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SUMMARY

The ocean is home to myriad small planktonic organ-
isms that underpin the functioning of marine
ecosystems. However, their spatial patterns of diver-
sity and the underlying drivers remain poorly known,
precluding projections of their responses to global
changes. Here we investigate the latitudinal gradi-
ents and global predictors of plankton diversity
across archaea, bacteria, eukaryotes, and major vi-
rus clades using both molecular and imaging data
from Tara Oceans. We show a decline of diversity
for most planktonic groups toward the poles, mainly
driven by decreasing ocean temperatures. Projec-
tions into the future suggest that severe warming of
the surface ocean by the end of the 21st century
could lead to tropicalization of the diversity of most
planktonic groups in temperate and polar regions.
These changes may have multiple consequences
for marine ecosystem functioning and services and
are expected to be particularly significant in key
1084 Cell 179, 1084–1097, November 14, 2019 ª 2019 The Author(s)
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areas for carbon sequestration, fisheries, and marine
conservation.

INTRODUCTION

Our planet is dominated by interconnected oceans that harbor a

tremendous diversity ofmicroscopic planktonic organisms. They

form complex ecological networks (Lima-Mendez et al., 2015)

that sustain major biogeochemical cycles (Falkowski et al.,

2008; Field et al., 1998) and provide a wide range of ecosystem

services (Guidi et al., 2016; Ptacnik et al., 2008; Worm et al.,

2006). The ongoing increase in atmospheric carbon dioxide con-

centrations is having knock-on effects on the ocean by altering,

among others, temperature, salinity, circulation, oxygenation,

and pH levels (Pachauri et al., 2014; Rhein et al., 2013). These

changes have already left visible imprints on marine plankton,

fish, mammals, and birds, with shifts in species phenology and

distribution (Beaugrand et al., 2009; Boyce et al., 2010; Poloc-

zanska et al., 2013; Richardson and Schoeman, 2004). Future

increases in ocean temperatures are expected to modify phyto-

plankton diversity and distribution directly by altering metabolic

rates and growth (Thomas et al., 2012; Toseland et al., 2013) or
. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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indirectly through changes in ocean circulation and, conse-

quently, the supply of nutrients to surface waters (Bopp et al.,

2013). Given that such modifications will most likely impair the

functions, goods, and services provided by the ocean (Brun

et al., 2019; Hutchins and Fu, 2017; Worm et al., 2006), predict-

ing how plankton diversity will respond to climate change has

become a pressing challenge (Cavicchioli et al., 2019).

Unraveling patterns of diversity across macroclimatic gradi-

ents, such as the latitudinal diversity gradient (LDG), is a way

to anticipate the effects of climate change (Algar et al., 2009;

Frenne et al., 2013). The LDG, historically studied principally in

terrestrial macroorganisms, usually consists of a monotonic

poleward decline of local diversity (known as alpha diversity;

Whittaker, 1972) for both terrestrial and aquatic organisms (Hill-

ebrand, 2004). The LDG is hypothesized to result from a range of

non-exclusive ecological and evolutionary mechanisms that op-

erate at multiple spatial and temporal scales (Clarke and Gaston,

2006; Pontarp et al., 2019; Willig et al., 2003). Among the mech-

anisms classically invoked, temperature is often thought to be

one of the major drivers through two effects. The ‘‘physiological

tolerance hypothesis’’ posits that temperature structures the

LDG by imposing abiotic constraints on species distribution

range (Currie et al., 2004), with fewer species tolerating cold

conditions and tropical temperatures being generally below the

upper thermal tolerance limit of most organisms. The ‘‘kinetic en-

ergy hypothesis’’ relates to the metabolic theory (reviewed in

Brown, 2014), which posits that higher temperatures increase

the rate of metabolic reactions, resulting in shorter generation

times, faster ecological or physiological processes, and, ulti-

mately, higher mutation and speciation rates, leading to higher

local diversity. Beyond temperature, the ‘‘productivity/resources

hypothesis’’ posits that greater resource availability and/or pri-

mary production in tropical terrestrial areas can support larger

population sizes and limit local extinction, promoting species

coexistence (reviewed in Clarke and Gaston [2006]). The ‘‘envi-

ronmental stability hypothesis’’ asserts that short- to long-term

environmental instability in extratropical latitudes should cause

greater local extinction rates because life in such unstable envi-

ronments requires particular and costly physiological adapta-
tions, which would ultimately preclude speciation (Clarke and

Gaston 2006). The LDG has also been explained by stronger bi-

otic interactions in the tropics because of higher energy availabil-

ity, which would increase diversity through complexification and

specialization of trophic, mutualistic, or parasitic interactions (re-

viewed inWillig et al. [2003]). However, this hypothesis has found

little support in the literature (Hillebrand, 2004) and further relies

on the mechanisms exposed above.

In contrast, current knowledge regarding the global trends and

drivers of oceanic plankton diversity, ranging from viruses to

microbes and zooplankton, remains highly fragmentary. It is

mainly based onmeta-analyses, which are sensitive to heteroge-

neous datasets (Brown et al., 2016) and do not systematically

capture the diversity of dominant planktonic groups. Therefore,

the form of the LDG remains equivocal for marine bacteria, cope-

pods, and diatoms, whose diversity has been reported to either

decline linearly poleward (Fuhrman et al., 2008; Righetti et al.,

2019; Sul et al., 2013; Woodd-Walker et al., 2002), peak in extra-

tropical regions (Ladau et al., 2013; Raes et al., 2018; Rombouts

et al., 2009), or adopt weak or inverted latitudinal trends (e.g.,

Chust et al., 2013; Ghiglione et al., 2012). Virus LDGs have

been described only recently and seem to exhibit an increase

in diversity in the Arctic Ocean (Gregory et al., 2019). Conse-

quently, the extent to which the abovementioned hypotheses

apply to the world of marine plankton remains unclear. For

example, marine plankton are expected to have huge population

sizes, high dispersal abilities, short life cycles, and dormancy

stages that would prevent local extinctions and reduce specia-

tion rates. The peak of diversity in temperate to high latitudes

has also been suggested to support the productivity/resource

hypothesis (Ladau et al., 2013; Raes et al., 2018), which is in

agreement with the oligotrophic status of most tropical waters

(Field et al., 1998). On the other hand, the environmental stability

hypothesis is expected to highly constrain marine plankton at

high latitudes, which experience strong seasonality in tempera-

ture, nutrients, and light, as suggested for phytoplankton (Beh-

renfeld et al., 2015; Righetti et al., 2019). These constraints

may also cascade across trophic levels, as suggested for cope-

pods (e.g., Rombouts et al., 2009). All of these uncertainties
Cell 179, 1084–1097, November 14, 2019 1085

mailto:cbowler@biologie.ens.fr
mailto:lucie@zinger.fr
https://doi.org/10.1016/j.cell.2019.10.008


A B

Figure 1. Latitudinal Trends of Oceanic Conditions and Marine Plankton Composition in Surface Waters

(A) In situ chl a concentrations and sea surface temperatures (SST) across latitude (Tara Oceans expedition), plus IAV of SST (STAR Methods). Solid lines

represent the GAM smooth trends and gray ribbons the corresponding 95% confidence intervals of parameter latitudinal trends predicted by the GAMs.

(B) Average relative abundances of MPGs as inferred from molecular datasets across latitude. Prokaryotes: 16S rRNA gene, 0.22–3 mm; eukaryotes: 18S rRNA

gene, 0.8–2000 mm (STAR Methods). Dark gray represents other eukaryotic groups. P, photosynthetic/mixotrophic; H, non-photosynthetic/heterotrophic. The

three viral groups are not represented here because of the absence of comparable abundance data.

See also Figures S1 and S2 and Tables S1A and S1B.
seriously hamper our ability to understand the drivers of these

essential components of marine ecosystems and estimate their

potential responses in a changing ocean.

Here we provide a unified view of plankton LDGs using sys-

tematically collected data from the Tara Oceans global expedi-

tion. We combine DNA sequencing of filtered seawater and

imaging of net catches to study the diversity in molecular opera-

tional taxonomic units (MOTUs) andmorphotype diversity of ma-

jor groups from all domains of life as well as both small and large

double-stranded DNA viruses (Karsenti et al., 2011). We then

separately examine their respective LDGs while determining

their best environmental correlates because they may be influ-

enced by different drivers. Finally, to identify the regions that

may experience the most drastic changes in plankton diversity

in the future, we model the trends of plankton diversity at the

global scale for the beginning (years 1996–2005) and end of

the century (years 2090–2099, representative concentration

pathway [RCP] 8.5).

RESULTS AND DISCUSSION

LDG across Marine Plankton Groups and Water Layers
In this study, we used a wide collection of uniformly collected

datasets with broad latitudinal coverage to explore the local di-

versity trends of all organismal groups that make up plankton

communities (Table S1A). Besides already publicly available re-

sources from Tara Oceans, we included newly released meta-

barcoding data of the V9 region of the 18S rRNA gene and

flow cytometry (FC) abundances from the Arctic Ocean. We

further complemented these observations with new global-scale

datasets obtained with amplicon sequencing, microscopy, and

imaging techniques. Our datasets were derived from 189 sam-

pling stations distributed worldwide (Figure S1; STAR Methods),

where multiple water depths were sampled (surface, 5 m

average depth; deep chlorophyll maximum, 17–188 m; mesope-
1086 Cell 179, 1084–1097, November 14, 2019
lagic, 200–1000m). This extensive and standardized sampling of

plankton diversity encompasses large gradients in temperature,

resource/primary production, and environmental stability (Fig-

ure 1A). Using the taxonomic information retrieved from geno-

mics and imaging data (Table S1A), we distinguished 12 marine

plankton groups (MPGs; Figures 1B, S1A, and S2; Table S1B;

STAR Methods) with different trophic modes (e.g., photosyn-

thetic/mixotrophs versus non-photosynthetic/heterotrophs)

and different life history strategies (e.g., parasitic protists, endo-

phytosymbionts) or corresponding to highly dominant taxa

having a significant contribution to the marine food web

(e.g., copepods).

The LDG of eachMPGwas studied using the Shannon index, a

diversity index that relates monotonically to species richness but

differs in that it downweighs rare species, whose numbers are

highly sensitive to undersampling and molecular artifacts (Fig-

ure S3; STAR Methods). Focusing on surface waters first, we

found that phyto-, bacterio-, and zooplankton MPGs all ex-

hibitedmaximal MOTU diversity in tropical to subtropical regions

that then decreased poleward (Figure 2A; see also Figure S4 for

individualized curves for each MPG as well as specific taxo-

nomic groups). Similar trends were found for parasites of eukary-

otes (giruses and parasitic protists mainly composed of marine

alveolates [MALVs]) and for eukaryotic photosynthetic intracel-

lular symbionts (endophotosymbionts) as well as their eukaryotic

hosts (photohosts). Different patterns emerged for two abundant

families of prokaryotic viruses (Myoviridae and Podoviridae)

which, unlike their hosts, did not exhibit a clear poleward decline

in diversity. Because the diversity of hosts and their symbionts or

parasites is often assumed to be linked through eco-evolutionary

interactions (Morand, 2015), an explanation for this could be that

these virus families have a broader spectrum of host species,

which could potentially decouple certain eco-evolutionary con-

straints (de Jonge et al., 2019). However, other factors may be

responsible for this trend as well, such as nutrient availability
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Figure 2. Latitudinal Patterns of Marine

Plankton Diversity

(A) LDGs at the sea surface for all MPGs (STAR

Methods).

(B) Morphological diversity as analyzed from more

than 77,000 organisms collected with the bongo

net (imaging j 300 mm). Morphological measure-

ments were normalized and subjected to a

t-distributed stochastic neighbor embedding

(t-SNE) ordination analysis using all samples

(STAR Methods). In the central 2D t-SNE ordina-

tion, each dot corresponds to an organism and its

color to its taxonomic assignation (>100 taxa). For

ease of interpretation, the points corresponding to

a subset of abundant groups are displayed sepa-

rately. The three t-SNE ordinations displayed on

the right show dots from three stations distantly

located and from different latitudes, as shown in

the map. Six images are also presented as ex-

amples of the underlying data (STAR Methods);

1-mm scale bars are shown below each picture.

(C and D) Patterns of the whole plankton com-

munity using different sampling protocols at (C)

the sea surface (16S/18S/FC/LM) or a larger inte-

grative depth of 500 m (imaging) and (D) in

mesopelagic (average depth, 540 m) or bathype-

lagic layers (BAT; average depth, 4000 m, Malas-

pina expedition). In all cases, solid lines corre-

spond to GAM smooth trends and gray ribbons to

the 95% confidence intervals of the Shannon lat-

itudinal trend predicted by the GAMs (see also

Figures S4 and S7 for individual curves and ex-

plained deviance). These trends are drawn for

illustrative purposes and were not used in down-

stream analyses. 16S and 18S refer to the different

rRNA subunit genes used as marker genes for

metagenomics and metabarcoding, respectively.

Imaging refers to the identification method for

large eukaryotes captured with nets. FC refers to

flow cytometry for the picoplankton and LM to

the light microscopy-based survey of micro-

phytoplankton (STAR Methods). Numbers refer to

the filter mesh size.
or bacterial cell density (Gregory et al., 2019). Further data and

analyses will be necessary to elucidate the underpinnings of

this result.

Differences in the form of LDGs have been proposed previ-

ously to result from contrasting strategies in energy acquisition

and processing (Hillebrand, 2004). To test this hypothesis, we

compared LDG forms across MPGs (except for prokaryotic vi-
Cell
ruses) by conducting a segmented linear

regression analysis and using the inferred

parameters in a clustering analysis (abso-

lute latitudinal breakpoints and slopes

of the segment regressions; STAR

Methods; Figure S5). Confirming our

above assumption, parasites and endo-

photosymbionts did not cluster directly

with their hosts. Endophotosymbionts

have extensive free-living populations

(Decelle et al., 2012), and parasitic pro-
tists might experience relatively long-lasting free-living stages

under the form of resistant cysts waiting for host availability

(Siano et al., 2010), which could explain this result. Rather,

we found that MPGs with similar broad trophic modes (phototro-

phic versus heterotrophic/chemotrophic) tended to exhibit

similar LDG forms. However, we noticed two particular excep-

tions: photosynthetic protists clustered with heterotrophs
179, 1084–1097, November 14, 2019 1087



(both prokaryotes and eukaryotes), whereas heterotrophic pro-

tists clustered with phototrophs. Whether these features result

from the presence of still unknown mixotrophs in heterotrophic

protists (i.e., photosymbioses) or a preferential heterotrophy of

mixotrophic photosynthetic protists remains to be determined.

Top-down or bottom-up controls by other trophic levels as well

as interspecific competition could also contribute to these pat-

terns. For example, most copepods preferentially feed on photo-

trophic protists (e.g., diatoms or dinoflagellates; Saiz and Calbet,

2011), which could explain why both groups exhibited similar

LDGs (Figure S5).

We then examined the symmetry of the LDGs by performing

separate linear regressions for each hemisphere. LDGs are

commonly observed to be steeper in the northern hemisphere,

supposedly because of stronger climate instability in this area

of the globe (Chown et al., 2004). Our results contradict this

expectation because we found that LDGs only tended to be

asymmetric and steeper in the southern hemisphere for archaea

and photosynthetic protists (Figure 2A; Table S1C). Although in

agreement with another report on marine bacterioplankton (Sul

et al., 2013), we suspect the absence or opposite trend observed

here to arise from a significant undersampling at mid- to high lat-

itudes in the southern hemisphere in our dataset (Figure S1).

Another explanation could lie in differences in the timing of sam-

pling between the two polar regions; i.e., from the end of spring

to the beginning of autumn in the Arctic Ocean but only in a sum-

mer month in the Southern Ocean, when diversity is expected

to be lowest because of intense blooms (Arrigo et al., 2008). In

spite of some variations in the form of LDGs across MPGs or be-

tween hemispheres, our results nonetheless show that the pole-

ward decline of diversity is a pervasive feature among marine

plankton.

To ensure that the MOTU diversity trends observed with our

molecular data (Figure 2A) were not biased by the DNA region

studied or molecular approach used (i.e., DNA metabarcoding

versus metagenomics for prokaryotes; Salazar et al., 2019),

which may vary in taxonomic resolution or overrepresent certain

taxa, we compared them against those obtained with other DNA

markers (i.e., the V4 region of the 18S rRNA gene for eukaryotes

and the V4–V5 regions of the 16S rRNA gene for prokaryotes) or

with finer clustering thresholds (STAR Methods). All of these

comparisons exhibited high correlation coefficient values,

regardless of the clustering similarity thresholds used (Figures

S6A–S6D). DNA-based measures of diversity can also be

affected by organism size (multicellular organisms) or gene

copy number (unicellular organisms), with organisms of smaller

size or lower gene copy numbers likely to be more difficult to

detect. To examine this potential issue, we compared the diver-

sity trends of different planktonic groups observed with molecu-

lar versus optical data (Figures 2B and 2C; STARMethods). Both

zooplankton imaging data, which consist of morphological fea-

tures (see Figure 2B for examples), as well as photosynthetic

protist data obtained through confocal (Colin et al., 2017) or light

microscopy (LM) were highly congruent with their corresponding

molecularly based diversity trends (Figures 2C and S6E–S6H).

Although of much lower taxonomic resolution, FC-based diver-

sity values, comprising mainly prokaryotes, also correlated well

with molecularly based prokaryotic diversity (Figure 2C). These
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results, together with the high correlation of diversity trends be-

tween our data and those based on single-copy genes (Milanese

et al., 2019) and the fact that relative abundances in DNA-based

data correlate well with organism size/biovolume and even

abundance at lower taxonomic resolution (de Vargas et al.,

2015), suggest that the global diversity trends observed here

are unlikely to be biased by differences in body size/gene copy

number across taxa.

In contrast, we did not observe any LDGs, either in terms of

MOTUs or morphological diversity, below the photic zone

(>200 m depth, corresponding here to both mesopelagic [Tara

Oceans] and bathypelagic waters; Salazar et al., 2016; Figures

2D and S7). These environments are isolated from sunlight and

climatic gradients. Accordingly, although we did observe a

weak latitudinal trend in temperature in our deep sea samples

(linear regression on absolute latitudes: slope = �0.11, R2 =

0.273, p < 0.001), the range of this parameter represented

roughly half of the temperature range present in surface waters

(0�C to 18�C versus�2�C to 31�C, respectively). Hence, reduced
temperature variations could be one of the reasons for an

absence of LDGs in the deep sea. In addition, there is overall

more carbon export at high latitudes (Henson et al., 2012). This

could compensate for the reduction of diversity potentially

induced by low temperatures by increasing resource availability

in polar deep waters (Pomeroy and Wiebe, 2001). Finally, migra-

tion of surface species to deep waters through passive or active

vertical flux may also contribute to cancel out temperature ef-

fects and perhaps underpin the overall higher diversity values

we observe in deep sea waters compared with the surface (Fig-

ures 2C and 2D; Mestre et al., 2018). Although the current sam-

pling effort in these aphotic environments is insufficient to firmly

support these hypotheses, our results are consistent with previ-

ous observations for brittle stars (Woolley et al., 2016) and bac-

teria (Ghiglione et al., 2012) in the deep sea, whose diversity did

not follow LDG trends. Both sediments and water layers below

the photic zone are populated by heterotrophic and chemoli-

thoautotrophic organisms, whose diversity and abundance are

strongly influenced by organic matter availability (Bergauer

et al., 2018; Danovaro et al., 2016;Woolley et al., 2016). This sup-

ports the idea that life is sustained by different types of energy

supply across water layers, from systems driven by solar energy

or kinetic effects of temperature in epipelagic waters to chemi-

cally driven environments (i.e., carbon- or mineral-based) in the

deep sea.

Global Drivers of MPG Diversity in the Surface Ocean
To further understand the mechanisms underlying the observed

LDGs in the surface ocean, we considered contextual variables

related to the most common LDG hypotheses. First, we used

sea surface temperature (SST, in situ measurements) to assess

the physiological tolerance and kinetic energy hypotheses. Sec-

ond, we used chlorophyll a (chl a) concentrations (in situ mea-

surements) and annual maximum of nitrate concentration (AM

NO3) to test the productivity/resources hypothesis. Chl a was

considered a proxy for phytoplankton biomass. We acknowl-

edge that the latter may be affected by the poleward increase

of intracellular pigmentation in phytoplankton to compensate

for limitations in light (Behrenfeld et al., 2015). Phytoplankton
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Figure 3. Drivers of Plankton Diversity in the Surface Ocean

(A) Correlation of contextual variables (abiotic and population densities, x axis) with the Shannon index of eachMPG (y axis). The color gradient corresponds to the

values of the Spearman r correlation coefficient and the dot size to their absolute value. The labels of the x axis are ordered according to a hierarchical clustering

analysis of absolute Spearman r correlation coefficient values between each pair of contextual variables, whose corresponding dendrogram is shown in the top

part of the plot. Yellow leaves correspond to the four variables analyzed in (B) and (C), also underlined below. Variables that do not cluster above the dotted line

(jSpearman’s rj < 0.6) are considered as non-collinear. Percentages of pico, nano, andmicro refer to the relative abundances of fractions of phytoplankton based

on pigment analysis. Bacteria and picoeukaryote abundances were determined by FC, whereas imaging abundances refer to counts of individuals caught by nets

(STAR Methods). MLD: mixed-layer depth. See also Figure S8.

(B and C) Individual explained deviance (color gradient and dot size) of four variables (B; Figure S9) and additive contribution of the same four variables to the total

explained deviance in GAMs, with the Shannon index as a response variable (C; STAR Methods; Tables S1D and S1E).

In (A) and (B), non-significant coefficients or effects are not shown. In (C), significant effects are indicated by asterisks. MPG labels are always ordered according

to a hierarchical clustering analysis after a Spearman correlation analysis based on the displayed values in each case (A–C).
carbon estimated via particulate backscattering has been pro-

posed as a better proxy (Graff et al., 2015), but we lacked this

parameter for many stations. Nevertheless, the available back-

scattering data exhibited a high correlation with chl a (Spear-

man’s r = 0.6, p < 0.001; Figure S8). Regarding AM NO3, the

annual availability of this macronutrient is fundamental for pri-

mary production (Moore et al., 2013). We therefore considered

this parameter to capture longer-term effects of primary produc-

tion on the observed plankton diversity. Third, we considered

intra-annual variation (IAV) of SST to test the environmental sta-

bility hypothesis. In addition, we also included a set of other

contextual parameters in our analysis to identify potential drivers

of diversity patterns for MPGs that had not been resolved previ-

ously (i.e., for viruses and protists; see STAR Methods for more

details; Figure S8). Among them, sunlight, which is the funda-

mental source of energy for photosynthetic groups, was ac-

counted as satellite-derived estimates of photosynthetically

active radiation (PAR) and the median light in the mixed layer

(STAR Methods). Their more scattered availability in our dataset

indicated high correlations with SST and mixed layer depth,

respectively (Figure S8), which, together with chl a concentra-

tion, reflects well the light conditions at the different sampling

stations.

We conducted a combination of correlation analyses and

generalized additive models (GAMs; Hastie, 2017), which allows
us to deal with non-linear and/or non-monotonic relationships

that could be found between diversity and environmental gradi-

ents (see below; STAR Methods). We restricted our analysis to

surface planktonic communities because of their major contribu-

tion to oceanic biogeochemical cycles (Falkowski et al., 2008;

Field et al., 1998) and their greater sensitivity to climate change

(Bopp et al., 2013) and because of greater Tara Oceans data

availability compared with the deep waters, allowing us to

make more robust inferences and projections.

We found that SSTwas strongly and positively associatedwith

the MOTU diversity patterns of most MPGs (Figures 3A, 3B, and

S9A) and, therefore, was the best predictor of MPG diversity

among the tested parameters (Figure 3C). Although new for

most protist MPGs, these findings are consistent with previous

observations for bacterioplankton (Fuhrman et al., 2008), cope-

pods (Rombouts et al., 2009), and larger marine organisms

(Tittensor et al., 2010; Woolley et al., 2016). SST and species

thermal tolerance limits have been suggested to impose strong

constraints on the distribution/abundance of marine ectotherms,

including copepods (Beaugrand et al., 2009; Sunday et al.,

2012). Our results extend this explanation to unicellular organ-

isms as well; we observed a decline of phototrophic bacteria

(mainly cyanobacteria) relative abundance at cooler higher lati-

tudes (Figure 1B), whereas the relative abundance of phototro-

phic eukaryotes (mainly diatoms) increased. Such differences
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may result from contrasting thermal niches because diatoms

generally have larger thermal breadths and lower minimal ther-

mal growth than cyanobacteria (Chen, 2015). Similarly, the tem-

perature-diversity relationship of several MPGs increased until it

reached a plateau, in particular for heterotrophic bacteria and

archaea (Figure S9A). This may suggest that these groups

have larger ranges of temperature optima, corresponding

roughly to those encountered in tropical/subtropical waters,

and should be less affected by climate change (Hutchins and

Fu, 2017). Greater SST should also increase both speciation

and extinction rates, according to the metabolic theory (re-

viewed in Brown, 2014). This assumption has been proposed

for marine foraminifera (Allen et al., 2006) and diatoms (Lewitus

et al., 2018), suggesting that temperature-dependent evolu-

tionary processes are likely important in generating patterns of

diversity across MPGs. However, our current approach remains

correlative, and future phylogenetic studies will be critical

to estimate speciation and diversification rates in relation to

temperature.

MPG diversity also decreased noticeably and monotonically

with increasing standing stocks of chl a and to a lesser extent,

of AM NO3 (Figures 3A, 3B, S9B, and S9C). These negative rela-

tionships are counterintuitive to the productivity/resources hy-

pothesis, which asserts that greater resource availability should

promote species coexistence through niche partitioning. They

also contrast with the unimodal biomass-diversity relationship

often reported for phytoplankton (Irigoien et al., 2004; Li, 2002;

Vallina et al., 2014). As explained above, it is very unlikely that

this difference arises from the diversity indices used (i.e., rich-

ness versus Shannon index). Rather, we explain this difference

by our broader sampling of plankton size classes and the

increased detection and taxonomic resolution of our DNA-based

identification methods. Accordingly, our results are in agreement

with taxon-focused or DNA-based surveys, which have reported

a higher diversity of copepods (Rombouts et al., 2009), bacteria

(Smith, 2007), and microplankton (Raes et al., 2018) at sites of

low primary production. Although our data preclude us to infer

the exact mechanisms behind this negative relationship, we pro-

pose several potential explanations. First, this observation may

be related to the ‘‘paradox of the plankton’’ (Hutchinson,

1961); i.e., the observation that a limited number of resources

support unexpectedly highly diverse communities. Non-equilib-

rium and chaotic environmental and/or population dynamics in

aquatic systems can occur at very small temporal and spatial

scales, and this, together with the existence of dormant stages

in plankton organisms, is usually thought to underlie this feature

by preventing local extinction (Roy and Chattopadhyay, 2007;

Scheffer et al., 2003; Ser-Giacomi et al., 2018). Also, recent

genomic studies in prokaryotes suggest that adaptive gene

loss and subsequent microbial feeding interdependencies are

selectively favored in aquatic, nutrient-poor environments.

These dependencies would constitute additional but currently

unmeasurable niche axes, supporting more species (Giovannoni

et al., 2014; the ‘‘black queen hypothesis’’; Morris et al., 2012).

More generally, such trophic interdependencies probably do

exist in the plankton trophic network without necessarily

involving genome streamlining. On the other hand, high-nutrient

or -chl a environments can correspond to areas with punctual/
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mid-term strong physical forcing, such as winds (Demarcq,

2009) or changes in light availability, which we did not measure

on site. These environments are usually found to promote the

growth of a few species at the expense of others through

competitive or trophic interactions (Behrenfeld and Boss, 2014;

Huisman et al., 1999; Irigoien et al., 2004; Li, 2002).

IAV of SST (Figure S9D) as well as other abiotic parameters,

such as mixed layer depth together with its IAV or silicate or

phosphate concentrations, exhibited comparatively weak or no

correlation with MPG diversity (Figures 3A–3C; Table S1D).

Finally, the GAMs, including the four focus parameters (i.e.,

SST, chl a, IAV SST, and AM NO3), did not exhibit latitudinal

trends in their residuals (Table S1E), suggesting that the LDG

was fully explained by these models. SST, followed by chl a con-

centration, thus appears to be the prominent driver of plankton

diversity. This conclusion is further supported by additional

GAMs where only SSTs, chl a concentrations, and their interac-

tion were used as explanatory variables (see STARMethods and

their further use below). These latter models had exceptionally

high explanatory power formostMPGs (42% to 81%of deviance

explained) and also successfully explained the LDGs (Tables

S1F and S1G). In addition, SSTs strongly correlated with micro-

bial and photosynthetic abundances, and chl a strongly corre-

lated with abundances of larger metazoans (Figure 3A; Figures

S10A and S10B). This supports the idea that these two parame-

ters regulate MPG diversity by controlling their population size

and, therefore, also their extinction rates (Clarke and Gaston,

2006). Thus, our results lend support to the interplay of physio-

logical tolerance, kinetic energy, and, to a lesser extent, produc-

tivity/resources effects in regulating MPG diversity in planktonic

communities and causing latitudinal gradients of diversity in

epipelagic waters.

Although our overall conclusions concur with those reported

for marine macroorganisms (Hillebrand, 2004; Tittensor et al.,

2010; Woolley et al., 2016), they partially contrast with recent

findings regarding planktonic communities in the South Pacific

Ocean (Raes et al., 2018), where primary productivity has been

found to override temperature effects. This difference could be

a consequence of the sampling extent of our study, which covers

both the northern and southern hemispheres as well as multiple

oceanic provinces that may differ in their diversity gradient

(Chown et al., 2004; Sul et al., 2013). In contrast, Raes et al.

(2018) characterized the latitudinal trends along a transect exhib-

iting marked environmental transitions caused by subtropical

and subpolar waterfronts. This should be confirmed by analyzing

a larger number of sampling points in each basin than those

available here. Another possible explanation lies in the different

diversity measures used in the two studies. The Shannon index

used here, although co-varying with species richness, down-

weighs the influence of rarest species. The carrying capacity of

a given environment strongly relies on resource availability and

primary productivity, which control local extinction, in particular

of rare species (Vallina et al., 2014). Such processes can solely

be detected with species richness, which we did not assess

here because of its strong sensitivity to sampling and technical

biases (STAR Methods). More generally, several factors are

also more confounding at the global scale, and their effects are

more difficult to tease apart. For example, SST partially



correlates with chl a concentration, PAR, and annual averages

and IAVs in solar radiation as well as with the length of the pro-

ductive season at the global scale (Figure S8; Clarke andGaston,

2006). Hence, it is possible that both resource/sunlight-energy

availability and stability effects partially contribute to the

observed temperature effects. This feature may also explain

why we could not find clear clustering of MPGs based on the

drivers of their diversity according to their broad trophic modes,

as found for their LDG patterns (Figure S5). Finally, we acknowl-

edge that we considered environmental stability over short time-

scales. Past glaciation cycles and associated sea level changes

most likely contribute to current MPG diversity, as suggested for

marine diatoms (Lewitus et al., 2018) and foraminifera (Yasuhara

et al., 2012). Notwithstanding, fossil records do suggest that the

poleward decline of zooplankton diversity and its temperature

dependence are remarkably stable features through geological

times (Yasuhara et al., 2012), albeit with variations in the overall

levels of diversity. We therefore believe that paleoclimate effects

are unlikely to alter our conclusions.

Future Global Trends of MPG Diversity
Climate change scenarios predict a general increase of SST,

with major changes in the Arctic Ocean (Figure S11; Pachauri

et al., 2014). Future ocean primary production is expected to

decrease in the northern hemisphere and increase in the South-

ern Ocean, although these projections are more uncertain

(Figure S11; Bopp et al., 2013). To search for trends in diversity

variation in response to these changes, we mapped the MOTU

diversity of several MPGs at the beginning (years 1996–2005;

Figure S12) and end of the 21st century (2090–2099) under a sce-

nario of severe climate warming (RCP 8.5; STAR Methods). We

used SST and chl a concentration values simulated by Earth Sys-

tem Models of the Coupled Model Intercomparison Project

Phase 5 (CMIP5; Bopp et al., 2013; Table S1H) and GAMmodels

from epipelagic plankton that explained 60% or more of devi-

ance (6 MPGs of 12; Table S1F). After ensuring that SST and

chl a simulated values were within the range of values used to

train our models, we projected current and future MPG diversity

at the global scale and calculated diversity anomalies (i.e., per-

centage of diversity change) between contemporary and future

climates to identify areas where plankton diversity is most likely

to be affected by the environmental changes in the ocean (Fig-

ures 4 and S12). To ensure reliability of our predictions, we

generated 13,000 models for each MPG and each projection

time to account for the uncertainties in the parameters of the

GAMs and the output from different CMIP5 models used in this

study (STAR Methods). Here we report averaged predictions

from these models (see Figure S12 for prediction uncertainties).

We also cross-validated our GAM models with independent da-

tasets from other studies (STAR Methods; Figure S13) and ob-

tained predictions congruent with the observed diversity.

Our projections suggest a general increase inMPGdiversity, in

particular in the northern hemisphere and at latitudes that

encompass the limits of the subtropical gyres (25�–50�) (Figures
4A and S12). These results support tropicalization of temperate

planktonic diversity or biomass, as suggested previously for

bacterioplankton (Morán et al., 2010, 2017), zooplankton (Beau-

grand et al., 2015), and also fish (Cheung et al., 2013; Vergés
et al., 2016). Following SST trends, the most dramatic changes

in diversity across most MPGs are expected to occur in the

Arctic Ocean (more than 100% average increase over latitude;

Figure 4B). In this biome, copepods and photosynthetic bacteria

should experience the most dramatic increases in diversity,

mostly because these communities are currently poorly diverse.

The low values for endophotosymbionts resulted in them exhib-

iting a large relative increase in diversity as well, especially at

high latitudes (for absolute anomalies values, see Figure S12).

All of these observations are in line with the poleward range

expansion predicted for phytoplankton (Barton et al., 2016), in

particular the cyanobacterial group Synechococcus (Flombaum

et al., 2013) as well as for boreal fish species (Frainer et al., 2017),

as a short-term response to poleward shifts in thermal niches

(Thomas et al., 2012).

Hence, epipelagic planktonic communities are predicted to be

strongly affected in the future, primarily by rising temperatures.

Changes in chl a (higher uncertainty), either bound to primary pro-

duction or photo-acclimation (Behrenfeld et al., 2015), should

have more secondary effects, except in restricted areas for

heterotrophic bacteria andmarine copepods, where their effects

seem to override those of SST (Figure S12D). In any case, the

changes in MPG diversity predicted to occur by the end of the

century will most probably induce cascading changes over

the entire marine food web; e.g., by causing trophic mismatches

or altering host-parasite/symbiont interactions (Doney et al.,

2012; Edwards and Richardson, 2004; Gilg et al., 2012). For

example, the increase in diversity and abundance of phototro-

phic bacteria suggested by our results and others (Hutchins

and Fu, 2017) would reduce upward energy flow in marine food

webs because these taxa are usually less palatable for higher tro-

phic levels (Ullah et al., 2018). Likewise, increased temperature

and diversitymay also lead to reduced organismbody size (Som-

mer et al., 2017). If the diversity and abundance of small-bodied

organisms are to increase, then thismay again reduce the energy

transfer to higher trophic levels (Beaugrand et al., 2008).

Finally, we assessed the current ocean socio-economic and

conservation status of the most affected latitudes in terms of

MPG diversity (i.e., the 25% of latitudes with the highest mean

absolute diversity anomalies). We did so by quantifying the cur-

rent particulate carbon export, the maximum marine fisheries

catch, and the number of marine protected areas at each latitude

relative to global average expectations. We found that the most

affected latitudes in the future currently exhibit a higher fisheries

catch (32%–70% above average), carbon export (23%–70%

above average), and fraction of marine protected areas (up to

100% above average; Figure 4B; Table S1I). This raises the

question of how changes in diversity under the most severe

climate warming scenario will affect global biogeochemical pro-

cesses such as carbon export and sequestration, which are

believed to have already been affected by climate change

(Brun et al., 2019), and what would be the consequences for ma-

rine life in general, from already vulnerable marine animals and

fish landings to life in the deep sea.

Concluding Remarks
The present findings and projections need to be interpreted care-

fully. Although being the largest systematic sampling effort of
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Figure 4. Projected Changes in Shannon Diversities by the End of the 21st Century

(A) Projected changes by the end of the 21st century relative to the beginning of the century (percent) for MPGs accounting for GAM models with high explained

deviance (>60%). Projections were based on SST and chl a data simulated by the CMIP5 models and the GAMs (n = 13,000 for each combination of MPG and

time frame; STARMethods; Tables S1F–S1H; see Figure S12 for SD by grid cell). Copepods, photosynthetic protists, parasitic protists, and endophotosymbiont

diversity (Shannon index) was modeled based on 18S rRNA gene metabarcoding data, size fraction 0.8–2000 mm, and diversity of heterotrophic and photo-

synthetic bacteria on 16S rRNA gene metagenomics data (size fraction 0.22–3 mm), all from the surface layer. Predicted Shannon values of 0 or less obtained at

high latitudes, particularly for copepods and endophotosymbionts, were excluded.

(B) Latitudinal averages of values in (A) and their uncertainties. For visualization purposes, average anomalies for endophotosymbionts and copepodswere drawn

up to latitudes where values remain below 100%, and all plots show the averaged SD reduced by half. The x axis is not fixed. The last three panels refer to

latitudinal averages of particulate organic carbon (POC) export at 100 m (Henson et al., 2012), the number of grid cells with a high marine fisheries catch

(>200 kg km�2 year�1) (Watson, 2017), and marine protected area (MPA) latitude kernel density plots (Bruno et al., 2018; STAR Methods; Table S1I).
oceanic plankton to date, our sampling is limited by its punctual

nature in space and time. Our models are also correlative and

do not directly account for the effects of other abiotic

parameters, such as in situ solar irradiance and their seasonal

variations aswell as biotic interactions and their dynamics, which

should all influenceplanktondiversity.Regarding ourprojections,

there are strong uncertainties about the potential lag between

environmental changes and the response of plankton diversity

as well as the adaptation potential of planktonic species to

climate change, which can be relatively rapid, as proposed

recently for zooplankton (Peijnenburg and Goetze, 2013) and di-

atoms (Schaumet al., 2018). Further studiesbetter accounting for

these different and intertwined mechanisms that operate at mul-

tiple spatial and temporal scales will be instrumental to improve

our understanding of the drivers underlying ocean plankton eco-

systems and their feedback with global change. Nevertheless,

our approach is a first attempt to embrace this biological

complexity at the global scale, and our results broadly agree

with other statistical or theoretical projections (Barton et al.,

2010, 2016; Righetti et al., 2019; Rombouts et al., 2009; Thomas

et al., 2012; Tittensor et al., 2010). Our results should therefore be
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seen as a baseline and a framework for testing new hypotheses

about changes in diversity within the whole plankton community

across the global ocean, identifying the most vulnerable areas,

and to better appreciate and anticipate functional and socio-eco-

nomic consequences (Cavicchioli et al., 2019). These results will

be helpful for guiding future broad and macroscale strategies to

mitigate the effects of climate change on marine diversity and

ecosystem services.
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ZooScan imaging - regent net, 680 mm (Tara Oceans) This paper EcoTaxa, https://ecotaxa.obs-vlfr.fr/prj/412

ZooScan imaging - bongo net, 300 mm (Tara Oceans) This paper EcoTaxa, https://ecotaxa.obs-vlfr.fr/prj/397,
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ZooScan imaging - WP2 net, 200 mm (Tara Oceans) This paper EcoTaxa, https://ecotaxa.obs-vlfr.fr/prj/377,
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Contextual data (Tara Oceans) Sunagawa et al., 2015;

this paper

https://doi.org/10.1594/PANGAEA.875582

CMIP5 Earth system models Bopp et al., 2013 See our Table S1H for details

Sample identifiers & Shannon values; flow

cytometry abundances

This paper;

Sunagawa et al., 2015

http://dx.doi.org/10.17632/p9r9wttjkm.1

Software and Algorithms

R package mgcv 1.8-24 Wood, 2010 https://cran.r-project.org/web/packages/mgcv/

index.html

R package segmented 0.5-3.0 Muggeo, 2008 https://cran.r-project.org/web/packages/

segmented/index.html
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris

Bowler (cbowler@biologie.ens.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples were derived from 189 stations over the 210 surveyed during the TaraOceans expedition (2009-2013; Figure S1). They were

collected across all major oceanic provinces using the sampling strategy and methodology described in Pesant et al. (2015). Briefly,

the sampling was conducted at different water depths, i.e., at the sea surface (< 5 m), the deep chlorophyll maximum (17-188 m) and

the mesopelagic realm (200-1000m). Sampling of the full, trans-kingdom planktonic diversity was performed with different protocols

depending on their post processing, i.e., either for DNA-based analyses or for imaging analyses.

For samples dedicated to DNA analyses, wemaximized the taxonomic breadth of our diversity assessment by fractionating plank-

tonic communities from pumped seawater with filters of different mesh size. We considered samples collected with filters of 0.22-

1.6/3 mm (hereafter 0.22-3 mm) for viruses and bacteria (prokaryotic viruses from the filtrate, giruses and bacteria from the

0.22 mm filter), and 0.8-2000 mm (0.8-3 mm for non-Arctic mesopelagic samples), 5-20 mm, 20–180 mm and 180–2,000 mm for eukary-

otes. Prokaryotic viruses were flocculated using iron chloride (John et al., 2011). Preliminary analyses showed that the samples ob-

tained at 0.8-2000 mm mesh size were representative of the whole structure and diversity of protists and even of copepods, whose

high dominance allowed a straightforward detection by this protocol too, probably due to the presence of small life-stages or indi-

viduals, pieces of large ones, extracellular DNA from cell turnover, or fecal pellets. We hence restricted our analysis of the main eu-

karyotic planktonic groups on this particular subset of samples, but also provide diversity estimates at the scale of the whole eukary-

otic planktonic community for each filter size to support the robustness of the results.
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Imaging data acquisition followed different protocols depending on the organisms targeted. First, microphytoplankton were

sampled at the sea surface with nets of 20-180 mm mesh size for microscopy analyses (see below), as described in Malviya et al.

(2016). Large protists and metazoans were collected with four different nets: WP2, bongo and regent, with mesh sizes of 200,

300 and 680 mm, respectively, which were towed vertically from 500 m to the surface. We also used a multinet, with mesh size of

300 mm, fromwhich only the deepest level matching themesopelagic realmwas analyzed (Pesant et al., 2015). Picoplankton samples

were prepared for flow cytometry from three aliquots of 1 ml of seawater (pre-filtered through 200-mm mesh), as described in Hin-

gamp et al. (2013) and Sunagawa et al. (2015). Finally, we made use of data derived from the Malaspina expedition (Salazar et al.,

2016) to account for diversity patterns of free-living prokaryotes in the bathypelagic realm (Figures 2D and S7). It should be noted

that the numbers of stations and samples examined varied according to the combination of protocol and size fraction being analyzed

(Figure S1; Table S1A).

METHOD DETAILS

Physical and environmental measurements
Measurements of temperature, conductivity, salinity, depth, pressure, and oxygen were carried out at each station with a vertical

profile sampling system (CTD-rosette) and Niskin bottles following the sampling package described in Picheral et al. (2014). Chloro-

phyll a (chl a) concentrations were measured using high-performance liquid chromatography (Ras et al., 2008; Van Heukelem and

Thomas, 2001). Phosphate and silicate concentrations were determined using segmented flow analysis (Aminot et al., 2009). The

contribution of three pigment size classes (micro-, nano-, and picoplankton) to the total phytoplankton biomasswas estimated based

on high pressure liquid chromatography (HPLC) analyses (Uitz et al., 2006). A full description of the performed measurements is

described in (Pesant et al., 2015). Finally, we complemented these in situ measurements with (i) the average intra-annual variation

of sea surface temperature (IAV SST) between years 1997-2017, which we obtained from the Extended Reconstructed Sea Surface

Temperature v5 (Huang et al., 2017), (ii) the annual maximum of nitrate concentration (AM NO3) retrieved from theWorld Ocean Atlas

2009 (Garcia et al., 2010), (iii) the intra-annual variation of the mixed layer depth (IAV MLD), which was derived from a monthly clima-

tology (Holte et al., 2017), (iv) iron levels, which were derived from a global circulation model (Menemenlis et al., 2008), and (v) median

sunlight in the mixed layer, which was estimated as in Behrenfeld et al. (2015).

Plankton classification, diversity, and abundance estimates
A combination of molecular and optical methods were used to describe the planktonic diversity of the ocean. A full description of the

molecular data production is available in Alberti et al. (2017). Viral and prokaryotic metagenomes were obtained by shotgun meta-

genomics, for which sequencing, assembly and/or annotation are described in Gregory et al. (2019) for bacterial and archaeal DNA

viruses, Hingamp et al. (2013) for nucleo-cytoplasmic large DNA viruses (i.e., giruses, also referred to as NCLDVs or giant viruses in

the literature), and Sunagawa et al. (2015) for bacteria and archaea.

Two families of prokaryotic viruses, Myo- and Podoviridae, were studied on the basis of a capsid protein gene (gp23) and a DNA

polymerase (polA), respectively (Adriaenssens and Cowan, 2014). We kept populations with a gp23/polAmatch either via annotation

(Pfam, InterProScan and KEGG) or a set of in silico primers to increase the sensitivity (Adriaenssens and Cowan, 2014), and their

abundance corresponded to the normalized number of reads that mapped against these genes. Analogously, the diversity of giruses

was based on another DNA polymerase gene, polB, specifically recruited with pplacer (Matsen et al., 2010) from a non-redundant

gene catalog (OM-RGCv2; Salazar et al., 2019). The corresponding frequency data was obtained by mapping the raw reads to

the gene catalog. Note here that ssDNA and RNA viruses were not analyzed.

Prokaryotic taxa were defined on the basis of metagenomic reads that contained signatures of the 16S rRNA genes (referred to as

miTags; Logares et al., 2014; Salazar et al., 2019; data accessible at https://www.ocean-microbiome.org/). Briefly, miTags were

mapped to cluster centroids of taxonomically annotated 16S/18S reference sequences from the SILVA database (Pruesse et al.,

2007) (release 128: SSU Ref NR 99) that had been clustered at 97% sequence identity beforehand using USEARCH v9.2.64 (Edgar,

2010). Mapping of miTags to a unique reference sequence were used to compute the abundances of MOTUs. A MOTU abundance

table was built by counting the number of miTags assigned to each reference sequence in each sample. The abundance table was

normalized by the total sum for each sample after excluding MOTUs that corresponded to eukaryotes and chloroplasts.

Additionally, we analyzed data obtained by amplicon sequencing of the V4-V5 region of the 16S rRNA gene (primers 515F-Y and

926R; Parada et al., 2016), following the pipeline described in https://github.com/SushiLab/Amplicon_Recipes. Briefly, paired-end

reads were merged at a minimum 90% of identity, and those with% 1 mismatches were selected. Primer matching was performed

with CUTADAPT v.1.9.1. Dereplication, MOTU clustering at 97% (UPARSE algorithm) and zOTUs denoting 100% similarity (UNOISE

algorithm) were performed with USEARCH v.10.0.240 (Edgar 2010). OTUs and zOTUs were taxonomically annotated against the

SILVA database v132 (Quast et al., 2013) with the Last Common Ancestor approach. Non-prokaryotic MOTUs (eukaryotes, chloro-

plast, and mitochondria) were removed, whereas singletons were maintained. This dataset was used to ensure that the diversity es-

timates obtained with metagenomics and amplicon sequencing approaches were consistent (see below; see Figure S6). For flow

cytometry data we defined six different groups: low and high nucleic acid-content heterotrophic bacteria, Prochlorococcus, Syne-

chococcus and two groups of picoeukaryotes (see Data and Code Availability). This latter set of samples was mainly used to deter-

mine the cell density of each bacterial/picoeukaryote group, which we considered as contextual data in downstream analyses.
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Nevertheless, we also retrieved diversity values from these data in order to assess their congruence at broad scale with those ob-

tained through molecular approaches. They were not used to standardize DNA-based taxa abundances.

The taxonomic composition of protists and small metazoan communities was characterized through DNA metabarcoding using

mainly the V9 region of the 18S rRNA gene, and the V4 region was also used to assess the congruence of the MOTU diversity esti-

mates between the twoDNAmarkers (Figure S6). For both sequencing reads datasets, we obtained a list of MOTUs as defined by the

‘‘swarm’’ algorithm (Mahé et al., 2014). EachMOTUwas represented by a number of sequencing reads, which we used as a proxy for

abundance. A full description of the sequencing reads processing (i.e., data curation, clustering into MOTUs, taxonomic classifica-

tion, etc.) is available at http://taraoceans.sb-roscoff.fr/EukDiv/.Microphytoplankton were also identified and quantifiedmanually us-

ing an inverted light microscope, as described in Malviya et al. (2016). The identification was performed by experts and reached the

genus level for most of the 440 morphotypes identified (Table S1A). About half of these taxa corresponded to diatoms. Smaller pro-

tists in 5-20 mm size fractions from surface and deep chlorophyll maximum layers were retrieved fromColin et al. (2017) and obtained

by environmental high content fluorescence microscopy (eHCFM).

The taxonomic classification ofmesozooplankton collectedwith nets was performed on formaldehyde fixed samples scannedwith

the ZooScan imaging system (Gorsky et al., 2010) and identified with the help of an automatic recognition algorithm to the deepest

possible taxonomic level using Ecotaxa (Picheral et al., 2017). The resulting identifications were validated by specialists, and reached

different taxonomic levels, mostly the family level (or genus in some cases, e.g., copepods from the WP2 net). All images are acces-

sible within Ecotaxa (https://ecotaxa.obs-vlfr.fr/). Mesozooplankton absolute abundanceswere calculated by taking into account the

volume of water filtered by the nets. Together with images, various morphological measurements were obtained (also accessible

within Ecotaxa). Major and minor best ellipsoidal axis were used to calculate the ellipsoidal biovolume of each organism that was

used as a proxy of biomass. All other morphological measurements (such as length, elongation, gray level values and distribution;

except those related to position of organisms within the initial scan) were recovered, normalized and used in a t-SNE analysis

(van der Maaten and Hinton, 2008) using MATLAB software using the default settings (Euclidean distances; Barnes-Hut algorithm;

perplexity of 30; exaggeration of 4; learning rate of 500). Different combinations of parameters were tested without clear improve-

ments to the final result shown in Figure 2B for the bongo net. t-SNE results were used to overlay taxonomic information on the

morphological overview of the imaging datasets.

Summary statistics of our datasets and their taxonomic resolution are provided in Table S1A. Based on their taxonomic affiliation,

we classified all taxa into marine plankton groups (MPGs) following the criteria indicated in Table S1B. We did so not only to separate

organisms of different broad functions, but also tominimize biases that could arise when comparing organismswith contrasting body

size ormarker gene copy number per organism (see below). For viruseswe considered the three familiesmentioned above separately

as they are the most abundant groups and have different ecologies (Brum et al., 2015; Hingamp et al., 2013; Roux et al., 2016). For

prokaryotes, we distinguished photosynthetic bacteria (i.e., cyanobacteria) from heterotrophic/chemotrophic bacteria and archaea.

For protists, we used an extended version of the functional database used in de Vargas et al. (2015), which encompasses a wide

variety of protist taxa that are assigned to major functional groups: photosynthetic/mixotrophic protists, endophotosymbionts, hosts

with endophotosymbionts (hereafter photohosts), parasitic protists, and free-living heterotrophs or phagotrophs (hereafter hetero-

trophic protists). Note that the endophotosymbiont group is probably the most incomplete due to the difficulties in currently being

able to define comprehensively these organisms. For themesozooplankton, the categories used corresponded to themost abundant

taxonomic groups (such as copepods and chaetognaths) or feeding strategies (Figure S2). We here only considered MPGs for which

the total relative abundance in the molecular dataset was > 1%, a threshold under which we considered that the detection level was

too low to obtain reliable detection and diversity estimates. In total, we thus studied the diversity of 12 MPGs, of which a full list is

provided in Table S1B.

QUANTIFICATION AND STATISTICAL ANALYSIS

Diversity estimates calculation and validation
Plankton diversity was estimated at each station with the Shannon diversity index, a robust measure of entropy. We chose this index

rather than richness because, unlike richness, the Shannon index is insensitive to sampling effort, provided that the sampling is not

too shallow (Jost, 2006). As such, the sampling effort in our datasets – albeit very deep – varied across samples but the rarefaction

curves drawnwith the Shannon index were largely saturating contrary to those based on richness (Figure S3). The Shannon index has

also been shown to providemore reliable diversity estimates when using DNA-based data (Bálint et al., 2018; Haegeman et al., 2013).

Finally, by construction, it also relates monotonically with species richness, and should therefore exhibit similar patterns (Jost, 2006).

The Shannon index was calculated separately for each MPG using the samples filtered at < 0.22 mm, 0.22-3 mm and 0.8-2000 mm for

prokaryotic viruses, bacteria/giruses (metagenomics) and eukaryotic plankton (DNA metabarcoding), respectively. We also calcu-

lated the Shannon index for the full local planktonic communities (i.e., not parsed into MPGs) for each sampling protocol (i.e., meta-

genomics, metabarcoding, and imaging for each samplingmesh size). To ensure that our Shannon values were robust, we computed

their variation from 100 Monte Carlo simulated communities (function EntropyCI, R-package ‘entropart’ v1.6-1, https://cran.

r-project.org/web/packages/entropart/; evaluated only for the eukaryotic plankton). Each variation range was very narrow and

seldom overlap with the rest (difference between Shannon values from simulated communities, 0.003 ± 0.003; difference between

Shannon values from samples; 0.969 ± 0.700), making this uncertainty negligible as compared to that generated by our downstream
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analyses. Shannon diversity for each MPG retrieved from microscopy/imaging data was in general not assessed due to low taxo-

nomic resolutions, with the exception of microphytoplankton/diatoms identified with light microscopy, and the copepods collected

with the WP2 net due to their relatively high taxonomic resolution (Figure S6), as explained above.

Because every method to assess biodiversity has limitations, either due to technical issues (e.g., sampling difficulties, taxonomic

resolution, lack of morphological/genetic differences) or more fundamentally due to the difficulties of classifying the diversity of life,

we also assessed the congruence of diversity trends across methodologies to ensure the reliability of our conclusions. We therefore

provide in Figure S6 several correlation analyses of the diversity patterns observed with a wide array of methodologies used in Tara

Oceans, using previously published or newly released datasets. These comparisons include DNA-based diversity trends obtained

with different markers, taxonomic resolution, and size fractions, as well as diversity trends obtained with different optical methods.

More specifically, we compared the diversity trends for (a) different DNA markers (V9 versus V4 region of the 18S rRNA gene), (b)

different taxonomic resolutions using different clustering similarity thresholds, and (c) molecular versus optical approaches (the latter

based both on abundance or biovolume). More details about the datasets are available in the legend of Figure S6. Additionally, we

evaluated the potential effect of marker gene copy number in prokaryotes by correcting for gene copy numbers of the 16S rRNA

gene. The correction was performed using copy number estimates of references in the SILVA database (v136; Louca et al., 2018),

from which we could assign a 16S rRNA gene copy number value for almost all miTags in our dataset (99%). After the correction,

Shannon values remained essentially unchanged (Pearson’s r correlation between corrected and uncorrected Shannon values =

0.99, p < < 0.001). Furthermore, we relied on the strong correlation we showed in a previous study between Shannon values for bac-

terial OTUs defined either by 16S rRNA gene or by single-copy genes (Milanese et al., 2019).

Latitudinal diversity gradient
Our first objective was to explore visually the LDG trend across all domains of life using bothMOTU andmorphotype diversity at each

station. To this end, we used generalized additive models (GAMs; Hastie 2017) due to their ability to fit non-linear and/or non-mono-

tonic functions which we expected between diversity and latitude. GAMs are further highly suitable for modeling large scale trends

(Guisan et al., 2002). Additionally, we preferred the GAM smoothing approach over simple moving averages because priors are

directly learned from the data and the sensitivity to extreme values is relatively low. For this particular analysis, GAMs were used

only for visualizing the diversity trendline, and were not used in downstream analyses (see ‘‘Diversity modeling of MPGs’’). Next,

we analyzed the shape of the LDG of each marine planktonic group in two ways. First, a segmented regression analysis was con-

ducted to describe the form of the latitudinal gradient on absolute latitude. More specifically, we aimed at detecting latitudinal break-

points and changes in slopes across latitude. For this we used the R package ‘segmented’ 0.5-3.0 (https://cran.r-project.org/web/

packages/segmented). In order to determine which MPG displayed similar LDG forms, we computed pairwise Euclidean distances

between the obtained set of latitudinal breakpoints and slope values for each MPG, and subjected the resulting distance matrix to a

hierarchical clustering analysis (Figure S5). In an additional analysis, we further determined whether the LDG of eachMPG exhibited a

North-South asymmetry. To this end, we performed separate linear regressions for each hemisphere (Table S1C).

Diversity modeling of MPGs
Our second objective was to find predictors for local diversity of marine planktonic groups. To this end, we also used GAMs (see

‘‘Latitudinal diversity gradient’’ for description and references). All GAMs were built using the R library ‘mgcv’ 1.8-24 (https://cran.

r-project.org/web/packages/mgcv/), using only MOTU diversity of each MPG as response variable. Smooth terms (‘s’) were based

on a thin plate regression splines and estimated by a Laplace approximationmarginal likelihood criterion (Wood, 2010). The rest of the

parameters were set on default mode.

In order to test the different hypotheses explaining plankton latitudinal diversity gradients and patterns of diversity in general, we

first made a selection of variables from the Tara Oceans contextual data and public databases (see ‘‘Physical and environmental

measurements’’) that relate to these hypotheses and/or that were sufficiently available across our global sampling. We then evalu-

ated their redundancy and their link with MPG diversity by conducting multiple pairwise correlation analyses with the Spearman rank

correlation test (Figures 3A and S8). We considered the contextual variables associations having jSpearman’s rj > 0.6 to be highly

correlated and kept only the most representative and biologically meaningful variable among correlated ones to avoid collinearity in

downstream analyses. We excluded null hypotheses for the LDG, such as the area (Willig et al., 2003) or mid-domain effect (Colwell

and Lees, 2000) due to the high interconnectivity of the global ocean, which should limit the geometric constraints imposed on spe-

cies distribution on lands.

The associations of plankton diversity with the four selected contextual variables (i.e., SST, chlorophyll a, annual maximum of ni-

trate concentration, and intra-annual variation of SST) were further analyzed using GAMs, as we expected them to be non-linear or

non-monotonic functions based on previous studies (e.g., Tittensor et al., 2010; Vallina et al., 2014). Except for SST, the contextual

variables were log10-transformed. For chl a, three low-concentration outlier values were excluded. ‘‘Individual’’ GAMs were built for

eachMPG and each contextual parameter, fromwhich the explained deviance was used as an association measure and the approx-

imate p value of the smooth term to account for effect significance (Figures 3B and S9). All p values obtained were corrected for mul-

tiple comparisons (Holm, 1979). To further test the different LDGhypotheses, we then built ‘‘full’’ GAMs for eachMPG that included all

four contextual variables, with the settings explained above. Their additive contribution was calculated by a sequential removal of the

different parameters and a normalization with a null model (Figure 3C).
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From these analyses, we identified temperature and chlorophyll a to be the best correlates with most MPGs diversity. These two

variables also capture relatively well other environmental gradients, such as cyanobacteria and mesozooplankton abundance (Fig-

ure 3A). Given their strong explanatory power and because their current and future state at the sea surface can be simulated with

global ocean circulation models (Figure S11; Bopp et al., 2013), we used them to predict the current global-scale distribution of

MPGs diversity, as well as its response to a severe scenario of climate and oceanic change. To this end, we built a set of ‘‘reduced’’

GAMs with surface diversity for each MPG as response variable, and SST, chlorophyll a, as well as an interaction-like term (included

as a tensor product, ‘ti’), as explanatory variables. SST and chlorophyll a (in situ measurements) were only partially anti-correlated,

probably due to a decoupling in upwelling systems (Demarcq, 2009). Accordingly, the explained deviance of some of our GAMs was

increased by 10% or more when considering these two parameters without affecting their parsimony.

Both ‘‘full’’ and ‘‘reduced’’ GAMs were built with the same approaches as described above and were further validated with two

additional analyses. First, we quantified the congruence between observed and GAM-modeled Shannon diversity values through

a Pearson’s correlation analysis. Second, we ensured that the GAM residuals did not exhibit latitudinal or longitudinal trends, a

way to control for spatial autocorrelation (Tables S1E–S1G). Checking the absence of latitudinal trends in the model residuals further

indicates if our models successfully explained the latitudinal gradients of diversity. To further assess the performance of the

‘‘reduced’’ models used downstream for predicting current and future trends of diversity, we cross-validated them with other inde-

pendently collected molecular datasets from open-ocean studies targeting either heterotrophic bacteria (Zinger et al., 2011) or the

whole planktonic eukaryotic community (Raes et al., 2018) from different sampling dates and locations. Splitting this latter dataset

into MPGs was not possible due to the unavailability of functional databases for the DNA marker used (V4 region of the 18S rRNA

gene), so we conducted this cross-validation with a reducedGAMmodel built for the whole eukaryotic community. Figure S13 shows

that the GAM models built with our datasets are able to predict correctly the diversity trends of plankton communities observed in

these independent datasets (see complementary details in the caption of Figure S13 and below for CMIP5 models). Additionally, as

both datasets include sampling points in the Southern Ocean, which was undersampled in ours, this agreement confirms the

decrease in plankton diversity we observed toward the south.

Next, the MOTU diversity of the six MPGs for which ‘‘reduced’’ GAMs yielded a deviance explained R 60% was modeled for the

beginning and the end of the 21st century. To do so, we first defined a coarse-grained arrange of 1� grid-cells. SST and chlorophyll

a content across space and time were obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5), a multi-model

simulation of the ocean (Bopp et al., 2013). Each model within CMIP5 is an Earth system simulation generated by different

research groups (Table S1H), which allows us to account for different mechanistic weights. We extracted the two variables

from each CMIP5 model for each grid cell for the beginning of the 21st century (averaged values for years 1996-2005) and the

end of the 21st century (averaged values for years 2090-2099), the latter considering RCP 8.5 scenario, the most pessimistic

IPCC trajectory for greenhouse gases concentration (radiative forcing level reaches 8.5 W/m2). To obtain an average and assess

the uncertainty in our predictions, we generated a combined calculation of the uncertainty of the GAM parameters and the multiple

CMIP5 models. We did so by first obtaining posterior distributions of the fitted GAM parameters for the different plankton groups.

We then sampled values from these distributions randomly to generate 1,000 models. For each of these models, we used each of

the CMIP5 models (n = 13) as current and future temperatures and chl a. Shannon diversity was then predicted with each of the

13,000 models we generated for each MPG and each time of projection (beginning and the end of the century), from which we

assessed the uncertainty of our predictions.

Anomalies between future ocean projections and estimates for the beginning of the 21st century were calculated as the difference

between the average diversity of each planktonic group projected for the time interval 2090-2099 and the one for 1996-2005 (Figures

4 and S12). In other words, a positive anomaly means that the predicted diversity will increase toward the end of the century. Con-

fidence intervals of anomalies were based on the standard deviations of the average Shannon diversity estimates across the different

CMIP5models. Finally, to assess potential areas in the future ocean where the effect of primary production change on diversity could

override the effect of temperature, we performed diversity projections holding either SST or chlorophyll a constant, and then

comparing their output. That is, we assessed per grid-cell whether the effect of chlorophyll a on diversity was significantly larger

than zero and larger than the one of SST (in absolute values; see Figure S12D). Manipulation and visualization of the CMIP5 spatial

data and the corresponding diversity projections were performed combining R packages ‘ncdf4’ 1.16 (https://cran.r-project.org/

web/packages/ncdf4), ‘raster’ 2.5-8 (https://cran.r-project.org/web/packages/raster) in R v.3.5.1 (https://www.r-project.org).

Comparison of future trends with current areas of high socioeconomic and conservation value
We identified the latitudes that are expected to experience the most dramatic changes in diversity (defined as the 25% of latitudes

with the highest mean absolute diversity anomalies) and analyzed whether these areas overlap with current ecosystem services and

reserves. To this end, we compared their corresponding current status in terms of (i) carbon export, using satellite-derived estimates

at 100 m depth (Henson et al., 2012), (ii) maximum marine fisheries catch between years 2010-2014 (Watson, 2017), and (iii) number

of marine protected areas (Bruno et al., 2018) relative to the global average. In all cases, the difference was expressed as the relative

(%) increase or decrease in relation to the global average (Table S1I).
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DATA AND CODE AVAILABILITY

Raw reads of Tara Oceans are deposited at the European Nucleotide Archive (ENA). In particular, newly released 18S rRNA gene

metabarcoding reads are available under the number ENA: PRJEB9737. ENA references for themetagenomics reads corresponding

to the size fraction < 0.22 mm (for prokaryotic viruses) analyzed in this study are included in Gregory et al. (2019); see their Table S3.

ENA references for the metagenomics reads corresponding to the size fraction 0.22-1.6/3 mm (for prokaryotes and giruses) corre-

spond to Salazar et al. (2019) (see https://zenodo.org/record/3473199). Imaging datasets from the nets are available through the

collaborative web application and repository EcoTaxa (Picheral et al., 2017) under the address https://ecotaxa.obs-vlfr.fr/prj/412

for regent data, within the 3 projects https://ecotaxa.obs-vlfr.fr/prj/397, https://ecotaxa.obs-vlfr.fr/prj/398, https://ecotaxa.

obs-vlfr.fr/prj/395 for bongo data, and within the 2 projects https://ecotaxa.obs-vlfr.fr/prj/377 and https://ecotaxa.obs-vlfr.fr/prj/

378 for WP2 data. A table with Shannon values and multiple samples identifiers, plus a table with flow cytometry data split in six

groups are available (https://doi.org/10.17632/p9r9wttjkm.1). Contextual data from the Tara Oceans expedition, including those

that are newly released from the Arctic Ocean, are available at https://doi.org/10.1594/PANGAEA.875582.
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Supplemental Figures

(legend on next page)



Figure S1. Tara Oceans Stations and Shannon Diversity Patterns, Related to Figures 1 and 2

(A) MPGs at the sea surface (< 5m depth), (B) whole planktonic community using different sampling protocols at the sea surface (except for ‘‘Imaging,’’ integrative

depth from 500mdepth to the surface) and (C) whole planktonic community of themesopelagic realm (200-1000m depth). Number of stations are specified in the

inset titles. Color represents the Shannon index. For more details on the different size fractions and sampling protocols, please refer to the caption in Figure 1 and

STAR Methods.



Figure S2. Average Abundances of a Broader List of Plankton Groups across Latitude, Related to Figures 1 and 2

For 18S rDNA metabarcodes (relative abundances), imaging from net catches and flow cytometry (absolute abundances). Numbers refer to the filter mesh size

(mm). H: non-photosynthetic/heterotrophic, P: photosynthetic/mixotrophic. See Figures 1 and S1 for further sampling details. The three viral groups are not

represented here due to absence of comparable abundance data. Note that the differences between protocols relate, among other things, to resolution (e.g.,

potential photohosts from the nets are classified as Protists (H)), marker gene copy number (e.g., high in photohosts), lack of detection (many small copepods are

lost when sampling with nets), or water column sampling differences (surface [SRF] or deep chlorophyll maximum [DCM] versus integrative [INT] for molecular/

cytometry versus net catches, respectively).
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Figure S3. Rarefaction Curves for the Plankton Community, Related to Figure 2 and STAR Methods

Based on richness (A, C) and Shannon (B, D), for prokaryotes (16S rRNA gene miTags, A, B), and eukaryotes (18S rRNA gene V9 metabarcoding, C, D). Each line

corresponds to a surface water sample. Colors correspond to different latitudinal bands (absolute values).



Figure S4. Sea Surface LDG, Related to Figure 2A

(A) For viral, prokaryotic and eukaryotic MPGs, and (B) for well-known protist phyla and the dominant class of bacteria, Alphaproteobacteria, for which �50%

corresponds to the SAR11 clade. Solid lines represent the GAM smooth trends and gray ribbons the corresponding 95% confidence intervals of the Shannon

latitudinal trend predicted by the GAMs. The percentages provided below inset titles correspond to the deviance explained by GAMs when significant. Viruses

and bacterial diversities are inferred from samples filtered at 0.22-3 mm and analyzed through marker genes derived from metagenomics. Eukaryote diversity

shown here is inferred from 18S rDNA metabarcoding of samples filtered at 0.8-2000 mm. H: non-photosynthetic/heterotrophic, P: photosynthetic/mixotrophic.



Figure S5. Classification of MPG Sea Surface LDG Analyzed by Segmented Regression, Related to Figure 2A

The estimated break is the absolute latitude between the two segments of slope s1 and s2, respectively. We used pink lines for s1% 0 (plateau or peak around the

equator) and blue lines for s1 > 0 (extra-equatorial peak). The dendrogram is the result of a hierarchical clustering based on the differences in break and slope

values across MPGs (Euclidean distance on standardized values).



Figure S6. Correlation between the Shannon Values Derived from Multiple Datasets of Tara Oceans, Related to STAR Methods

(A) OTUs (as defined with ‘‘swarm’’; Mahé et al., 2014) obtained with the V9 (x axis) and V4 (y axis) regions of the 18S rRNA gene using surface water samples

(SRF); size fraction 0.8-2000 mm; (B) OTUs either as defined with swarm (x axis) or defined at 100% sequence identity from the V9 region of the 18S rRNA gene for

SRF samples, size fraction 0.8-2000 mm; (C-D) 16S rRNA genemiTags (x axis) versus OTUs defined at 97% [C] and 100% sequence similarity [D] (y axis) obtained

from the V4-V5 regions of the 16S rRNA gene for SRF samples, size fraction 0.22-3 mm. (E) OTUs of photosynthetic protists obtained with the V9 region of the 18S

rRNA gene (x axis) versus protists (mostly photosynthetic) as identified with environmental High Content Fluorescence Microscopy (eHCFM; data from Colin

et al., 2017) in SRF-DCM samples, size fraction 5-20 mm; (F) DiatomOTUs obtainedwith V9 region of the 18S rRNAgene (x axis) versus diatom species counted by

light microscopy (y axis) in SRF samples; size fraction 20-180 mm; (G/H) Copepod OTUs obtained with the V9 region of the 18S rRNA gene, SRF samples, size

fraction 180-2000 mm (x axis) versus abundances [G] and biovolumes [H] of copepods collected by the WP2 net, > 200 mm. Inset titles show the Pearson’s

correlation coefficient and its associated p value. Note the differences in axes scales. Dashed line represents 1:1 relation. Refer to STAR Methods for details on

each method.



Figure S7. LDG across Size and Depth, Related to Figures 2B–2D

For the whole prokaryotic (16S miTags, 0.22-3 mm, and 16S OTUs, 0.2 mm for bathypelagic (BAT)) and eukaryotic communities (18S OTUs, 0.8-2000, 20-180

and 180-2000 mm; imaging, > 300 and > 680 mm) at different depths (SRF: surface, < 5 m; DCM: deep chlorophyll maximum, 17-188 m, and MES: mesopelagic,

> 200 m, BAT: bathypelagic, > 4000 m, INT: integrative, depth from 500 m depth to the surface). Non-significant GAMs are denoted with ‘‘NS.’’ See Figure S4

legend for more information on the plot. Note that the particular trend for the regent net, i.e., Imaging j 680 mm might be due to undersampling of small

zooplankton.
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Figure S8. Multiple Pairwise Spearman Correlation Analysis of the Full Matrix of Contextual Parameters for the Surface Ocean, Related to

Figure 3A

Rows and columns were clustered based on the absolute pairwise Spearman correlation turned into distance (1 - j⍴j). MLD: mixed layer depth. E_median ML:

median light in the mixed layer. IAV: intra-annual variability. Part.backscat.coef: particle backscattering coefficient. For more information on parameters, see

Figure 3 and STAR Methods.



(legend on next page)



Figure S9. Relationships between Diversity and 4 Contextual Variables for Viral, Prokaryotic, and Eukaryotic MPGs, Related to Figure 3B

(A) SST, (B) chl a, (C) AMNO3, and (D) IAV SST. Solid lines represent the GAM smooth trends and gray ribbons the corresponding 95% confidence intervals of the

x-y relationship predicted by the GAMs. The percentages provided below inset titles correspond to the deviance explained by GAMs when significant (p value

corrected for multiple comparisons). Non-significant GAMs are denoted with ‘‘NS.’’



Figure S10. Relationship between Plankton Abundance and Two Contextual Variables, Related to Figure 3A

(A) SST, (B) chl a. Abundance values were obtained with flow cytometry (reported in [cells/ml]) or from counts of individuals captured with nets of different mesh

size and identified by imaging (reported in [individuals/m3]), respectively. Solid lines represent the GAM smooth trends and gray ribbons the corresponding 95%

confidence intervals of the X-Y relationship predicted by the GAMs. The percentages provided below inset titles correspond to the deviance explained by GAMs

when significant.
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Figure S11. Projected Latitudinal Changes in SST and chl a, Related to Figures 4 and S12

Anomalies (%) in (A) SST and (B) chl a at the end of the 21st century (2090-2099, RCP 8.5) relative to the beginning of the century (1996-2006). Data was obtained

from 13 CMIP5 models (Table S1H). Grey ribbons represent the standard error.



Figure S12. Modeled Patterns of Diversity of MPGs in the Global Ocean, Related to Figure 4

(A) Shannon indexmodeled at the global scale for oceanic conditions at the beginning of the 21st century (1996-2006). Predicted Shannon values% 0 obtained at

high latitudes, particularly for copepods and endophotosymbionts, were excluded. (B) Anomalies were calculated as the difference of their Shannon index at the

end (2090-2099, RCP 8.5) and the beginning of the century (1996-2006). A positive valuemeans that diversity will increase by the end of the century. Note that the

scale is not symmetric and that white means zero change. (C) Uncertainty maps (standard deviation) for (B). (D) Areas where the effect of chl a on plankton

diversity is likely to be higher than the one of SST. To determine this, either chl a or SST were held constant in the projections by the end of the century. Then, if the

anomaly caused only by the change of chl a was different than zero and higher (absolute terms) than the one caused only by the change in SST, the pixel was

colored. (E) Latitudinal diversity gradient at the beginning (solid line) and the end (dashed line) of the 21st century. Values represent averages over longitude for

each latitudinal degree. Dots are observed values (Figure 2). 13 Earth system models from CMIP5 were used (Table S1H).



Figure S13. Correlation between the Shannon Values Observed in Independent Datasets and Those for the Same Locations that Are Pre-

dicted by GAM Models Built in This Work, Related to STAR Methods

(A) Heterotrophic bacteria from the surface, open ocean water sites of the International Census of Marine Microbes (ICoMM; Zinger et al., 2011). (B) Eukaryotic

community retrieved from Raes et al. (2018). Note that for the latter the mesh size of the filters used were not exactly the same (TaraOceans > 0.8 mm; Raes et al.,

2018 > 0.22 mm). Note also that both datasets have different sampling dates and locations in relation to Tara Oceans. In both cases we used as predictors the

temperature and chl a of each site predicted by 13 CMIP5 models at the month of sampling averaged over 1996-2006. Inset titles show the Pearson’s correlation

coefficient and its associated p value.
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