latent indicator variable γj that follows a Bernoulli196

distribution. Thus, if γj = 1 the coefficient will be assigned to the slab part and the197

variable will be included in the model. To simultaneously select molecular markers and198

estimate their effects, we propose to combine the random walk prior (see eq. (3)) of199

the coefficients with a spike-and-slab prior. In our context, we consider each vector of200

coefficients as a group and we specify on each vector a multivariate spike-and-slab prior201

with the random walk prior on the slab component and a Dirac mass at zero (Ghosh202
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and Ghattas, 2015; Yang and Narisetty, 2020) leading to the following prior:203

bj |τbj , γj , σ2 ∼ γjN (0, σ2(τbjD
′D)−1) + (1− γj)δ(0), j = 1, . . . , J (4)

τbj ∼ IG(s, r), γj ∼ Ber(π) and π ∼ Beta(1, 1)

where IG(s, r) is the Inverse Gamma distribution with shape and rate respectively equal204

to s and r. σ2 is the residual variance, π is the a priori inclusion probability and205

Beta(1, 1) denote the Beta distribution.206

Finally, the dynamic QTL mapping model can be expressed as the following Bayesian207

hierarchical model:208

yi|α, m̃, ã, b, ρ, σ2 ∼ N (α+ B̃tm̃+

L∑
l=1

B̃el ãl +

J∑
j=1

xijZbj , σ
2Γ)

α ∼ U(−∞,∞)

m̃|τm ∼ N (0, (τmD̃
′
mD̃m)−1)

ãl|τal ∼ N (0, (τalD̃
′
alD̃al)

−1), l = 1, . . . , L

bj |τbj , γj , σ2 ∼ γjN (0, σ2(τbjD
′D)−1) + (1− γj)δ(0), j = 1, . . . , J

τm, τal and τbj ∼ IG(0.1, 0.1), l = 1, . . . , L and j = 1, . . . , J

γj ∼ Ber(π), j = 1, . . . , J and π ∼ Beta(1, 1)

ρ ∼ U(−1,1), σ2 ∼ IG(0.1, 0.1) (5)

where U(−1,1) denotes the uniform distribution on the interval −1 to 1. The use of a209

Dirac spike may imply reducibility of the Markov chain (γj = 0 implies bj = 0 and vice210

versa). To avoid it, it is essential to draw γ from the marginal posterior integrating over211

the regression coefficients b subject to selection, see Malsiner-Walli and Wagner (2011),212

Geweke (1996) and Smith et al. (1996). The details of the integration are provided213

in appendix A.2. This Bayesian hierarchical model (eq. (5)) relies on conditionally214

conjugate distributions. It allows analytical integration over the regression effects b and215

thus the development of an efficient Gibbs sampling algorithm (Gilks et al., 1995). The216

full conditional distributions for the group spike-and-slab prior are given in appendix217

A.3 and are available on https://github.com/Heuclin/VCGSS.218

3. Simulations219

This section aims to investigate through simulations the performance of the proposed220

models, by varying different parameters such as the degree of freedom, the residual vari-221

ance, the number of observations (time steps and individuals), the number of markers,222

the correlation among them and considering several functional methods (Legendre poly-223

nomials (L), B-spline (BS) or P-splines with first or second order difference penalty (PS 1224

/ PS 2)) and non-functional methods (with first or second order difference penalty (RW 1225

/ RW 2)) combined with two variable selection priors (group spike-and-slab (GSS) or226

Bayesian group Lasso (BGL) (Kyung et al., 2010) (see appendix A.3 and A.4 for the full227

conditional distributions)). We also planned to test the approach proposed by Scheipl228

https://github.com/Heuclin/VCGSS
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et al. (2012) and implemented in the spikeSlabGAM R-package (Scheipl, 2011). Unfor-229

tunately, from computational and modeling perspectives, this was not possible. This230

method requires indeed data transformation, such as vectorization of matrices and Kro-231

necker products, leading to manipulation of huge matrices, which is particularly the232

case in the longitudinal context. For example, assuming n = 300 individuals, T = 100233

time points, and J = 100 genetic markers, the algorithm crashes on a high performance234

computer (28 cores, bi processor Intel Xeon E5-2680 v4 2,4 Ghz with 128 Go of RAM).235

In addition, spikeSlabGAM does not permit to consider residual dependencies within236

each individual to be structured over time, that may lead to spurious selection (Li and237

Sillanpää, 2013). In our paper, an AR(1) is used. Assuming independence impacts the238

variable selection process leading in particular to an increase of false positives. Fur-239

thermore, we also compare our different approaches with Vanhatalo et al.’s method that240

models the functional effects βj with Gaussian process prior using a Mátern covariance241

function combined with a stepwise selection approach and taking also into account an242

AR(1) residual covariance structure. We will refer to this approach as S-GP. Note that in243

a Bayesian framework, the Legendre interpolation combined with Bayesian group Lasso244

has been already explored by Li and Sillanpää (2015).245

In the following, whatever the number of markers J , only the first four markers are246

non-zeros and their functional effects are defined as follows:247

β1(t) = 4− 0.08t,

β2(t) = cos

(
π

15
(t− 25)

)
+

t

50
,

β3(t) =
60

25 + (t− T
2 )2

β4(t) = 2 ∗ 1t≤T
3

+ 0 ∗ 1 2T

3
<t≤ 2T

3
+ 1t> 2T

3
. (6)

The overall mean function is set to:248

µ(t) = 1 + sin

(
πt

20

)
. (7)

Only one environmental variable is considered:249

e1t = cos

(
π

2
(t− 25)

)
+

1

50
t (8)

and its effect on phenotypes is defined for all t as250

f1(e
1
t ) = 0.5e1t + 0.3(e1t )

2. (9)

The ratio of false positives (FP) and false negatives (FN) as well as Matthews correlation251

coefficient (MCC, Matthews (1975)) are recorded to evaluate the selection performances.252

For the GSS prior, a variable is assumed to be selected if its marginal posterior prob-253

ability is greater than 0.5. For the BGL prior, a variable is selected if zero does not254

belong to the credible interval of at least one B-spline or Legendre coefficient. The es-255

timation quality is assessed using the root mean square error (RMSE). For the additive256
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part α+ µ(t) + f1(e
1
t ), the error is jointly calculated for identifiability reasons. For ease257

of comparison, RMSEs calculated for each βj , j = 1, . . . , 4, are summed up in a unique258

value (RMSEβ =
∑4

j=1RMSEβj ). All results are based on 100 replications.259

260

Impact of functional and non-functional methods on estimation and prediction perfor-261

mances262

Functional methods depend on the degree of freedom (df) for the B- and P-spline inter-263

polations and the polynomial degree (d) for the Legendre interpolation. In the following,264

ν is set to three such that cubic spline basis functions are used. To understand the im-265

pact of different methods, we first perform inference with different values of d ranging266

from 9 to 70, df ranging from 9 to 100, and assuming the true model is known (no267

variable selection, J = 4). The sample size n is set to 300, the number of time points T268

to 100, the residual variance σ2 to 4 and the residual autocorrelation decay parameter269

ρ to 0.270

Figure 1 presents the RMSEs calculated using the first three smooth effects β1(t),271

β2(t) and β3(t). It highlights the benefit of coefficient difference penalty. Indeed, among272

functional methods, the error generated by non penalised methods decreases until 0.118273

and then increases. It emphasizes the difficulty to choose the number of polynomial de-274

gree / degree of freedom. The P-spline method generates an error that decreases to 0.1275

and 0.092 for penalisation of order 1 and 2 respectively, then stabilizes when the degree276

increases. Thus, it outperforms non penalised methods and avoids overfitting. Finally,277

penalised non-functional methods perform equally well than non penalised functional278

methods at optimal degree. Figure 1b presents the RMSE of the piecewise constant279

effect β4(t). Because of the two jumps, the effect of β4(t) is a complicated task for280

functional methods, as confirmed here. Indeed the optimal estimations are reached for a281

degree of freedom equal to the number of time step T and are no better than the estima-282

tion generated by non-functional penalised methods. To ensure that the P-spline results283

showed in Figure 1a are not due to overfitting, a 10-folds cross-validation is performed284

and predictive RMSEs are given in Figure 1c. This confirms that P-splines are more285

robust to overfitting.286

287

This simulation has showed that penalised methods outperform non-penalised method288

and avoid overfitting. Functional penalised methods are suitable for very smooth func-289

tions with no function values changing abruptly at any time point. On the contrary,290

non-functional penalised methods are suitable for more complex functions which can291

present jumps.292

293

In the following, the df for B- or P-splines and d for Legendre interpolation will be294

fixed at T/3.295

Impact of priors on variable selection296

The second set of simulations aims at comparing BGL and GSS priors under functional297

and non-functional methods. These different prior combinations are also compared with298
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Fig. 1. Panel (a) presents the mean of RMSEs for functional estimation of the smooth effects
β1(t), β2(t) and β3(t) for varying number of df and d. Panel (b) presents the RMSE for func-
tional estimation of the piecewise constant effect β4(t) for varying number of df and d. Panel
(c) presents the predictive RMSE using 10-folds cross-validation for varying number of df and
d. Green, red, blue and purple lines correspond to P-splines 2, P-splines 1, B-splines and
Legendre polynomial interpolation respectively. Dashed and dotted black lines correspond to
non-functional interpolation with order 1 and 2 respectively.

the stepwise approach of Vanhatalo et al. (2019) combined with Gaussian process using299

Mátern covariance function to estimate functional effects (S-GP). The number of time300

points T is set to 100, the number of individuals n is set to 100 or 300 and the number301

of markers J is set to 3000 or 500 respectively. These scenarios are then coupled with302

a residual variance σ2 set to 4 or 16 and a residual autocorrelation decay parameter ρ303

set to 0.4. When the number of individuals is high and the number of markers is low304

(n = 300 and J = 500, columns 1 and 2 in Table 1), BGL and GSS perform equally305

well regardless of the estimation method used. Both priors allow efficient selection of306

variables which leads to an MCC close to one. The S-GP approach also performs well307

with slightly lower MCC when the residual variance increases due to some FN. However,308

when the sample size is substantially smaller than the number of variables (n = 100 and309

J = 3000, columns 3 and 4 in Table 1), BGL and GSS perform differently. BGL fails to310

select 75% to 100% of the non-zero functions regardless of the estimation method used311

and leads to a decrease of the MCC down to 0. In order to determine the reasons for this312

behaviour, we calculated, for BGL combined with P-spline interpolation, the following313

root mean square errors314

(a) between the observations and their predictions315

RMSEy =

√√√√ 1

nT

T∑
k=1

n∑
i=1

(ŷi,tk − yi,tk)2,

(b) between the true non-zero functions and their estimations using all markers316

RMSEBtX =

√√√√ 1

nT

T∑
k=1

n∑
i=1

J∑
j=1

(xi,j [BT b̂j ]tk − xi,jβj(tk))2,
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Table 1. Matthews correlation coefficient (MCC), False negative (FN) in percentage and RMSEβ obtained
using different priors and approaches. Standard deviations are given in brackets.

Criteria Prior n=300, J=500, σ2=4 n=300, J=500, σ2=16 n=100, J=3000, σ2=4 n=100, J=3000, σ2=16

MCC

BGL-PS 0.91 (0.08) 0.9 (0.082) 0.51 (0.041) 0
BGL-BS 0.99 (0.041) 0.98 (0.046) 0.5 (0) 0
BGL-L 0.75 (0.099) 0.7 (0.092) 0.5 (0) 0.2 (0.274)
GSS-L 1 (1) 1 (1) 1 (1) 0.96 (0.962)
GSS-BS 1 (0) 1 (0) 1 (0) 1 (0.019)
GSS-PS 1 1 (0) 1 (0) 1 (0) 0.98 (0.044)
GSS-PS 2 1 (1) 1 (1) 1 (1) 0.94 (0.941)
GSS-RW 1 1 (0) 0.99 (0.027) 1 (0) 0.87 (0)
GSS-RW 2 1 (0) 0.99 (0.027) 1 (0) 0.87 (0)
S-GP 1 (0) 0.89 (0.05) 0.94 (0.063) 0.62 (0.141)

FN

BGL-PS 0 0 73.98 (4.998) 100 (0)
BGL-BS 0 0 75 (0) 100 (0)
BGL-L 0 0 75 (0) 90 (13.693)
GSS-L 0 0 0 7 (7)
GSS-BS 0 0 0 0.5 (3.536)
GSS-PS 1 0 0 0 3 (8.207)
GSS-PS 2 0 0 0 11 (11)
GSS-RW 1 0 1 (4.949) 0 25 (0)
GSS-RW 2 0 1 (4.949) 0 25 (0)
S-GP 0 20.5 (9.702) 7.5 (11.573) 59 (18.736)

RMSEβ

BGL-PS 0.47 (0.083) 0.86 (0.17) 3.48 (0.248) 5.62 (0)
BGL-BS 0.43 (0.042) 0.69 (0.091) 3.54 (0.065) 5.62 (0)
BGL-L 0.75 (0.187) 1.53 (0.391) 3.56 (0.108) 4.83 (1.077)
GSS-L 0.43 (0.429) 0.7 (0.695) 0.63 (0.628) 1.22 (1.224)
GSS-BS 0.42 (0.022) 0.66 (0.042) 0.6 (0.04) 1.03 (0.1)
GSS-PS 1 0.38 (0.024) 0.61 (0.041) 0.56 (0.04) 0.96 (0.176)
GSS-PS 2 0.39 (0.39) 0.66 (0.665) 0.58 (0.578) 1.23 (1.234)
GSS-RW 1 0.43 (0.024) 0.87 (0.106) 0.74 (0.041) 1.79 (0.054)
GSS-RW 2 0.42 (0.04) 0.89 (0.131) 0.76(0.043) 1.81 (0.057)
S-GP 0.44 (0.023) 1.05 (0.204) 0.76 (0.276) 2.87 (0.819)

(c) between the true non-zero functions and their estimations using the markers with317

true non-zero effects318

RMSEBtX1
=

√√√√ 1

nT

T∑
k=1

n∑
i=1

4∑
j=1

(xi,j [BT b̂j ]tk − xi,jβj(tk))2,

(d) between 0 and the estimation using the markers with true null effects319

RMSEBtX0
=

√√√√ 1

nT

T∑
k=1

n∑
i=1

J∑
j=5

(xi,j [BT b̂j ]tk)
2.

RMSEy and RMSEBtX are very similar regardless of the number of individuals and320

markers (see Table 2). This suggests that even when the model selection fails, the global321

estimation remains acceptable. However, RMSEBtX1
and RMSEBtX0

clearly differ be-322

tween the two cases (n = 300, J = 500 vs n = 100, J = 3000). In the first and more323

favorable case, both RMSEs are low while for the case where the number of markers324

is high compared to the number of individuals, the RMSEs increases substantially. In325

particular, RMSEBtX0
is high demonstrating a clear over-estimation of the zero com-326

ponents and thus an under-estimation of the true non-zero parts. That is, BGL is not327

shrinking to zero the 2996 markers with no effect and is estimating them to have low328

values, while biasing toward zero the estimation of the four markers with true effects.329
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Table 2. RMSE between the observations and their predictions (RMSEy),
between the true non-zero functions and their estimations using all mark-
ers (RMSEBtX) or using the markers with true non-zero effects (RMSEBtX1

)
and between 0 and the estimation using the markers with true null effects
(RMSEBtX0

). All these quantities are obtained using BGL prior combined
with P-spline interpolation. X denote the matrix associated to all markers,
X1 the marker matrix associated to the true non-zero effects and X0 the
marker matrix associated to the true zero effects.

n J σ2 RMSEy RMSEBtX RMSEBtX1
RMSEBtX0

300 500 4 2.64 0.89 0.44 0.93

100 3000 4 2.64 0.97 2.88 2.85

The biased estimations thereby impact the selection. The S-GP approach seems also330

sensitive to the complexity of the data. Indeed, the S-GP’s MCC decreases to 0.62 due331

to a FN which reaches 59%. It is affected by the ratio of the number of observations332

to the number of variables and especially by the noise which degrades its selection abil-333

ity. The selection performance of the GSS prior combined with non-functional methods334

(GSS-RW 1 / GSS-RW 2) also appears to be slightly affected by the noise when the335

number of individuals is low. Effectively, these combinations systematically miss vari-336

able 3 which is the smallest non-zero effect leading to 25% FN. GSS prior combined with337

functional method does not present the same comportment despite some false negatives338

(see Table 1). Li and Sillanpää (2013) showed that the non-functional method performs339

better when used with a diagonal covariance structure than with AR(1), in the sense that340

it does not erroneously shrink the effects of any marker toward zero when the number341

of observations is low and there is high temporal correlation among the residual errors.342

However, assuming a simple diagonal residual covariance structure tends to significantly343

underestimate the uncertainty, which may result in including some false positive markers344

into the variable selection. Therefore, the AR(1) covariance structure might be a more345

suitable choice. To investigate the limitations of the GSS prior combined with functional346

and non-functional methods in response to the data complexity, we simulate datasets347

with 100, 300 or 900 individuals, 20 time points, 500 markers, a residual variance equal348

to 1, 4 or 16 and a residual autocorrelation decay parameter ρ of 0, 0.4, 0.7 and 0.9. Fig-349

ure 2 presents the results for GSS prior combined with P-spline interpolation and with350

non-functional method both with penalty of order 2. The GSS prior combined with351

non-functional method presents FN which increases with the noise (ρ and σ2) when the352

number of observations is low (see Figure 2a) while GSS prior combined with P-spline353

interpolation does not. This phenomenon is less pronounced when the number of obser-354

vations increases (see Figure 2b) and disappears totally when the number of individuals355

is high (n = 900). Thus, non-functional methods assuming AR(1) residual covariance356

may suffer from lack of statistical power when the data is complex (few observations357

with high noise) and may have difficulties to identify the correct origin of the observed358

dependency in this situation. The dimensional reduction caused by functional methods359

(number of parameters is divided by 3 using P-splines with df = T/3) implicitly in-360

creases the statistical power. Note that it also reduces the computation time (divided361

by 10 using df = T/3, see Table 4).362
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Fig. 2. Panel (a) presents the false negative (FN) rate in percentage for n = 100. Panel (b)
presents the FN rate in percentage for n = 300. Black line corresponds to the GSS prior
combined with P-spline interpolation and dashed line corresponds to the GSS prior combined
with non-functional method both with penalty of order 2.
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Finally, the correct selection leads to accurate estimation of parameters (see RMSEβ363

in Table 1). The RMSEβ in the first scenario where all approaches have a good selection364

confirms the performance of the different estimation methods. In addition we can see365

that the Gaussian process method has a comparable performance to the non-functional366

methods RW 1 and RW 2.367

368

Impact of the number of individuals and time steps on GSS prior performance369

To go a step further and better understand the impact of the number of individuals and370

time steps on the performance of GSS prior, we consider another set of simulations. In371

the following, we assume that only three markers have significant and constant effects of372

0.1, 0.2 and 0.3 over time. An additional marker is added with no effects. The number373

of time points T varies from 1 to 50 and the number of individuals n is set to 100, 300,374

500 or 1000. The residual variance σ2 is fixed to one and the residual autocorrelation375

decay parameter ρ to 0. We focus on the marginal posterior probabilities of inclusion376

(P (γj = 1|y,X), j = 1, . . . , 4) with all parameters fixed at their true values. Such an377

approach has already been used by Malsiner-Walli and Wagner (2011) to evaluate the378

performance of spike-and-slab priors. First, regardless of the number of individuals or379

time steps, the marker with null effect is never selected (see Figure 3). Next, if we380

focus on one time step, these simulations confirm that the number of individuals plays381

a crucial role in variable selection as already mentioned in Malsiner-Walli and Wagner382

(2011). Increasing the number of individuals leads to a clear improvement of all marginal383

posterior probabilities. For example, for the strongest effect of 0.3, when the number of384

individuals goes from 100 to 300 with one time step (T = 1), P (γ3 = 1|y,X) increases385

from 0.44 to 0.92 (see Figures 3a, 3b). For the smallest effect of 0.1, with one time step,386

P (γ1 = 1|y,X) increases from 0.01 to 0.34 when the number of individuals varies from387

100 to 1000 (see Figures 3a, 3d). While increasing the number of individuals improves the388

posterior probabilities of inclusion, the number of time steps also plays a significant role.389

Indeed, in the first panel with n = 100, the probability of inclusion for the intermediate390

effect of 0.2 increases from 0.10 for one time step to more than 0.35 using 50 time391

steps. This phenomenon is more evident when n = 300 where P (γ2 = 1|y,X) jumps392

from 0.52 to 1 when considering around 10 or more time steps, or when n = 1000 and393

P (γ1 = 1|y,X) climbs from 0.01 for one time step to 1 with 20 or more time steps. Thus,394

combining a high number of individuals with longitudinal data improves the variable395

selection allowing the detection of small effects while strengthening the confidence in the396

strongest ones. These results demonstrate the superiority of longitudinal data analyses397

compared to a separate analysis at each time point.398

Impact of correlation between markers399

400

Correlation is a difficult task in practice especially when working with high-throughput401

genotyping data where the fine discretization of the genome leads to very strong collinear-402

ity between markers. So it is important to understand how the GSS prior will perform403

under this constraint. To study this kind of situation, we consider a new simulated404
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Fig. 3. Marginal probabilities of inclusion for each effect as a function of the number of time
points T . Dotted-dashed line, dotted line, dashed line and solid line correspond to effects equal
to 0.3, 0.2, 0.1 and 0 respectively. Figures a, b, c and d are based on 100, 300, 500 and 1000
individuals respectively.
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dataset constructed from markers provided from real case study on Arabidopsis thaliana405

(L. Heynh) (Marchadier et al., 2019) presented in section 4. Phenotypic observations y406

are simulated for 300 individuals over 100 time points from four independent groups of407

9 correlated markers. The correlation between adjacent markers within group is set to408

0.8, 0.9 and 0.95 following the data process described in section 4. For the jth group,409

only the 5th marker has non-zero effect defined by βj(t) in equation (6), j = 1, 2, 3 or 4.410

The residual variance is set to 4 and the residual autocorrelation decay parameter ρ to411

0.9.412
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Fig. 4. Marginal probabilities of inclusion for each effect associated to correlated markers within
four independent groups.

Figure 4 gives the marginal inclusion probability for each marker under different levels413

of correlation among them. It shows a clear impact of the correlation among markers414

on selection. The higher the correlation, the lower the marginal inclusion probabilities415

of the non-zero markers and the higher the marginal inclusion probabilities of adjacent416

zero markers. The correlation of 0.95 highlights this fact well. This is due to a switch417

of selection among markers that are highly correlated (adjacent markers) with the true418

non-zero markers. This result is in agreement with those of Malsiner-Walli and Wagner419

(2011) and Ghosh and Ghattas (2015) who have also studied the spike-and-slab prior420

under collinearity. Thus, when the data present high correlation, approaches using421

spike-and-slab prior lead to identification of a set of physically related markers defining422

genomic regions involved for the phenotypic observations. Ghosh and Ghattas (2015)423

advise against the use of Zellner’s g-prior (leading to more false negative) and recommend424

a routine examination of the correlation matrix and calculation of the joint inclusion425

probabilities for correlated covariates, in addition to marginal inclusion probabilities, for426

assessing the importance of covariates.427
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4. Application428

This application aims at disentangling the effects of the complex genetic architecture429

of shoot growth of Arabidopsis thaliana (L. Heynh) (Marchadier et al., 2019) and the430

impact of soil water conditions (SWC) on its dynamics. The complete phenotypic431

dataset is freely available at: https://data.inra.fr/dataset.xhtml?persistentId=432

doi:10.15454/OCOP9B (Loudet, 2018). The genotypic dataset is freely available at:433

http://publiclines.versailles.inra.fr/page/8. We focus on the phenotypic trait434

compactness of a recombinant inbred line (RIL) composed of 358 individuals followed435

during the vegetative growth from days 8 to 29 after sowing (T = 21). Compactness436

dynamics was observed along time using the high-throughput Phenoscope robot (Tisné437

et al., 2013). Compactness is the ratio between the projected rosette area and the convex438

hull area. Two environmental conditions are considered: well-watered (WW) and mod-439

erate water deficit (MWD) conditions. WW slowly decreases SWC from 100% on day440

one to 60% on day five, then maintains that level throughout the experiment. MWD let441

natural evaporation act until a threshold of 30% humidity is reached (see Figure 5a). The442

dynamics of compactness according to the two SWC are presented in Figures 5b and 5c.443

From 113 Single Nucleotide Polymorphisms (SNPs), the parental genotype probabilities444

were calculated at 538 positions for each individual using the calc.genoprob function in445

R/QTL package (Broman et al., 2003). These probabilites lead to 538 genetic predic-446

tors and are referred to “markers” in the following. Markers on different chromosomes447

are independent (mean correlation between chromosomes lower than 0.05). However,448

within a chromosome, markers are ordered such that adjacent markers share similar in-449

formation and are highly correlated. Such dependencies among covariates is known to450

impact variable selection and parameter estimation as showed on our simulations and451

by others (Malsiner-Walli and Wagner, 2011; Ghosh and Ghattas, 2015). In order to452

reduce the collinearity, we process the data as follows: starting from the marker at the453

first position, we calculate its correlation with the subsequent markers. All markers with454

correlations greater than 0.95 are discarded and the first marker with a correlation less455

than 0.95 is retained, defining a new starting point. This procedure is repeated along the456

genome and results in the selection of 125 markers denoted X0.95. Since this correlation457

threshold is high, we apply the procedure on the subset X0.95 using a threshold of 0.7.458

This results in the selection of 38 markers among the previous 125, which we denote459

X0.7. Selected markers are labelled by their chromosome numbers and their positions460

separated by an underscore, such that marker 1 1 corresponds to the first position on461

the first chromosome. Both environmental conditions are initially related to time with462

a linear decrease over the first few days then become constant for the remainder of the463

experiment. During the first phase, environmental effects are fully correlated with time.464

This raises identifiability problems and does not permit to model jointly a time varying465

intercept and environmental effects. Thus, the environmental factors are not included466

in the model. In addition, since genotype × environment interactions are not taken into467

account, we analyse separately each environmental condition.468

469

In a nutshell, the study data consist of one phenotypic trait (compactness) measured470

over 21 time points (T = 21) on 358 individuals (n = 358) under two soil water con-471

ditions. We used two sets of covariates X0.70 and X0.95 containing 38 and 125 markers472

https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B
https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B
https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B
http://publiclines.versailles.inra.fr/page/8
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Fig. 5. Panel (a) presents the soil water content under the well-watered (WW) condition in
solid line and the moderate water deficit (MWD) conditions in dashed line over time. Panel (b)
presents compactness trait observations for the 358 individuals under the WW condition over
21 days. Panel (c) presents compactness trait observations for the 358 individuals under the
MWD condition over 21 days.

respectively. The two SWC are analyzed separately to identify differences in the genetic473

architecture between the conditions. The results are based on 100 MCMC chains initial-474

ized at random starting values, each with 1,000,000 iterations, a burn-in of 500,000 and475

a thinning of ten. Gelman and Rubin’s potential scale reduction factors (Gelman et al.,476

1992) for all continuous parameters and log predictive density (log-likelihood) are close477

to 1, indicating convergence. More details are presented in the supplementary materials.478

All output statistics are based on the pooled five million posterior samples.479

Selecting relevant markers for WW condition: in the case of low correlations be-480

tween markers, the selection procedure is highly stable. Figure 6 presents the mean481

of the marginal posterior inclusion probability for each marker using the PS 2 method482

across the pooled 10 million posterior samples. Eight markers (1 1, 1 20, 1 110, 2 62,483

4 45, 5 33, 5 76 and 5 104) are included in the model with marginal posterior proba-484

bilities of one. Seven other markers have a marginal posterior inclusion probabilities485

lower than one but strictly greater than zero. Among these, for the markers (1 79, 1 97)486

and (3 14, 3 25) the algorithm tends to switch between the two adjacent markers. In-487

deed, we first note that the joint inclusion probabilities P(γ1 79 = 1 ∩ γ1 97 = 1) and488

P(γ3 14 = 1 ∩ γ3 25 = 1) are close to zero (lower than 10−4), demonstrating that these489

two consecutive markers are hardly ever selected simultaneously. Second, the sum of490

the marginal posterior inclusion probabilities for each pair is equal to one. Thus, the491

algorithm switches from one marker to another. The three markers 2 47, 3 1 and 3 91492

have marginal posterior inclusion probabilities of 0.07, 0.9, 0.97 respectively and have493

no adjacent markers selected. The switch between included markers can be explained494

by the pre-selection procedure. Using a threshold of 0.7 and starting from the first po-495

sition may have led to the removal of other relevant markers or genomic regions, and496

the retained markers may not actually be relevant but only be close to or encompassing497

relevant regions. To validate this assumption, GSS-PS 2 is applied to the X0.95 dataset.498
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Fig. 6. Marginal posterior inclusion probabilities for the 38 markers in the genetic data X0.7

using the PS 2 method. The alternation of white and gray area delimites the 5 chromosomes.
A line at 0.5 representing a threshold at 0.5 is plotted.

Revealing genomic regions for WW condition: markers in the X0.95 subset are highly499

correlated but offer a better coverage of the genome. Strong collinearity between covari-500

ates can lead to a multimodal posterior distribution and posterior distributions have to501

be carefully analyzed Ghosh and Ghattas (2015). In particular, it can be troublesome for502

variable selection where subsets are weakly separable (Rocková and George, 2014). For503

highly correlated covariates, at a given MCMC iteration, one particular covariate can504

switch with another as shown on simulations. This phenomenon is classically observed505

using spike-and-slab priors. However, this drawback can be lifted to identify potential506

genomic regions involved in phenotypic variations. Applying PS 2 method on the X0.95
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Fig. 7. Marginal posterior inclusion probabilities for the 125 markers of the genetic data X0.95

using the PS 2 method. The alternation of white and gray area delimits the five chromosomes.
A line at 0.5 representing a threshold at 0.5 is plotted.

507

subset allows us to check this (see Figure 7). For the X0.70 subset, a model which contains508
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Table 3. Table of the identified relevant regions. Columns 2 and 3 indicate the markers or the
range of markers corresponding to regions identified using the PS 2 method on the X0.7 and
X0.95 subsets respectively. Column 4 indicates the markers or the range of markers correspond-
ing to regions identified using the RW 2 method on the X0.95 subset. The last column indicates
if regions were identified by Marchadier et al. (2019).
Region X0.70 & PS 2 X0.95 & PS 2 X0.95 & RW 2 Marchadier et al. (2019)

1 1 1 1 1 → 1 4 1 4 → 1 8
2 1 20 1 20 → 1 25 1 20 yes
3 1 79 → 1 97 1 85 →1 93 1 85 →1 89
4 1 110 1 110 → 1 115
5 2 62 2 57 → 2 64 2 57 → 2 64 yes
6 2 80 → 2 84
7 3 1 3 3 → 3 10 yes
8 3 14 → 3 25 3 14 → 3 18
9 3 97 3 97 3 97 yes
10 4 45 4 45 → 4 51 4 45 yes
11 4 79 → 4 87
12 5 33 5 33→ 5 42
13 5 76 5 76 → 5 80 5 64 yes
14 5 104 5 102 → 5 110 yes

12 markers (see Figure 6) is clearly favored with a joint posterior probability of 0.74,509

while no consensus can be reached based on X0.95 as the joint posterior probabilities510

of the top three models are only 0.027, 0.026 and 0.022. However and interestingly, the511

selected positions and models are similar. For example, the first three markers, 1 1, 1 2512

and 1 4 are never selected simultaneously (P (γ1 1 = ∩ γ1 2 = 1 ∩ γ1 4 = 1) = 0) but513

are complementary: P (γ1 1 = 1) + P (γ1 2 = 1) + P (γ1 4 = 1) = 1. This phenomenon514

is observed for most switching positions allowing the delimitation of 14 genetic regions515

that may be involved in compactness variation (see Table 3). From Table 3 several ad-516

ditional observations can be made. All markers or regions detected using X0.70 match517

those identified with X0.95 (see columns 2 and 3 of Table 3 ). The use of X0.95 leads to518

the selection of two additional regions (regions 6 and 11), and regions 3 and 8 seem nar-519

rower with X0.95. Thus, a more intensive repartition of markers along the genome, while520

avoiding extremely high correlations, allows the detection of genetic regions potentially521

involved in the underlying genetic architecture.522

523

We compare PS 1 and PS 2 methods applied on the subsets X0.70 and X0.95. The524

results are identical demonstrating no impact of the order difference penalty (see Figure525

8). We also compare the PS 2 and RW 2 methods. The results are different in terms of526

selection. Indeed, the number of selected markers or regions are lower with RW 2 than527

PS 2 with for instance 7 regions identified among the 14 of PS 2 using the X0.95 subset.528

The estimation of the residual correlation is roughly equal to 0.9 using all methods.529

This high correlation seems to influence the selection process when using RW 1 or RW 2530

methods, as already observed on simulations.531



20 B. Heuclin, F. Mortier, C. Trottier and M. Denis

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 1

9:29

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 2

9:29
ap

pl
y(

cu
rv

e_
w

w
_P

S
2[

id
_P

S
2,

 p
as

te
0(

1:
21

)]
, 2

, m
ea

n,
 n

a.
rm

 =
 T

R
U

E
)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 3

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 4

9:29

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 5

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 6

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 7

9:29

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 8

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 9

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 10

9:29

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 11

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 12

9:29

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 13

10 15 20 25

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Region 14

ap
pl

y(
cu

rv
e_

w
w

_P
S

2[
id

_P
S

2,
 p

as
te

0(
1:

21
)]

, 2
, m

ea
n,

 n
a.

rm
 =

 T
R

U
E

)

Fig. 8. Estimation of the effect for the marker which has the highest marginal posterior inclusion
probability within each region in the X0.95 subset. The blue, black, and red lines represent the
estimation using the PS 1, PS 2, and RW 2 methods respectively. Plots with box are associated
to markers which are identified by Marchadier et al. (2019).
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Impact of MWD condition: applying the PS 2 method to compactness measured in532

MWD condition using the X0.70 as well as X0.95 subsets reveals no clear impact of the533

MWD condition on the complex genetic architecture of shoot growth and its dynamics.534

Among the 12 positions selected in the WW condition using X0.70, seven positions are535

also selected in the MWD condition. Using X0.95, 12 genomic regions in the MWD536

condition overlap with the 14 selected regions in the WW condition. Interestingly,537

among the 5 positions selected for WW but not MWD using X0.70, three positions538

belong to the 12 shared genomic regions while the two last positions belong to the539

two unselected regions in MWD. Two hypotheses can explain such differences: (i) a540

genotype × environment interaction effect or (ii) an experimental effect. For the PS 2541

method, when comparing cumulated effects estimated using the seven shared positions,542

no difference can be observed between the two conditions (see Figure 9). Moreover,543

when plotting the effects of the two markers selected in WW condition but not in the544

MWD condition (see Figure 8, regions 7 and 12), it seems that these two positions545

impact compactness from the beginning to the end of the experiment. Such results do546

not support either hypotheses.547
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(a)
Fig. 9. Cumulative genetic effect of common markers selected in both conditions. The solid line
represents the effect for the WW condition and the dashed line represents the effect of MWD
conditions. Gray lines represent 95% credible intervals.

Comparative results: in an earlier study, Marchadier et al. (2019) identified in the548

WW condition eight significant markers involved in compactness variability for the last549

experimental day (T = 29) using a single time analysis. Seven of them match the re-550

gions we identified (Table 3, column 6 and Figure 8). Using the PS 2 method, we also551

identified seven additional regions that were not detected by Marchadier et al. (2019).552

These additional regions are identified by taking into account the dynamics of the phe-553

notypic trait. Indeed, considering the observations of all individuals over the T times554
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selects markers which can have an effect only at a few times unlike a single time point555

analysis as proposed by Marchadier et al. (2019). For example, marker “1 89”, which556

has the highest posterior inclusion probability within the third region (see Figure 8),557

shows an effect only at the early stage of the vegetative growth process. Thus, it can’t558

be identified using the last day as in Marchadier et al. (2019). Another advantage of559

considering functional variations of the effects allows a better understanding of the ge-560

netic architecture.561

Finally using functional methods such as P-spline interpolation compared to non-functional562

approaches reduces the number of parameters and thus indirectly increases the statistical563

power.564

5. Conclusion565

In this article we proposed a Bayesian varying coefficient model with variable selection566

for studying the dynamic genetic architecture of a complex trait.567

The model combines a group spike-and-slab prior for the selection of markers with a568

P-spline interpolation or direct estimation of time coefficient functions. Both methods569

use first or second order difference penalty to ensure smoothness of the genetic functional570

effects. We evaluate the performance of the model through different simulations. We571

show that our approaches outperform, in terms of estimation as well as prediction,572

models using B-spline or Legendre interpolation in combination with group spike-and-573

slab or Bayesian group LASSO priors, as well as the alternative approach of Vanhatalo574

et al. (2019). P-spline interpolation is more suitable for very smooth genetic effect while575

direct estimation of time coefficient functions with difference penalty is more suitable576

for more complex effect with potential jumps. However, simulations demonstrate that577

direct estimation of time coefficient functions with difference penalty is more sensitive to578

noise (residual variance and residual time correlation) leading to false negative. P-spline579

interpolation reduces the number of parameters which indirectly increases the statistical580

power. Considering a point mass at zero for the spike part of the prior distribution of the581

regression coefficients improves the selection and thereby the quality of the estimation582

(George and McCulloch, 1997). Moreover, an investigation of the marginal inclusion583

probability associated to each covariate reveals the importance of the number of time584

points in the variable selection performance.585

From a practical point of view, we show that a longitudinal approach allows a better586

detection of relevant markers or genomic regions compared to an approach that analyzes587

a single time point as proposed in Marchadier et al. (2019). In addition, as classically588

observed in genetic studies, markers present high correlation, thus requiring pre-selection.589

In this paper, we considered two correlation thresholds for the pre-selection leading to two590

subsets of markers considered for the analysis. The first subset with moderate correlation591

between markers allows a clear identification of positions and the estimation of their592

associated functional effects. The second, with high correlation among markers and593

more intensive coverage of the genome, allows the identification of genomic regions but594

the estimation of their associated effects is unreliable due to identifiability issues. This595

aspect has been observed on our simulations and was already reported by others (Ghosh596

and Ghattas, 2015; Malsiner-Walli and Wagner, 2011). Further research is needed for597
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variable selection in the presence of high collinearity between covariates, for example598

considering alternative priors such as g-priors (Malsiner-Walli and Wagner, 2011; Ghosh599

and Ghattas, 2015) or priors defined using the order structure information of markers600

along the genome.601

Finally, more or less complex extensions should be considered. In this work we602

assumed that time points are common to all individuals. This could be restrictive in603

some applications. However such assumption could be easily relaxed as done by (Li and604

Sillanpää, 2015), who defined a B-spline basis for each individual. Moreover, our model605

considered a time-varying environmental condition and genetic markers to have additive606

effects. The functional estimation of the genetic effects captures the dynamics associated607

to each marker. However, the additivity assumption does not permit to determine if these608

estimated effects are directly related to the physiological processes or to the time-varying609

environmental condition. Genotype-by-environment (GE) interactions may impact the610

dynamic genetic architecture of complex traits and the selection procedure. One possible611

solution for incorporating GE interactions could be the addition of a functional effect612

depending on the environmental condition for each marker. But such an approach is613

computationally challenging. Finally, in this paper, only one time-varying environmental614

condition common to all individuals is considered. Another extension would involve the615

integration of different environmental conditions for the same genotypes and evaluating616

GE interactions.617

Avaiability of the Arabidopsis thaliana (L. Heynh) dataset618

The complete phenotypic dataset is freely available on: https://data.inra.fr/dataset.619

xhtml?persistentId=doi:10.15454/OCOP9B (Loudet, 2018). The genotypic dataset is620

freely available on: http://publiclines.versailles.inra.fr/page/8.621

Acknowledgement622
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Tisné, S., Serrand, Y., Bach, L., Gilbault, E., Ben Ameur, R., Balasse, H., Voisin, R.,725

Bouchez, D., Durand-Tardif, M., Guerche, P., Chareyron, G., Da Rugna, J., Camilleri,726

C. and Loudet, O. (2013) Phenoscope: an automated large-scale phenotyping platform727

offering high spatial homogeneity. The Plant Journal, 74, 534–544.728
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A. Appendix742

A.1. Estimation of centered function using interpolation approach743

For identifiability reasons in VC models, the h functions to be interpolated for the744

intercept and the environmental effect have to be centered. This means
∫
< h(x)dx = 0745

(Hastie and Tibshirani, 1986; Wood, 2017). Let Bx denote the (T × df)-dimensional746

matrix containing the basis functions calculated at x = (x1, .., xt)
′. Let also denote c a747

df -dimensional vector of associated coefficients such that748

h(x) = Bxc. (10)

To satisfy the centering constraint on h(.), the sum of the elements of h(x) must be zero749

(1′Bxc = 0). This can be achieved by a re-parametrisation of Bx and c using a QR750

decomposition as explained by Wood (2017) in section 1.8.1 and 4.2. Let751

(1′Bx)′ = Q


R
0
...
0


the QR decomposition of (1′Bx)′ where Q is a (df × df)-dimensional orthogonal matrix752

and R is a scalar in this case. By taking Z the df − 1 last columns of Q we obtain that753

1′BxZ = (0 . . . 0).

Now, we can rewrite Equation (10) by defining a new (df − 1)-dimensional parameters754

vector c̃ such that c = Zc̃ and a new T × (df − 1) basis functions matrix B̃x = BxZ755

leading to Bxc = B̃xc̃ which satisfies the constraint.756

If adjacent coefficients are penalized as in P-spline interpolation, the new parameters c̃757

imply also a re-parametrisation of the matrix of the finite differentiating operator D by758

D̃ = DZ. Thus c′D′Dc is equal to c̃′D̃′D̃c̃.759

760
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A.2. Detail of the full conditional distribution of γk761

Let Θ the set of all parameters {α, m̃, τm, ã1, . . . , ãL, τa1 , . . . , τaL , b1, . . . , bJ , γ1, . . . , γJ , τb1 , . . . , τbJ , π, ρ, σ
2}

in the Bayesian hierarchical model (5), Θk0 and Θk1 be Θ with γk = 0 and γk = 1 re-
spectively. Let

ȳi = yi − α1− B̃tm̃−
L∑
l=1

B̃el ãl −
J∑
j=1

xi,jZbj

and

ȳi−k = yi − α1− B̃tm̃−
L∑
l=1

B̃el ãl −
J∑

j=1;j 6=k
xi,jZbj .

P (y|Θk1 \ {bk}) =

∫
R
P (y|.)P (bk|γk = 1)∂bk

=

∫
R

1

(2πσ2)
nT
2 |Γ|n2

exp

{
− 1

2σ2

n∑
i=1

ȳ′iΓ
−1ȳi

}
|D′D| 12

(2πσ2τbk ‘)
df
2

exp

{
− 1

2σ2τbk
b′kD

′Dbk

}
∂bk

=
1

(2πσ2)
nT
2 |Γ|n2

|D′D| 12

(2πσ2τbj )
df
2

exp
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− 1

2σ2

n∑
i=1

ȳ′i−kΓ−1ȳi−k

}
∫
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exp
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− 1

2

[
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′
n∑
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Γ−1

σ2
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n∑
i=1
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(
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+ 1
σ2

∑n
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2
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′Γ−1Z

)−1
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P (y|Θk1 \ {bk}) =
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′Γ
−1

σ2

n∑
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n∑
i=1
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P (γk = 1|Θ \ {bk, γk}) =
P (y|Θk1 \ {bk})P (γk = 1)

P (y|Θk1 \ {bk})P (γk = 1) + P (y|Θk0 \ {bk})P (γk = 0)

=
R

1 +R

766

with767

R =
P (y|Θk1 \ {bk})P (γk = 1)

P (y|Θk0 \ {bk})P (γk = 0)

=

π
|D′D|

1
2 (2π)

df
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′
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{
1
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∑n
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}
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n
2
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∑n
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′
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1
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}
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A.3. Full conditional distributions for group spike-and-slab prior769

Let Θ the set of all parameters {α, m̃, τm, ã1, . . . , ãL, τa1 , . . . , τaL , b1, . . . , bJ , γ1, . . . , γJ , τb1 , . . . , τbJ , π, ρ, σ
2}770

in the Bayesian hierarchical model (5), ȳi = yi−α1− B̃tm̃−
∑L

l=1 B̃
el ãl−

∑J
j=1 xi,jZbj771

and ȳi−k = yi − α1− B̃tm̃−
∑L

l=1 B̃
el ãl −

∑J
j=1;j 6=k xi,jZbj .772
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(
Σα1′

Γ−1

σ2

n∑
i=1

(ȳi + α1),Σα

)
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(
n1′

Γ−1
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1
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n∑
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′Γ−1

σ2
(ȳi + B̃tm̃),Σm̃
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+

n
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′
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(
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2
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1

2
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k
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+

n
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k
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, k = 1, . . . , L
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(
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2
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1

2
ãk
′
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1

σ2
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i,kZ
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, k = 1, . . . , J
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R

1 +R
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R =
π

1− π
|D′D| 12 |Σbk |

1
2

1
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df
2
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{
1

2

n∑
i=1
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Γ−1
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}
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(
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2
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1

2σ2
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)
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ρ|. ∼ |Γ|−n2 exp
{
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1

2
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A.4. Bayesian group Lasso774

A.4.1. Hierarchical model775

yi|α, m̃, ã, b, ρ, σ2 ∼ N (α+ B̃tm̃+

L∑
l=1

B̃el ãl +

J∑
j=1

xi,jZbj , σ
2Γ)

α ∼ U(−∞,∞)

m̃|τm ∼ N (0, (τmD̃
′
mD̃m)−1)

ãl|τal ∼ N (0, (τalD̃
′
alD̃ak)

−1), l = 1, . . . , L

bj |ηj , σ2 ∼ N (0, σ2τ2j (D′D)−1), j = 1, . . . , J

τ2j |λ2 ∼ G
(
df + 1

2
,
λ2

2

)
, j = 1, . . . , J

τm, τal and λ2 ∼ G(0.001, 0.001) and l = 1, . . . , L

ρ ∼ U(−1,1) and σ2 ∼ IG(0.001, 0.001)

(11)

A.4.2. Full conditional distributions776

Let Θ the set of all parameters {α, m̃, τm, ã1, . . . , ãL, τa1
, . . . , τaL , b1, . . . , bJ , τ

2
1 , . . . , τ

2
J , λ, ρ, σ

2}777

in the Bayesian hierarchical model (11) and ȳi = yi−α1−B̃tm̃−
∑L

l=1 B̃
el ãl−

∑J
j=1 xi,jZbj778
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)
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ãk),Σãk
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Σãk =

(
τakD̃

′
ak
D̃ak +

n

σ2
B̃e

k′

Γ−1B̃e
k

)−1

, k = 1, . . . , L

τak |. ∼ G
(
df

2
+ 0.001,

1

2
ãk
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779

bk|. ∼ N
(

Σbk

n∑
i=1
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t′Γ
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)
with
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1
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Table 4. Computational time (in minutes) obtained using different priors.
Prior n=300, J=500, σ2=4 n=300, J=500, σ2=16 n=100, J=3000, σ2=4 n=100, J=3000, σ2=16
BGL-PS

8 (0.5) 8 (0.5) 67 (1) 66 (2)BGL-BS
BGL-L

GSS-L
8 (1) 8 (1) 60 (5) 60 (5)

GSS-BS

GSS-PS 1
16 (5) 16 (5) 120 (10) 120 (10)

GSS-PS 2

GSS-RW 1
282 (9) 281 (10) 1500 (150) 1500 (150)

GSS-RW 2

S-GP 68 (13) 61 (9) 26 (6) 11 (4)
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