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Eco-efficiency is a useful guide to dairy farm sustainability analysis aimed at increasing output (physical or value added) and minimizing
environmental impacts (EIs). Widely used partial eco-efficiency ratios (EIs per some functional unit, e.g. kg milk) can be problematic
because (i) substitution possibilities between EIs are ignored, (ii) multiple ratios can complicate decision making and (iii) EIs are not
usually associated with just the functional unit in the ratio’s denominator. The objective of this study was to demonstrate a ‘global’
eco-efficiency modelling framework dealing with issues (i) to (iii) by combining Life Cycle Analysis (LCA) data and the multiple-input,
multiple-output production efficiency method Data Envelopment Analysis (DEA). With DEA each dairy farm’s outputs and LCA-derived EIs
are aggregated into a single, relative, bounded, dimensionless eco-efficiency score, thus overcoming issues (i) to (iii). A novelty of this
study is that a model providing a number of additional desirable properties was employed, known as the Range Adjusted Measure
(RAM) of inefficiency. These properties altogether make RAM advantageous over other DEA models and are as follows. First, RAM is
able to simultaneously minimize EIs and maximize outputs. Second, it indicates which EIs and/or outputs contribute the most to a farm’s
eco-inefficiency. Third it can be used to rank farms in terms of eco-efficiency scores. Thus, non-parametric rank tests can be employed to
test for significant differences in terms of eco-efficiency score ranks between different farm groups. An additional DEA methodology was
employed to ‘correct’ the farms’ eco-efficiency scores for inefficiencies attributed to managerial factors. By removing managerial
inefficiencies it was possible to detect differences in eco-efficiency between farms solely attributed to uncontrollable factors such as
region. Such analysis is lacking in previous dairy studies combining LCA with DEA. RAM and the ‘corrective’ methodology were
demonstrated with LCA data from French specialized dairy farms grouped by region (West France, Continental France) and feeding
strategy (regardless of region). Mean eco-efficiency score ranks were significantly higher for farms with <10% and 10% to 30% maize
than farms with >30% maize in the total forage area before correcting for managerial inefficiencies. Mean eco-efficiency score ranks
were higher for West than Continental farms, but significantly higher only after correcting for managerial inefficiencies. These results
helped identify the eco-efficiency potential of each region and feeding strategy and could therefore aid advisors and policy makers at
farm or region/sector level. The proposed framework helped better measure and understand (dairy) farm eco-efficiency, both within and
between different farm groups.
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Implications

Dairying contributes significantly to society (employment,
economy, nutritional value of dairy products, etc.) at the cost of
several environmental impacts. Therefore, improvements in dairy
farm ‘eco-efficiency’ are essential to ensure more output with
fewer impacts. This study introduced a modelling framework to
measure, analyse and understand dairy farm eco-efficiency
in much more depth than previously published assessments.

The framework was demonstrated with data from French
specialized dairy farms. This framework can be a powerful tool
for improving the sustainability of dairy farming systems,
especially when multiple, conflicting objectives (multiple-output
maximization v. multiple-impact minimization) are involved.

Introduction

Facing the environmental impacts (EIs) of agriculture, the
challenge to satisfy the demands of a growing and more
affluent global population, the scarcity of natural resources† E-mail: andreas.soteriades@sruc.ac.uk

Animal (2016), 10:11, pp 1899–1910 © The Animal Consortium 2016
doi:10.1017/S1751731116000707

animal

1899



and the consequences of climate change, agricultural policies
are increasingly directed towards ‘sustainable intensification’
of agriculture (Foresight, 2011). Consequently, the
dairy industry (along with other sectors) is required to comply
with several policies promoting environmentally sustainable
and resource use-efficient production (Casey and Holden,
2005). This necessitates the application of tools to
measure dairy farm performance in terms of resource
use efficiency and productivity, increased product quantity
and value and minimization of EIs. Such a tool is ‘eco-
efficiency’, originally developed for the business sector;
it is expressed as a ratio of product or service value
to EI (Economic and Social Commission for Asia and the
Pacific [ESCAP], 2009).
In dairy studies, eco-efficiency is usually expressed as the

ratio of an EI per some functional unit such as kg milk or ha
land (e.g. Casey and Holden, 2005; van Calker et al., 2008;
Basset-Mens et al., 2009; Guerci et al., 2013; Bava et al.,
2014). To calculate the EIs dairy studies (including the
aforementioned) are increasingly using Life Cycle Analysis
(LCA), an internationally standardized method for estimating
the EIs of agricultural products from a global perspective
(Bava et al., 2014). Using LCA, some studies have been
confined to comparing different dairy systems in terms of
several eco-efficiency indicators defined by two or more
functional units (e.g. Basset-Mens et al., 2009). Others have
examined the relationships between eco-efficiency ratios and
related factors (e.g. farming intensity, farm self-sufficiency)
by employing multivariate methods such as regression
(Casey and Holden, 2005) and principal component analysis
(Bava et al., 2014). Other studies have focussed on
expressing the relative importance of several eco-efficiency
indicators based on different stakeholder weighting schemes
(see van Calker et al., 2008).
There are six main comments to be made on the approaches

to dairy farm eco-efficiency in the aforementioned studies.
First, analyses involving multiple partial eco-efficiency ratios
ignore the substitution possibilities that might exist between
different EIs. That is, farms performing moderately for several
EIs tend to be overlooked in favour of farms performing
exceptionally well for one EI (Kuosmanen and Kortelainen,
2005). Second, with these ratios the allocation of EIs to
products is challenging as dairy farms generally produce other
products too, such as meat. Third, incommensurability between
several criteria expressed by multiple eco-efficiency ratios
rather than a single performance index can complicate decision
making (Kuosmanen and Kortelainen, 2005). Fourth, analyses
with methods such as regression and principal component
analysis are subject to the method chosen to normalize/
standardize eco-efficiency ratios expressed in different units.
Fifth, assigning subjective weights to indicators (e.g. the
eco-efficiency ratios) has been debated in the literature
(Kuosmanen and Kortelainen, 2005). Sixth, allowance should
be made for the fact that there exist factors affecting
eco-efficiency that are beyond managerial control, such as the
different bio-physical conditions under which farms operate
(see Bogetoft and Otto, 2011; Jan et al., 2012).

All six aforementioned limitations can be overcome with
the productive efficiency method of Data Envelopment
Analysis (DEA; see Cooper et al., 2007), employed in this
study. DEA is a relative, multiple-input, multiple-output
efficiency measurement method calculating single
aggregated efficiency indices for each dairy farm by
assessing the whole production system, including EIs.
Importantly, with DEA no allocation of EIs to specific
products is required because the farm is assessed as a whole,
multiple-input, multiple-output entity. Most DEA models are
not affected by the different measurement units of the
data and their weighting schemes are endogenous, that is,
‘data-driven’ (e.g. the model of Cooper et al., 1999 employed
in this study). DEA methodologies correcting for managerial
inefficiencies and accounting for uncontrollable factors
are available, such as that of Brockett and Golany (1996)
adopted in this study.
DEA has been applied in several dairy studies for the

calculation of eco-efficiency. For example, Jan et al. (2012)
and subsequently Pérez Urdiales et al. (2015) used the DEA
eco-efficiency model of Kuosmanen and Kortelainen (2005)
to define a dairy farm eco-efficiency ratio. This ratio equalled
the amount of (physical or monetary) dairy farm output to an
aggregate EI index calculated as a weighted summation
of all EIs considered in their study. This ratio was then
maximized by minimizing the aggregate EIs for the given
production levels. Importantly, the EIs in Jan et al. (2012)
were LCA-derived. In fact, efficiency studies are increasingly
recognizing the advantages of combining LCA with DEA as
the former can capture EIs using detailed, cradle-to-grave
data (e.g. land use required for the production of feed
imported in the dairy farm plus on-farm land use), while the
latter has the aforementioned advantages (Vázquez-Rowe
and Iribarren, 2015).
The objective of this study was to propose a framework

combining LCA with DEA that not only overcomes the six
aforementioned issues, but also improves the measurement
and understanding of farm eco-efficiency using dairying as
exemplar. This will guide farming practice to greater yet
sustainable production (sustainable intensification) as
advocated for example by the UK Foresight report (2011).
The DEA model employed, known as the range adjusted
measure (RAM) of inefficiency (Cooper et al., 1999), has
several desirable properties, for example it allows for the
ranking of farms in terms of eco-efficiency performance.
Moreover, it seeks to maximize eco-efficiency by simulta-
neously minimizing EIs and maximizing production.
Furthermore, it can identify the factors contributing the most
to inefficiency, such as excess EIs and/or under-produced
outputs. A method to isolate managerial inefficiency from
uncontrollable factors was also demonstrated. That way, it
was possible to compare different dairy systems in terms of
eco-efficiency solely under the influence of uncontrollable,
rather than managerial, factors. The exercise was run using
detailed LCA data for French specialized dairy farms. Region
was considered as the uncontrollable factor in this study due
to the remarkable differences between West and Continental
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France in terms of farm structure and bio-physical conditions
(Gac et al., 2010b). The results helped identify the
eco-efficiency potential of each region and feeding strategy
and could therefore aid advisors and policy makers at farm or
region/sector level.

Material and methods

Data
LCA was used to estimate several important midpoint
impacts of dairy farming systems. It was conducted using the
DIAPASON database resulting from a partnership involving
voluntary participation of farmers, the Chambers of
Agriculture (France) and the French Livestock Institute.
This database contains detailed information on technical
and economic operations of nearly 500 farms each year
throughout France (Charroin et al., 2005).
Environmental performance was assessed by indicators

of pressure from agricultural activity on the environment
considering midpoint impact indicators of LCA. The frontier
of the farm system was limited to the farm, considered as a
system dedicated to agricultural products (crops, milk, meat)
at farm gate. Impacts associated with these products beyond
the farm gate were not considered in this study. The limits of
the system included the whole farm and all the inputs of the
farming system. The system and its main processes are
described in Figure 1.
The different EIs considered in this study were midpoint

impacts consistent with the CML 2001 methodology (Guinée
et al., 2002) with some specific equations to estimate
the emissions. They concern global warming potential
and non-renewable energy according to the greenhouse
gas emissions GES’TIM methodology (Gac et al., 2010a)
and non-renewable energy use (Béguin et al., 2008)
and based on the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC, 2007).
Eutrophication was calculated as a unique impact according
to the CML 2001 methodology (Guinée et al., 2002) and

acidification using equations from the European Monitoring
and Evaluation Programme/Core Inventory of Air Emissions
in Europe (EMEP/CORINAIR, 2002). Table 1 summarizes the
inventory of all the emissions considered to calculate the
different impacts.
The factors applied to the nitrogen (N), phosphorus and

carbon fluxes (calculated with the DIAPASON database),
generated estimates of EIs. Dry matter intake and mineral
excretion in the faeces and urine of animals were calculated
according to physiological needs (milk production, weight
after calving) using equations proposed by CORPEN (Comité
d’orientation pour de pratiques agricoles respectueuses de
l’environnement, 1999) taking into account the farmers’
feeding practices (types of forages and concentrates). The
carbon (C) storage of permanent grassland that was taken
into account was up to 500 kg C/ha per year (Gac et al.,
2010b). On-farm N leaching was estimated using the N farm
surplus, including symbiotic fixation (based on a fixed
proportion of legumes for permanent grassland), but after
removing losses of ammonia and organic N storage in
soils assumed as 10% of C storage (with C : N ratio of 10),
which represents 50 kg N/ha per year in permanent pasture.
The impact values of inputs were derived from the LCA
database ‘ecoinvent’ (Nemecek and Kägi, 2007) and Gac
et al. (2010a). Because the whole farm was chosen as the
functional unit, all farm products were considered
simultaneously in this analysis, therefore no allocation of
emissions to the different products was applied.
Finally, 185 dairy farms (specialized dairy farms according

to the widely recognized Farm Accounts Data Network
(FADN) typology) located in different French lowland regions
in 2007 and 2008 were kept in this study. The different
farms were classified into two main groups according to
climate zone and specialization: oceanic specialized systems
(OSS; West France, consisting of the following regions:
Basse-Normandie, Bretagne, Haute-Normandie, Pays de la
Loire, Poitou-Charente) and continental specialized systems
(CSS; Continental France, consisting of the following regions:
Alsace, Centre, Champagne-Ardenne, Franche-Comté,

Figure 1 Description of the dairy farming system used for the Life Cycle Analysis (LCA) calculations.
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Lorraine, Rhône-Alpes). The second dimension of the
typology, crossed with the first dimension, concerned the
type of feeding strategies, based on the area of maize silage
in the total forage area of the farm: <10%, 10% to 30%,
>30% maize. Other farm classes were not considered due to
insufficient number of farms in the class. Table 2 summarizes
the five EIs and three outputs used in this study per system
for the years 2007 and 2008.

Data envelopment analysis
DEA is a non-stochastic, non-parametric technique that
benchmarks different decision-making units (DMUs) performing
the same task in terms of their capacity to convert inputs into
outputs. DEA calculates dimensionless and aggregated efficiency
indices without requiring a priori assumptions on the importance
of each variable for the DMUs’ performance, making it a
particularly attractive multiple-criteria tool. DEA constructs an
efficient frontier, that is, a convex, piece-wise linear surface
over observed data points against which all DMUs are
benchmarked (or ‘enveloped’). Figure 2 represents an efficient
frontier ABC for the single-EI, single-output case. The efficient
frontier comprises of the best performers (DMUs A, B and C in
Figure 2) and the performance of all other DMUs (e.g. DMU D in
Figure 2) is evaluated by deviations from the frontier line (Cooper
et al., 2007). This is a fundamental difference between DEA and
methods such as regression as the latter reflects ‘average’ or
‘central tendency’ behaviour (Cooper et al., 2007) and is unable
to provide a holistic characterization of DMUs within a multiple-
objective assessment. Convexity in DEA allows for the
interpolation from observed DMUs to ‘virtual’ DMUs with
input–output profiles between the observations, allowing us to
rely on fewer actual observations. These ‘virtual’ DMUs are
derived as convex combinations of inputs and outputs of
observed DMUs. Convexity can be illustrated in Figure 2 as
follows. Any line connecting any two points belonging to, or
being placed below, the frontier would also be placed on or
below the frontier, and never outside this space (i.e. above the
frontier). The points these lines comprise of can represent both
observed and ‘virtual’ DMUs. See Bogetoft and Otto (2011) for a
theoretical background on convexity in DEA.

Data envelopment analysis in the eco-efficiency context
As mentioned in the introduction, eco-efficiency
measurement with DEA is advantageous for three main
reasons: (i) several EIs are aggregated into a single index,
(ii) substitution possibilities between EIs are not left
unaccounted for and (iii) no allocation of EIs to specific
outputs is required. Points (i) to (iii) can be expressed in
the DEA context by minimizing the denominator of the
following ratio:

Eco�efficiency=max
Output

Weighted sum of EIs

� �
(1)

subject to a number of constraints (see Kuosmanen and
Kortelainen, 2005). In ratio 1 the output can be expressed
in monetary or physical terms. The weights summing the
various EIs are calculated by the DEA model itself so oneTa
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need not rely on subjective, pre-defined weight choices for
the importance of each EI. Specifically, the DEA model
maximizing ratio 1, selects the most self-favourable weights
for each DMU so that its eco-efficiency is maximized. These
weights cancel out the (often) different measurement units of
the EIs, making the DEA model ‘units invariant’ (Cooper
et al., 2007).
Despite its usefulness, there are two main limitations with

the eco-efficiency DEA model of Kuosmanen and Kortelainen
(2005). First, ratio 1 can only be maximized by minimizing
the EIs for the given output levels. In other words, simulta-
neous minimization of EIs and maximization of output is
not possible. For example, DMU D in Figure 2 would have to
move horizontally towards the frontier to become efficient,
ignoring any potential increases in its output. Because
eco-efficiency expresses the idea of firms (e.g. dairy farms)

providing ‘more’ to society with less EIs, it is desirable to use a
DEA model allowing for simultaneous adjustments in EIs and
output. Second, full eco-efficiency can only be achieved
by minimizing all EIs by the same proportion. A DEA
model should be able to identify those EIs generating the
most detrimental excess (or ‘slack’ in the DEA terminology) to a
DMU’s eco-‘inefficiency’.
Both aforementioned limitations can be overcome with the

use of so-called ‘additive’ DEA models (see Cooper et al.,
2007). These models are able to simultaneously, and
non-proportionally, minimize EIs and maximize output for a
given DMU. In such a case, DMU D in Figure 2 would move
towards point B. The term ‘additive’ is attributed to the fact
that these models’ objective functions involve summations of
all input and output slacks in order to identify all potential
sources of inefficiency. In Figure 2 this summation is

Table 2 Statistics of dairy farm environmental impacts and outputs per system, in both years 2007 and 2008

CSS (n = 59) OSS (n = 126)

Data Min Max Mean SD Min Max Mean SD

EI
Non-renewable energy (103MJ) 580 5256 1643 846 343 4223 1406 709
Land use (ha) 48 351 133 67 48 268 101 43
Eutrophication (kg PO4) 625 10 890 3200 2241 425 10 070 3200 2058
Acidification (kg SO2) 2189 11 780 4728 1982 1543 8413 3798 1419
GWP (kg CO2) 163 500 1 431 000 535 000 257 097 91 400 1 330 000 507 200 218 404

Outputs
Milk (kg protein) 2210 10 540 5218 1957 2080 10 900 5195 1907
Meat (kg live weight) 0 73 410 21 700 13 401 0 92 210 23 330 11 644
Crops (103MJ) 614 10 930 3488 2683 0 8152 2142 1848

CSS = continental specialized systems; OSS = oceanic specialized systems; EI = environmental impact; GWP = global warming potential.

Figure 2 An efficient frontier ABC in the case of a single environmental impact (EI) and a single output. Inefficient decision-making unit D seeks maximal
EI reduction and output expansion and thus is projected on ABC at point B.
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represented by the vector heading from point D towards point
B and equals the maximal sum of the EI slack and the Output
slack. As will be shown below, this summation of all slacks in
the objective function departs from the ratio form of ratio 1.
However, it is consistent with the idea of maximizing output
while minimizing EIs and thus has been adopted in past
eco-efficiency studies (see Ramli and Munisamy, 2015 and
the related studies they cite). This study employed the RAM
additive model (Cooper et al., 1999), presented below. RAM
and its variants have been used in several eco-efficiency studies
of industries other than dairy, see Ramli and Munisamy (2015).

Range adjusted measure of inefficiency. Suppose that there
are n DMUs (e.g. dairy farms) each using m inputs (or EIs in
the case of this study) to produce s outputs, denoted as xi
(i = 1,…, m) and yr (r = 1,…, s), respectively. The RAM
inefficiency score of the jth DMU, denoted as DMUo, is given
by the following linear programme (Cooper et al., 1999):

ρ� = maxλj ;sio; sro
1

m + s

Xm
i =1

sio
Ri

+
Xs
r =1

sro
Rr

 !
(2)

subject to

xio =
Xn
j = 1

xijλj + sio ði= 1; :::;mÞ

yro =
Xn
j = 1

yrjλj � sro ðr = 1; :::; sÞ

Xn
j = 1

λj =1

λj; sio; sro ≥ 0

where xio and yro are the inputs and outputs of DMUo
respectively; sio and sro are the input and output slacks,
respectively (Note: input slacks represent overused inputs,
i.e. DMUo could have produced the same amount of output
using less input. Output slacks represent output shortfalls,
i.e. DMUo could have produced more output given its current
input use.); λj is a scalar which, when positive, indicates
that DMUj has been used as a reference (i.e. benchmark) by
DMUo; and Ri = maxj {xij}-minj {xij}, Rr = maxj {yrj}−minj {yrj}
represent the ranges in inputs and outputs, respectively,
common across all DMUs. The ranges act as a ‘data-driven’
weighting scheme, a more objective one compared to methods
where the weights are (subjectively) pre-defined by the
user. These weights normalize the slacks and make RAM
units invariant. The objective function represents the average
proportion of the inefficiencies that the ranges show to be
possible in each input and output (Cooper et al., 1999).

The constraint
Pn
j=1

λj = 1 is the ‘variable returns-to-scale’

specification (see Cooper et al., 2007) which ensures that
a farm is only compared to farms of similar size. This
specification was desirable in this study as DEA works with
absolute values rather than ratios.

Model 2 is run n times, once for each DMU. When DMUo is
efficient all its slacks equal zero as this means that it does not
need to further reduce its inputs and increase its outputs to
become efficient (e.g. DMUs A, B and C in Figure 2). In this
case RAM inefficiency ρ* in model 2 equals 0, indicating that
DMUo is 100% efficient. If DMUo is inefficient, one
can identify through the slack values (which in this case
are non-proportional) the inputs and desirable outputs
contributing the most to its inefficiency. For an inefficient
DMU (e.g. DMU D in Figure 2) any choice of input resulting in

xio >
Pn
j=1

xijλj means that with some combination of inputs

other DMUs (identified by the non-zero λj values) could have

improved this input in amount by sio= xio�
Pn
j=1

xijλj without

worsening any other input or output (Brockett et al., 2004).
Consider, for example a DMU on ABC with coordinates
(2.7, 3) as opposed to DMU D with coordinates (7, 3) in
Figure 2. The same applies for the desirable outputs and their

shortfalls sro=
Pn
j=1

yrjλj � yro. In this case consider a DMU

with coordinates (7, 5.7) as opposed to DMU D in Figure 2.
In either case RAM inefficiency ρ* is greater than 0,
indicating that DMUo is inefficient.

Because
Pn
j=1

λj=1 in model 2 it follows that

sio=
Pn
j=1

xio�xij
� �

λj ≤
Pn
j=1

Riλj =Ri and similarly sro⩽ Rr

and thus 0⩽ ρ*⩽ 1. Hence, the measure of inefficiency ρ�
in model 2 can be easily converted to a measure of efficiency
as follows:

RAM efficiency= 1� ρ� (3)

RAM efficiency 3 is bounded by 0 and 1. Unity indicates
that the DMU under evaluation is efficient while values <1
imply that it is inefficient.
Two very attractive properties of RAM are the following:

(i) RAM uses the ranges as a common weighting scheme
across all DMUs; and (ii) RAM is strongly monotone in the
slacks, that is, holding any other inputs and outputs
constant, an increase (decrease) in any of its inputs (outputs)
will increase the inefficiency score for an inefficient DMU.
Model 1 does not carry properties (i to ii).
Properties (i) to (ii) allow for a full ranking of inefficient

DMUs in terms of their RAM efficiency score 3 (Cooper et al.,
1999). (Not all DEA models carry this property. For example,
with ratio 1 one cannot say that a DMU with a score of 0.8 is
more eco-efficient than a DMU with a score of 0.7 because
the EI weights are DMU-specific and will generally differ
between DMUs.) This was strongly desirable in the current
study so as to determine whether farms ranked higher in
terms of eco-efficiency in a specific region or under a certain
feeding strategy.

DEA variables. This study used the five EIs and three outputs
in Table 2 for the calculation of eco-efficiency with RAM,
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namely non-renewable energy use, land use, eutrophication,
acidification, global warming potential and milk, meat and
crop production. With DEA, increasing the number of
variables also increases the number of efficient DMUs which
can be quite problematic with small sample sizes. A rough
rule of thumb is to choose n⩾max{m× s, 3× (m+ s)}
(Cooper et al., 2007, p. 116). The rule of thumb was satisfied
in this study: n = 185⩾max{m× s, 3× (m+ s)} = 24.

Testing for differences in eco-efficiency between regions and
feeding strategies
Differences in dairy farm eco-efficiency scores between
regions and feeding strategies were tested for using the
non-parametric Kruskal–Wallis test (see Conover, 1999),
also known as ‘non-parametric Kruskal–Wallis one-way
ANOVA by ranks’ (Sheskin, 1997). The Kruskal–Wallis test
is employed with ordinal (rank-order) data in hypothesis
testing involving a design with two or more independent
samples (Sheskin, 1997). That is, dairy farms were ranked in
terms of their eco-efficiency scores and differences between
groups were tested based on each group’s average rank. The
null hypothesis is that all of the populations are identical
against the alternative that at least one of the populations
tends to yield larger observations than at least one of the
other observations (Conover, 1999). When at least three
groups are compared the Kruskal–Wallis test cannot indicate
which pairs of groups significantly differ (provided that
significant differences occur). The post-Kruskal–Wallis
non-parametric rank test known as Dunn’s test (see Sheskin,
1997) was therefore employed to identify specific differences
between the three feeding strategies.
Choosing non-parametric tests over the parametric

one-way ANOVA and its post hoc tests was done for two
reasons. First, the theoretical distribution of efficiency scores
in DEA is generally unknown so a convention in the DEA
literature is to use non-parametric tests (Brockett and
Golany, 1996; Cooper et al., 2007; Bogetoft and Otto, 2011).
Second, because RAM can be used to rank DMUs, it lends
itself to the rankings that underlie non-parametric rank
statistics (Brockett et al., 2004). Both tests employed in this
study operate based on the rank transformation approach;
that is, the data are replaced by their ranks and then the
usual parametric tests (e.g. t test, F test, etc.) are applied on
the ranks. (Tied observations [e.g. when at least two DMUs
are eco-efficient] are given the average rank of the tied
scores.) Therefore, these tests are not affected by outliers or
skewed data. See Conover (1999).

Examining the effect of region on eco-efficiency
The bio-physical conditions under which dairy farms operate
largely differ between West and Continental France.
Regional differences in eco-efficiency were therefore tested.
It would seem appropriate to pool farms from both regions in
one dataset, run the RAMmodel and then test for differences
between regions with the Kruskal–Wallis test. Such practice,
however, would reveal any differences between regions
under the observed levels of EIs and output (i.e. the EI

and output values outlined in Table 2). This means that
inefficiencies attributed to both managerial and regional
factors would not allow inefficient farms to operate under
their full potential. Indeed, the risk of amalgamating both
sources of inefficiency (managerial and regional) is to
grant inadvertently some bad managers (farmers) good
eco-efficiency scores when they are only benefitting from
operating under particularly favourable bio-physical
conditions (see Brockett and Golany, 1996). Removing EI
and output managerial inefficiencies (i.e. slacks) was
therefore essential before comparing the two regions in
terms of eco-efficiency. This was done by adopting the
methodology of Brockett and Golany (1996) which involved
the following four steps:

1. Run two separate DEA exercises, one for CSS only and
one for OSS only with model 2.

2. Using the optimal EI and output slacks obtained from
the previous step make the necessary reductions in EIs
and outputs so that inefficient DMUs in each group
become efficient. This is done using the following
formulas:

x̂io = xio� s�io i = 1; :::; mð Þ
ŷro = yro + s�ro r = 1; :::; sð Þ ð4Þ

where the asterisks (*) denote optimality. (For example,
let us assume that Figure 2 represents OSS farms.
With formulas 4 the OSS farm D would have been
projected onto the OSS efficient frontier at point B.) Now
managerial inefficiency has been eliminated within OSS
and CSS and both are operating ‘up to the boundary of
the capabilities which the evidence showed was possible
for [OSS and CSS]’ (Cooper et al., 2007, p. 238).

3. Pool all DMUs deriving from the previous step and run a
new DEA exercise with model 2.

4. Test for significant differences between the systems’
efficiency scores using non-parametric rank statistics,
i.e. the Kruskal–Wallis test.

Following the steps above it was possible to compare the
two regions in terms of eco-efficiency. It should be noted,
however, that the DMUs were then evaluated not based on
their actual levels of EIs and output, but on their efficient
ones. Because this methodology corrects for any managerial
inefficiencies present in DMUs, from this point it is referred to
as the ‘corrective’ methodology.

Putting all methods together
Figure 3 summarizes the methodology employed in this
study. Phase 1 did not apply the ‘corrective’ methodology
and involved two steps. In Step 1.1 the EIs and outputs for
each farm were fed into RAM and the eco-efficiency scores
were obtained. Note that in this step DMUs from both CSS
and OSS were pooled before the RAM was run. Step 1.2a
tested for differences in eco-efficiency scores between the
two systems and between the three feeding strategies with
non-parametric rank tests. Moreover, the EI and output

Measuring eco-efficiency with LCA and DEA

1905



slacks were compared between systems in Step 1.2b. Phase 2
applied the ‘corrective’methodology and involved four steps.
In Step 2.1 the RAM model was run for each system (CSS,
OSS). In Step 2.2 the EIs and outputs of each farm in each
system were projected onto their efficient levels with the
formulae in 4. In Step 2.3 the RAM model was re-run for the
whole sample (both CSS and OSS) using the projected data
from Step 2.2. Step 2.4 tested for differences in the new
eco-efficiency scores between the two systems and between
the three feeding strategies with non-parametric rank tests.
Unlike Phase 1, in Phase 2, systems and feeding strategies
were exposed to the full eco-efficiency potential that the
data showed to be possible for these groups.
There are distinct differences between Phase 1 and 2.

Although Phase 1 did not differentiate between regional and
managerial factors, it helped to evaluate the 185 French
specialized farms under their observed levels of EIs and
outputs, as reported in Table 2. In other words, Phase 1
evaluated farms ‘as they actually performed’ and not ‘as they
could be performing’, as in the ‘corrective’ methodology
described in Phase 2. Phase 1 is therefore useful for efficiency
comparisons between and within farms in terms of the whole
population, without correcting for potential systematic
differences between groups (defined by region in this case).
Phase 2 is appropriate for testing the hypothesis that
systematic unavoidable differences between groups will
affect efficiency performance. Phases 1 and 2 are therefore
independent but complementary. See Brockett et al. (2004)
who also conducted their analysis in two stages analogous to
the two Phases employed here.

All calculations were run with the R language (http://
www.R-project.org/). The R function for RAM was developed
by the first author of this article. The Kruskal–Wallis test is
available in the standard version of R. Dunn’s test is available
by the R package ‘dunn.test’ (https://cran.r-project.org/web/
packages/dunn.test/dunn.test.pdf).

Results

Eco-efficiency scores and slacks per system and feeding
strategy when accounting for managerial inefficiencies
The results for the eco-efficiency scores and slacks presented
in this sub-section were calculated before applying the
‘corrective’ methodology (Phase 1 in Figure 3).

Eco-efficiency scores. Statistics for the eco-efficiency scores
and their mean ranks per system and feeding strategy are
presented in Table 3. The mean, median and mean ranks of
eco-efficiency scores were higher for OSS than CSS. However,
the Kruskal–Wallis test did not identity significant differences
between CSS and OSS in terms of the eco-efficiency scores’
mean ranks (P = 0.105). The three feeding strategies ranked
as follows in terms of mean, median and mean ranks of
eco-efficiency scores: (<10% maize)> (10% to 30%
maize)> (>30% maize). The Kruskal–Wallis test identified
significant differences between the three feeding strategies
in terms of the eco-efficiency scores’ mean ranks
(P = 0.001). Specific differences were identified with Dunn’s
test. Differences were significant between DMUs with <10%
maize and >30% maize in the total forage area (P< 0.001)
and between DMUs with 10% to 30% maize and >30%
maize (P = 0.011). No differences were found between
DMUs with >10% maize and 10% to 30% maize in the total
forage area (P = 0.083).

EI and output slacks. Table 4 summarizes the optimal EI and
output slacks from model 2 per system, expressed as
proportions of their respective ranges i.e. s�io

�
Ri i= 1; :::; mð Þ

and s�ro
�
Rr r = 1; :::; sð Þ. That way, it was possible to

‘decompose’ the eco-efficiency scores in Table 3 in order to detect
the EIs and outputs with the highest relative contribution to a
DMU’s inefficiency. (Averaging each system’s input and
output inefficiencies in Table 4 and then subtracting them from 1
equals the mean efficiency scores presented in Table 3.) The EIs
with the highest contribution to CSS systems’ inefficiency were
eutrophication potential, land use and acidification potential.
By contrast, eutrophication potential was the EI with the
by-far-largest contribution to OSS systems’ inefficiency.
In terms of output inefficiency, meat and milk were by far the
largest contributors to the inefficiency of both OSS and CSS.
Notably, for both OSS and CSS the mean input inefficiencies were
much higher than the mean output inefficiencies.

Eco-efficiency scores per system and feeding strategy after
eliminating managerial inefficiencies
The eco-efficiency results per system and feeding strategy
presented in this section were obtained after eliminating all

Figure 3 Description of the modelling framework adopted in this study.
DEA: Data Envelopment Analysis. LCA = Life Cycle Analysis.
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managerial inefficiencies (i.e. slacks) from the 59 CSS farms
and 126 OSS farms, based on the ‘corrective’ methodology
(Phase 2 in Figure 3). Statistics for the eco-efficiency scores
and their mean ranks per system and feeding strategy
are presented in Table 5. The mean and mean ranks of
eco-efficiency scores were higher for OSS than CSS and the
medians of both systems equalled 1. The Kruskal–Wallis test
identified significant differences between the eco-efficiency
scores’ mean ranks of the two systems (P< 0.001). The three
feeding strategies had almost-equal mean and equal median
eco-efficiency scores. The Kruskal–Wallis test did not identify
significant differences between feeding strategies in terms of
mean ranks of the eco-efficiency scores (P = 0.767).

Discussion

This study is aimed at researchers, advisors and policy
makers searching for tools that can address the challenges
of increasing farm output and reducing EIs, especially given

the recent trend towards sustainable intensification of
agriculture (see Foresight, 2011). Our framework contributes
to the stream of literature employing methodologies able
to capture several aspects in order to ensure that
development is in fact ‘sustainable’. Dairy farming was
used as an exemplar to demonstrate the framework, which is
expandable to other agricultural settings.

Not ‘just LCA’ but ‘DEA and LCA’
According to recent guidelines by the Livestock
Environmental Assessment and Performance Partnership
(LEAP, 2015, p. 6), ‘[i]n order to prevent shift of burden from
[one] environmental issue to another, no environmental
improvement option should be recommended without
having […] assessed […] the effects on resource use and
those other EIs targeted as relevant for livestock supply
chains […]’. In other words, the LEAP guidelines themselves
implicitly acknowledge the issue of substitution possibilities
between LCA eco-efficiency ratios, mentioned in the
introduction to this study. The implications of this issue can
be demonstrated by looking at the results of LCA
eco-efficiency studies comparing dairy farms with different
proportions of land devoted to maize silage (e.g. Basset-
Mens et al., 2009; Rotz et al., 2010). According to these
studies, because grassland requires less fertilization than
arable land, lower impacts from eutrophication, acidification,
greenhouse gas emissions and non-renewable energy use
have been observed on grass-based farms. However, arable
crops such as maize silage have higher yields per hectare.
It is therefore impossible to conclude that a particular
feeding strategy has a higher eco-efficiency potential than
another one, unless all feeding strategies are evaluated at
the aggregate level, as was done in this study. Indeed,
feeding the LCA variables into the RAM model showed that
the eco-efficiency of farms with >30% maize was lower,
favouring more grass-based systems.

Table 3 Statistics for eco-efficiency scores per system and feeding
strategy before removal of managerial inefficiencies

Eco-efficiency scores

Min Max Median Mean SD Mean rank

System
CSS 0.840 1.000 0.934 0.938 0.047 83.814
OSS 0.762 1.000 0.950 0.949 0.050 97.302

Feeding strategy
<10% maize1 0.841 1.000 0.966 0.964 0.038 113.795a

10% to 30%
maize1

0.840 1.000 0.954 0.950 0.045 98.596a

>30% maize1 0.762 1.000 0.930 0.932 0.053 78.310b

CSS = continental specialized systems; OSS = oceanic specialized systems.
a,bValues within a column with different superscripts differ significantly at
P< 0.05.
1Maize area as % of total forage area on farm.

Table 4 Mean slack values per system expressed as a proportion of
their corresponding ranges

CSS OSS

Environmental impacts
Non-renewable energy 0.066 0.060
Land use 0.100 0.041
Eutrophication 0.107 0.141
Acidification 0.090 0.053
GWP 0.060 0.069
Mean 0.085 0.073

Outputs
Crops 0.003 0.007
Milk 0.033 0.019
Meat 0.040 0.022
Mean 0.025 0.016

CSS = continental specialized systems; OSS = oceanic specialized systems;
GWP = global warming potential.

Table 5 Statistics for eco-efficiency scores per system and feeding
strategy after removal of managerial inefficiencies

Eco-efficiency scores

Min Max Median Mean SD Mean rank

System
CSS 0.908 1.000 0.995 0.985 0.022 67.059a

OSS 0.890 1.000 1.000 0.994 0.018 105.147b

Feeding strategy
<10% maize1 0.934 1.000 1.000 0.991 0.017 88.614
10% to 30%
maize1

0.928 1.000 1.000 0.993 0.016 94.991

>30% maize1 0.890 1.000 1.000 0.991 0.024 93.946

CSS = continental specialized systems; OSS = oceanic specialized systems;
GWP = global warming potential.
a,bValues within a column with different superscripts differ significantly at
P< 0.05.
1Maize area as % of total forage area on farm.
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Regional differences
Higher eco-efficiency scores were expected for OSS systems
over CSS because the bio-physical conditions in West
France are more favourable. Specifically, the climate
conditions in West France favour the production of high
quality forages which are essential for dairy production.
These differences in climate conditions between West
and Continental France were implicitly examined in this
study by removing managerial inefficiencies from CSS and
OSS with the ‘corrective’ methodology. Indeed, Jan et al.
(2012) emphasized that DEA results should be interpreted
with care as inefficiencies may be attributed to factors that
are beyond managerial control. Hence, removing managerial
factors with the ‘corrective’ methodology revealed each
system’s true eco-efficiency potential that the projected data
showed to be possible, solely as a result of the different
bio-physical conditions between West and Continental
France. OSS systems then ranked significantly higher, on
average, than CSS in terms of eco-efficiency scores (Table 5).

Identifying specific sources of eco-‘inefficiency’
Examining the slacks (Table 4) can help prioritize the
reduction (increase) of those EIs (outputs) most responsible
for the eco-inefficiency of CSS and OSS. For example, CSS
systems had a quite large acidification slack. In fact, in CSS
systems cows are generally offered more protein concentrates,
potentially to avoid any protein shortages, which tends
to increase ammonia emissions (Faverdin et al., 2014).
It is noteworthy that CSS also had a large land use slack
(Table 4). These systems devoted a larger part of on-farm
land to crop production at the expense of lower milk and
meat production than OSS (compare mean crops-milk and
crops-meat ratios per system, which can be easily derived from
Table 2). This, in turn, explains the lower crops slack, and
higher milk and meat slacks, of CSS in comparison with OSS
(Table 4). Finally, note that for both systems the largest slack
was eutrophication, as opposed to the relatively low global
warming potential slacks. This agrees with the findings of Bava
et al. (2014) that livestock systems are often responsible for
important local EIs.

Methodological aspects
Eco-efficiency as a relative measure to improve
sustainability. It can be argued that improving eco-efficiency
does not guarantee sustainability. Because eco-efficiency
is a relative measure, improvements can be achieved if
either EIs are reduced or outputs are increased. Furthermore,
the absolute environmental pressure can still exceed
the ecosystem’s carrying capacity (Kuosmanen and
Kortelainen, 2005). For example, there is a high
concentration of dairy farms in West France and the main
production regions are located near environmentally
sensitive areas (Chatellier and Pflimlin, 2006). Thus,
although OSS systems had higher eco-efficiency, this
does not necessarily mean that they operated within the
local ecosystem’s carrying capacity.

Nevertheless, eco-efficiency is often cost-effective so it
makes economic sense to exploit it to the utmost
(Kuosmanen and Kortelainen, 2005). In this study the RAM
model helped identify such options through the relative EI
and output slacks (Table 4). Prioritizing those EIs and outputs
with the largest relative slacks can result in notable
eco-efficiency improvements. This is advantageous because
policies targeted at eco-efficiency improvements tend to be
easier to adopt, and politically easier to implement, than
policies restricting the level of economic activity (Kuosmanen
and Kortelainen, 2005).

Comparing RAM with alternative methods. This study
considered RAM’s ranking property as one of its main
advantages. Besides RAM, there are several promising
methods to rank DMUs. See the reviews by Adler et al. (2002)
and Markovits-Somogyi (2011) regarding the methods
mentioned hereafter. Other ranking methods missing from
both reviews exist, such as the ‘global efficiencies’ (GLE)
approach by Despotis (2002) which, like RAM, uses a
common weighting scheme across all DMUs. These ranking
methods can be roughly classified as having at least one
of the following characteristics: (i) they require modifications
to the original DEA model (e.g. when imposing weights
restrictions); (ii) they involve supplementary analyses
with tools such as multivariate statistics (e.g. canonical
correlation analysis for ranking) or multiple-criteria
decision making (e.g. GLE), which translates to additional
computational time and/or coding effort; (iii) the original
DEA model cannot be easily solved (e.g. fuzzy DEA); and
(iv) there is no correspondence between the DMUs’ efficiency
scores and their ranks (e.g. GLE). While some of these issues
can be dealt with fairly easily (e.g. the weights restrictions),
to the best or our knowledge, RAM is the only simple, readily
available linear DEA model with a ranking property that does
not involve (i to iv). Note that RAM can only rank inefficient
DMUs. In fact, ranking efficient DMUs was not desirable
here because rankings can differ between methods
(see Adler et al., 2002), possibly affecting the results of the
non-parametric rank statistics.
Additive models (such as RAM) are not the only DEA

models able to simultaneously minimize EIs (and/or inputs)
and maximize output. Another example is the directional
distance function (DDF) whereby the minimization of EIs and
inputs, and maximization of outputs, is made via a ‘direction
vector’ that reflects different stakeholder preferences. For
example, the direction vector may be set to minimize EIs for
the given outputs, maximize outputs for the given EIs or do
both simultaneously. Several other choices are also possible
(see Beltrán-Esteve et al., 2014; Berre et al., 2014). For
instance, Berre et al. (2014) argued that a sustainable
intensification scenario would seek to reduce pollution and
increase outputs with a possible increase in inputs. The RAM
model can also allow for input increases because it can
handle negative values (see Cooper et al., 1999): simply
assign a negative sign to the inputs to be increased.
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DDFs are advantageous over RAM when the objective is
not only to calculate the input and output adjustments
necessary for a DMU to operate efficiently, but also to
determine how ‘far’ these adjustments are from an
input–output combination maximizing profits (provided that
input and output prices are known) for this particular DMU
(Färe and Grosskopf, 2000). This ‘allocation’ problem cannot
be modelled with RAM. Nonetheless, RAM is appropriate
when it is desirable to decompose efficiency scores into
variable-specific scores through the slacks (as was done here)
because, unlike DDFs, RAM does not assume proportional
adjustments in inputs and outputs (some recently developed
DDFs that relax this assumption have in fact an additive
structure; see Chen et al., 2015). Note that there are several
normalization options for the slacks (other than by division
by the variables’ ranges as was done here) that create
opportunities for further analyses (Cooper et al., 1999
discuss a range of choices). For example, when input
prices are known, input slacks can be ‘priced’ to determine
the proportion of each input’s cost to the total cost
(see Soteriades et al., 2015).
Finally, we draw attention to the alternative definitions of

‘data-driven’ weights in models 1 and 2. In model 1 the
weights are calculated by the model itself. This may result in
large weights for EIs of secondary importance, leaving a
negligible or zero weight for more important EIs (Kuosmanen
and Kortelainen, 2005). This can be fixed by restricting
a priori the weights’ values to admissible ranges (see
Kuosmanen and Kortelainen, 2005). By contrast, with RAM
(model 2) the weights are not calculated but given, because
the model uses the variable’s ranges as weights, which are
always non-zero. Therefore, reliance on subjective weights
restrictions as in model 1 is not necessary with RAM.

Choice of DEA variables. Choice of input and output variables
used is a key aspect of DEA methodology. Past studies on
dairy farm eco-efficiency with DEA often use one aggregate
output indicator to avoid too many DMUs on the efficient
frontier. For example, Pérez Urdiales et al. (2015)
defined output as economic value added [(milk sales+ value
of on-farm consumption of milk) – direct costs]. On the other
hand, Jan et al. (2012) argued that economic value added
might bias the results as an increase in the market price of a
given commodity would lead to higher eco-efficiency.
Instead, they aggregated all farm outputs into a single
output of digestible energy content. However, with this
method it is assumed that any form of energy in human diets
can be substituted by any other, provided that energy
requirements are met. Also, milk, meat and crops have
different nutritional values in addition to energy content.
Therefore, in this study it was deemed more appropriate to
keep milk, meat and crops as three separate outputs.
Furthermore, in this study the eco-efficiency measure

did not include operational inputs (e.g. labour, capital,
on-farm electricity use) and ‘undesirable’ outputs (e.g. kg
CO2-equivalents, wastewater) because the idea was
to aggregate altogether the two elements used in

LCA ratios: EIs and outputs. In other words, we were
concerned with the EIs rather than the amount of operational
inputs and undesirable outputs of DMUs (see Jan et al., 2012,
p. 715, but also Kuosmanen and Kortelainen, 2005). An
alternative way of conducting eco-efficiency analysis by also
involving operational inputs and undesirable outputs is with
the ‘LCA+DEA method’ (see Vázquez-Rowe and Iribarren,
2015). With LCA+DEA, ‘target’ LCA impacts are obtained by
adjusting the operational inputs to their optimal values via
DEA and re-performing the LCA exercise. Therefore, in
LCA+DEA the DEA exercise is an intermediate step that
helps determine the DMUs’ benchmarks and thus the target
EIs. Alternatively, target EIs can be obtained directly from
RAM’s optimal slacks. This reduces potential dimensionality
issues because the set of DEA variables will generally be
smaller than that with LCA+DEA (Jan et al., 2012, p. 715).

Conclusion

Combining LCA with RAM, the ‘corrective’ methodology and
non-parametric rank tests can significantly improve (dairy)
farm eco-efficiency assessments compared to previous
studies using partial ratios or coupling LCA with DEA. The
modelling framework was demonstrated with LCA data for
French specialized dairy farms. Results showed that OSS
systems ranked higher, on average, than CSS systems in
terms of eco-efficiency. Also, the average eco-efficiency rank
of farms with lower proportions of maize silage in the
total forage area was higher, on average, than farms with
higher proportions of maize. These results helped identify the
eco-efficiency potential of each region and feeding strategy
and could therefore aid advisors and policy makers at farm or
region/sector level. This demonstration also highlights
the capacity of the proposed multiple-EI, multiple-output
framework to measure and understand eco-efficiency, and to
compare different groups, which makes it a promising
multiple-criteria tool towards the achievement of greater yet
sustainable agricultural production.
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