
1  | INTRODUC TION

Crop plant diversity managed by genebanks is of great value in the 
context of the changing needs of agriculture (Smale & Jamora, 2020), 
but genetic and phenotypic information on this diversity is insuffi-
ciently available for most genebanks (McCouch et al., 2013, 2020). 
The advent of Next Generation Sequencing has enabled— at an 
ever- decreasing cost— the sequencing of reference genomes of 
many crops as well as high- density genotyping for large numbers 
of samples per crop. Genotyping is a powerful tool to help identify 
gaps or redundancies in germplasm collections, and when combined 
with phenotyping data, can be used to detect correlations between 
genome regions and agronomic traits. For some crops, massive se-
quencing and data processing have been undertaken, as shown in 
the rice, wheat and barley germplasm collections (Milner et al., 2019; 
Sansaloni et al., 2020; Wang et al., 2018). These approaches repre-
sent increasingly reachable targets for many genebanks worldwide, 

including the CGIAR international collections (Halewood, Lopez 
Noriega et al., 2018).

For bananas (Musa spp.), the largest ex situ collection is main-
tained in vitro at one of the CGIAR international genebanks, the 
International Musa Germplasm Transit Centre (ITC), comprised of 
more than 1,600 accessions (Van den houwe et al., 2020). Then, over 
60 national collections worldwide conserve banana diversity and 
conduct- related research (Figure 1). Bananas (including Plantains) 
are arguably the world's most important fresh fruit and are a major 
staple food for hundreds of millions of people in low- income coun-
tries. With an estimated world production of 158 million tons an-
nually, the volume of gross banana exports is worth US$12.8 billion 
to exporting countries (FAOSTAT 2019). Furthermore, most of the 
global production is by smallholders for their own consumption or 
for local trade, making it the fourth- most important food crop in the 
least developed countries (LDCs) as defined by the United Nations, 
ranked by total production and food consumption.
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In order to increase understanding of its complex genetics so 
as to boost crop improvement, the first whole banana genome se-
quence was released in 2012, for an accession belonging to the Musa 
acuminata species (D’Hont et al., 2012) (Table 1). This original ref-
erence has recently been supplemented with of a number of other 
Musa species (Rouard et al., 2018; Wang et al., 2019; Wu et al., 2016). 
In parallel, high- throughput genotyping methods (i.e., genotyping- 
by- sequencing (GBS) (Elshire et al., 2011) and restriction- site associ-
ated DNA markers (RADSeq) (Davey et al., 2010)) have been used to 

investigate single nucleotide polymorphisms (SNPs) on various pan-
els of accessions available at the ITC genebank (Cenci et al., 2020; 
Sardos et al., 2016). In addition, other SNP datasets have been gen-
erated from gene expression and proteomics experiments for sub-
sets related to drought tolerance (Cenci et al., 2019; van Wesemael 
et al., 2019).

While genetic variant information is being produced at a fast 
pace through various projects and is increasingly processed via stan-
dardized bioinformatics workflows, one of the main challenges is 
the management of an increasing volume of raw and intermediate 
files that are difficult to handle for many applications. Bioinformatics 
workflows can produce millions of markers but need to be filtered 
in multiple ways according to analysis type or user perspective, and 
working with these data often presents challenges to those with-
out capacity in bioinformatics. Online information systems coping 
with big data linked to germplasm collections are scarce (König 
et al., 2020; Mansueto et al., 2017; Raubach et al., 2020; Ruas 
et al., 2017). Moreover, lack of access to phenotypic information 
continues to be an additional factor limiting the use of plant genetic 
resources. Phenotypic data are complex— information on the context 
under which they were collected is indispensable, and the domain is 
continuously evolving (Germeier & Unger, 2019). Recognizing these 
challenges, the availability of easy- to- use, interoperable and flexible 
solutions to navigate high- density genotyping and phenotyping data 
online continues to be a key aim for genebanks’ delivery of their mis-
sion of germplasm documentation and utilization.

In this study, we present an approach used to generate, store 
and disseminate a catalog of genetic variants of banana and plantain 

F I G U R E  1   Diversity of banana bunches at a germplasm 
collection exhibited at the National Research Centre for Banana 
(NRCB) in Trichy, India (with genebank curators at the back). 
Photograph taken by Julie Sardos

Categories Description

Geographic origin South- East Asia and West Oceania

Geographic distribution Humid tropics and subtropics

Total global production >158 million tons (FAOSTAT, 2019)

Taxonomy ~75 species and 500– 1000 cultivars - 

Biology A giant herb belonging to monocots

Vegetatively propagated and perennial

Parthenocarpic and low fertile cultivars

Ploidy Diploid, triploid and tetraploid

Basic genome information 11 chromosomesa 

550– 600 million of base pairs

Approx. 35,000 genes

Common uses Dessert, cooking, beer, textile, medicine

Nutrition Rich source of carbs, fiber, potassium, vitamin B6, 
vitamin C. Some varieties are rich in carotenoids

Main breeding objectives Drought tolerance, Disease resistance (e.g., Fusarium 
wilt, Black Leaf streak, banana bacterial wilt (BXW)), 
Biofortification (e.g., ProVitA), and post- harvest traits 
(texture, flavor)

aHaploid genome of most cultivated bananas and their crop wild relatives in the Eumusa section. 
Chromosome number can vary n = 7 (M. ingentimusa), n = 9 (M. becarri), and n = 10 (Callimusa 
section). 

TA B L E  1   An overview of banana
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     |ROUARD et Al.

maintained in the ITC, which is available at https://www.crop- diver 
sity.org/mgis/gigwa and is embedded in the genebank information 
system through which users can order available germplasm.

2  | MATERIAL S AND METHODS

Material used to create the catalog mostly originates from lyo-
philized leaf tissues of young banana plants distributed by the 
ITC. Such tissue is the most convenient way to obtain DNA of 
an acceptable quality and quantity for high- throughput restric-
tion enzyme- associated DNA sequencing methods, as for other 
omics techniques (Carpentier et al., 2007). Another advantage is 
that once in stock, the tissues are readily available for distribution, 
whereas in vitro material takes longer to obtain (i.e., an average of 
2 months for proliferating tissues and 4 months for in vitro rooted 
plantlets).

The generated sequence— short reads from Illumina sequenc-
ing machines— was processed through bioinformatics workflows 
composed of open source software that includes quality checks, 
read mapping on reference genomes, SNP calling and variant ef-
fect in genic regions as described in Sardos et al., 2016; Cenci 
et al., 2020 and Eyland et al., 2020. The outputs of the workflow 
are enormous text files in the variant call format (VCF). For every 
accession, another specific file format (i.e., gVCF) containing the 
full list of variant and non- variant sites is backed up on a server, 
allowing the system to recall variants with different sampling 
whenever necessary, thus saving significant time and computing 
resources.

SNP datasets for the ITC and other collections published in the 
literature (VCF files) (Table 2) were recorded in a non- relational 
database browsable via a web application called GIGWA (Sempéré 
et al., 2019), developed for the purpose of searching large ge-
notyping datasets in an optimized manner. This system, easy to 
deploy on any platform, is species- agnostic and provides a user- 
friendly interface to perform advanced data filtering and export 
for third- party analytical software. It was seamlessly embedded 
in the Musa Germplasm Information System (MGIS https://www.
crop- diver sity.org/mgis/) (Ruas et al., 2017), the database for 
global ex situ- held banana genetic resources that provides access 
to germplasm information for numerous banana collections world-
wide, including the ITC.

3  | RESULTS AND DISCUSSION

The diversity of edible bananas has been classified using genome 
groups according to the relative contribution of their ancestral 
wild species. Most cultivated bananas derived from hybridization 
between Musa acuminata (A genome) and the Musa balbisiana (B 
genome) species and the most frequent genome combinations are 
diploids and triploids cultivars denoted: AA, AB, AAA, AAB and ABB. 
The current catalog of genetic variants spans these species/groups TA
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for selected subsets of accessions (Table 2). It offers access to data-
sets with sizes ranging from 245,285 to more than 7 million SNPs 
depending on the study.

While the system is optimized to explore a large volume of data, it 
enables efficient filtering options based on a full range of parameters, 
mostly genetics (e.g., chromosome location, missing data percentage, 
minor allele frequency, gene mutation effect) but not only. Accession 
details can be enriched with metadata such as passport data or ag-
ronomic traits (e.g., control vs. stress on gene expression analyses), 
which then become elements which can be filtered. The interface is 
designed to work with one or two groups of samples, a feature which, 
when the latter case is used in conjunction with genotype pattern 
filters, makes it straightforward to identify SNPs discriminating the 
groups (Figure 2). This is particularly useful to filter by taxonomy or 
a certain trait between contrasted genotypes to reveal unique alleles 
held by some accessions. From the user interface, genetic variants of 
the catalog can be exported in various popular formats (e.g., VCF, BED) 
for further analyses, or directly imported in other software for genet-
ics analyses. Alternately, content can be programmatically accessed 
with the Breeding API (BrAPI), a computer– computer programming 
interface following standard plant specifications (Selby et al., 2019). 
This solution facilitates essential connections with other information 
systems (e.g., as implemented in Musabase, the database for banana 
breeding data https://musab ase.org and Genesys, a global informa-
tion system on Plant Genetic Resources for Food and Agriculture 
(PGRFA) https://www.genes ys- pgr.org).

With regard to types of use of the catalog, it can support var-
ious types of research analyses from genetic diversity studies to 
gene trait association. Of particular interest, a set of SNP markers 
for a panel of 105 accessions were investigated to provide gene-
bank users with genetic datasets ready for genome- wide associa-
tion studies (GWAS) once phenotyping data are obtained (Sardos 
et al., 2016).

The concern that such high levels of genotypic and phenotypic in-
formation, associated with germplasm accessions, would enable new 
breeding techniques (NBTs) that would bypass the access and benefit- 
sharing (ABS) arrangements linked currently to the distribution of 
physical material has generated much recent attention (Aubry, 2019; 
Halewood, Chiurugwi et al., 2018; Smyth et al., 2020). At the moment, 
any genebank user (e.g., researcher, breeder) can order plants and 
sequence them without further obligations, and many organizations 
have already made publicly available such datasets for a wide range 
of crops. As potential solutions are elaborated (Scholz et al., 2020), an 
important and challenging crop to breed such as banana should not be 
ignored, as access to its genetic and phenotypic data may contribute 
significantly to its progress as a crop (Gaffney et al., 2020).

This catalog intends to provide open access to genomic re-
sources in an equitable way, ultimately benefiting all, including 
those in low- income countries (Halewood et al., 2017). It should 
be noted that it does not include gene functions, but is linked 
to a genome browser from the banana genome hub which con-
tains gene annotation for references banana genomes (Droc 

F I G U R E  2   Example of a genotyping study in the Musa Germplasm Information System (MGIS). (a) Each study can be opened to access 
the list of genebank accessions with passport data and a genetic tree. (b) Web interface listing the 649 SNP discriminating between 26 wild 
banana accessions and cultivated Pisang Jari Buya bananas. (c) Detail view of genetic variants by accession with focus on ITC0249 ‘Calcutta 
4’
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et al., 2013). Nevertheless, given that banana is not a model 
plant, most gene functional information are inferred by bioin-
formatics methods (e.g., homology- based prediction methods). 
Moreover, given the polyploid genome background of numerous 
banana cultivars, it may be expected that many agronomic traits 
are under complex genetic regulation control, necessitating in-
novative approaches to investigate the role of apparent gene 
redundancy (Cenci et al., 2019; D’Hont et al., 2012). We have 
not yet reached the stage where one can easily pick up a gene 
variant coding for a specific trait and select material of interest 
to conduct crop improvement. Significant research is still needed 
to better understand the physiology and genetic architecture of 
traits in banana. Phenotyping experiments for various traits, 
including fruit quality, are also still missing, which may inhibit 
adoption of improved hybrids (Thiele et al., 2020). Furthermore, 
new plant breeding techniques such as gene editing will have 
to be fine- tuned for banana, even if some encouraging per-
spectives have been recently published (Tripathi et al., 2019; 
Zorrilla- Fontanesi et al., 2020). Finally, regulation frameworks of 
edited crops are still to be legislated in many countries (Schmidt 
et al., 2020). While waiting for future policy options, training on 
the use of such catalogs should be strengthened, particularly 
for breeders in national programs in those low- income countries 
with supportive funding schemes.

4  | CONCLUSIONS

A digital catalog of genetic variants is available for banana and is 
directly linked to the diversity held in the ITC genebank. It is acces-
sible online as a proof of concept for exploration and export of SNP 
datasets. We adapted the system with the objective of keeping the 
genetic information connected to the physical material maintained 
in the genebank. Users can browse genetic information, identify in-
teresting material and order it online for further investigation and 
use in breeding programs. While many genebanks are wondering if 
managing high- density markers is in their scope, the GIGWA web 
application offers a simple and elegant solution. With a reasonable 
transaction cost, its framework can be extrapolated to any germ-
plasm collection.

Challenges still need to be addressed. First, on a technical side, 
the datasets are stored by clusters of accessions resulting from 
individual studies. Merging datasets from various projects and se-
quencing platforms is a challenging task. From a financial perspec-
tive, funder investment is needed to complete the genotyping of 
the whole collection. Given the relatively small size of the clonal 
collection of bananas (1,600 accessions compared to the 773,000 
accessions managed by the CGIAR collections in total), it would 
not require a massive investment. Finally, to comply with interna-
tional rules, further developments will have to take into account 
the agreements on digital sequence information (DSI) and on ac-
cess and benefit- sharing (ABS) that are currently being debated 
in the frameworks of the Convention on Biological Diversity and 

the International Treaty for Plant Genetic Resources for Food and 
Agriculture.
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